Supporting Information for

Myoglobin-catalyzed intermolecular carbene N - H insertion with arylamine substrates

Gopeekrishnan Sreenilayam and Rudi Fasan*

Department of Chemistry, University of Rochester, 14627 Rochester, New York, USA

Correspondence should be addressed to R.F.(fasan@chem.rochester.edu)

Table of contents:

Supplementary Figures

Experimental Procedures

Synthetic Procedures

References

NMR Spectra

Page S2-S4

Pages S5-S8

Pages S9-S15

Page S16

Pages S17-S29

Supplementary Figure S1. GC traces for representative $\mathrm{Mb}(\mathrm{H} 64 \mathrm{~V}, \mathrm{~V} 68 \mathrm{~A})$-catalyzed $\mathrm{N}-\mathrm{H}$ insertion reactions. The structure and peak of the desired $\mathrm{N}-\mathrm{H}$ insertion product are shown. The peaks corresponding to the amine substrate and internal standard (IS) are also labeled.

Supplementary Figure S1. Crystal structure of wild-type sperm whale myoglobin (pdb 1A6K).
Residues H64 and L29 are highlighted in yellow and displayed as sphere models. The heme cofactor (light brown) and proximal H93 ligand are displayed as stick models.

Experimental Procedures

Reagents and Analytical Methods. All the chemicals and reagents were purchased from commercial suppliers (Sigma-Aldrich, ACS Scientific, Acros, Alfa Aesar) and used without any further purification, unless otherwise stated. All dry reactions were carried out under argon atmosphere in oven-dried glassware with magnetic stirring using standard gas-tight syringes, cannulae and septa. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on Bruker DPX-400 (operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) or Bruker DPX-500 (operating at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$). Tetramethylsilane (TMS) served as the internal standard (0 ppm) for ${ }^{1} \mathrm{H}$ NMR and CDCl_{3} was used as the internal standard (77.0 ppm) for ${ }^{13} \mathrm{C}$ NMR. Silica gel chromatography purifications were carried out using AMD Silica Gel 60 230-400 mesh. Gas chromatography (GC) analyses were carried out using a Shimadzu GC-2010 gas chromatograph equipped with a FID detector and a Shimadzu SHRXI-5MS column ($15 \mathrm{mx} 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ film). Separation method: a) $1 \mu \mathrm{~L}$ injection, injector temp.: $200^{\circ} \mathrm{C}$, detector temp: $300{ }^{\circ} \mathrm{C}$. Gradient: column temperature set at $60^{\circ} \mathrm{C}$ for 1 min , then to $200^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$, then to $290^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$. Total run time was 19.00 min . Separation method: b) using a Shimadzu GC-2010 gas chromatograph equipped with a FID detector, and a Cyclosil-B column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times$ $0.25 \mu \mathrm{~m}$ film). $1 \mu \mathrm{~L}$ injection, injector temp.: $200^{\circ} \mathrm{C}$, detector temp: $300^{\circ} \mathrm{C}$. Gradient: column temperature set at $140{ }^{\circ} \mathrm{C}$ for 3 min , then to $160^{\circ} \mathrm{C}$ at $1.8{ }^{\circ} \mathrm{C} / \mathrm{min}$, then to $165^{\circ} \mathrm{C}$ at $1^{\circ} \mathrm{C} / \mathrm{min}$, then to $245^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C} / \mathrm{min}$. Total run time was 28 min .

Protein expression and purification. Wild-type Mb and the engineered Mb variants were expressed in E. coli BL21(DE3) cells as described previously. ${ }^{[1]}$ Briefly, cells were grown in TB medium (ampicillin, $100 \mathrm{mg} \mathrm{L}^{-1}$) at $37^{\circ} \mathrm{C}(150 \mathrm{rpm})$ until OD_{600} reached 0.6 . Cells were then induced with $0.25 \mathrm{mM} \beta$-D-1-thiogalactopyranoside (IPTG) and $0.3 \mathrm{mM} \delta$-aminolevulinic acid
(ALA). After induction, cultures were shaken at 150 rpm and $27^{\circ} \mathrm{C}$ and harvested after 20 h by centrifugation at 4000 rpm at $4^{\circ} \mathrm{C}$. After cell lysis by sonication, the proteins were purified by Ni-affinity chromatography using the following buffers: loading buffer ($50 \mathrm{mM} \mathrm{Kpi}, 800 \mathrm{mM}$ $\mathrm{NaCl}, \mathrm{pH} 7.0)$, wash buffer $1(50 \mathrm{mM} \mathrm{Kpi}, 800 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 6.2)$, wash buffer $2(50 \mathrm{mM} \mathrm{Kpi}$, $800 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}$ glycine, pH 7.0) and elution buffer ($50 \mathrm{mM} \mathrm{Kpi}$,800 mM NaCl , 300 mM L-histidine, pH 7.0). After buffer exchange (50 mM Kpi , pH 7.0), the proteins were stored at $+4^{\circ} \mathrm{C}$. Myoglobin concentration was determined using an extinction coefficient $\varepsilon 410=157 \mathrm{mM}^{-1} \mathrm{~cm}^{-1} .{ }^{[2]}$
$\mathbf{N}-\mathbf{H}$ insertion reactions. Initial reactions (Table 1) were carried out at a $400 \mu \mathrm{~L}$ scale using $20 \mu \mathrm{M}$ myoglobin, 10 mM aniline, 10 or 5 mM EDA, and 10 mM sodium dithionite. In a typical procedure, a solution containing sodium dithionate (100 mM stock solution) in potassium phosphate buffer ($50 \mathrm{mM}, \mathrm{pH} 8.0$) was degassed by bubbling argon into the mixture for 4 min in a sealed vial. A buffered solution containing myoglobin was carefully degassed in a similar manner in a separate vial. The two solutions were then mixed together via cannula. Reactions were initiated by addition of $10 \mu \mathrm{~L}$ of aniline (from a 0.4 M stock solution in methanol), followed by the addition of $10 \mu \mathrm{~L}$ or $5 \mu \mathrm{~L}$ of EDA (from a 0.4 M stock solution in methanol) with a syringe, and the reaction mixture was stirred for 12 h at room temperature, under positive argon pressure. Reaction with hemin were carried out using an identical procedure with the exception that the purified Mb was replaced by $100 \mu \mathrm{~L}$ of a hemin solution $(80 \mu \mathrm{M}$ in DMSO: $\mathrm{H}_{2} \mathrm{O}, 1: 1$). For the optimization of the aniline:EDA ratio, reactions were performed according to the general procedure described above, using $20 \mu \mathrm{M}$ of protein $\mathrm{Mb}(\mathrm{H} 64 \mathrm{~V}, \mathrm{~V} 68 \mathrm{~A})$, 10 mM of aniline and variable amounts of EDA (2.5 mM EDA to 10 mM EDA). Optimization of
the substrate loading was done in a similar manner, using $20 \mu \mathrm{M} \mathrm{Mb}(\mathrm{H} 64 \mathrm{~V}, \mathrm{~V} 68 \mathrm{~A})$, variable quantities of aniline (from 10 to 160 mM final concentration), and variable quantities of EDA (from 10 to 160 mM final concentration), maintaining an aniline : EDA ratio of 1:1 at all times. Reactions for TTN determination were carried out according to the general procedure described above with $20 \mu \mathrm{M}$ of $\mathrm{Mb}(\mathrm{H} 64 \mathrm{~V}, \mathrm{~V} 68 \mathrm{~A}), 10 \mathrm{mM}$ aniline $(10 \mu \mathrm{~L}$ of 0.4 M stock solution in methanol), and $10 \mathrm{mM} \operatorname{EDA}(10 \mu \mathrm{~L}$ of 0.4 M stock solution in methanol) were used. Optimization of the protein concentration was carried according to the general procedure along with varying the hemoprotein concentration from $20 \mu \mathrm{M}$ to $0.08 \mu \mathrm{M}$ of $\mathrm{Mb}(\mathrm{H} 64 \mathrm{~V}, \mathrm{~V} 68 \mathrm{~A})$ and 10 mM aniline ($10 \mu \mathrm{~L}$ of 0.4 M stock solution in methanol), and 10 mM EDA ($10 \mu \mathrm{~L}$ of 0.4 M stock solution in methanol).

Preparative-scale reaction. A solution containing sodium dithionate (100 mM stock solution, 1 $\mathrm{mL}, 10 \mathrm{mM})$ in potassium phosphate buffer $(50 \mathrm{mM}, \mathrm{pH} 8.0,7.6 \mathrm{~mL})$ was degassed by bubbling argon into the mixture for 20 min in a sealed vial. A buffered solution containing $20 \mu \mathrm{M}$ of $\mathrm{Mb}(\mathrm{H} 64 \mathrm{~V}, \mathrm{~V} 68 \mathrm{~A})(1.34 \mathrm{~mL}$ of $150 \mu \mathrm{M}$ stock solution) was carefully degassed in a similar manner in a separate vial. The two solutions were then mixed together via cannula. Reactions were initiated by addition of $9.2 \mu \mathrm{~L}$ of pure aniline, followed by the addition of $12 \mu \mathrm{~L}$ of EDA with a syringe, and the reaction mixture was stirred for 12 h at room temperature, under positive argon pressure. The reaction mixture was extracted with dichloromethane ($4 \times 10 \mathrm{~mL}$), organic layer evaporated under reduced pressure and the residue was purified by flash column chromatography (10% ethyl acetate in hexanes) to yield ethyl phenylglycinate $\mathbf{3}$ as colorless solid $(14.5 \mathrm{mg}, 80 \%)$. A small amount (0.9%) of the double insertion product was observed in the reaction mixture by GC analysis.

Product analysis. The reactions were analyzed by adding $20 \mu \mathrm{~L}$ of internal standard (benzodioxole, 50 mM in methanol) to the reaction mixture, followed by extraction with $400 \mu \mathrm{~L}$ of dichloromethane and separated organic layer was analyzed by GC-FID (see Reagents and Analytical Methods section for details on GC analyses). Calibration curves for quantification of the different $\mathrm{N}-\mathrm{H}$ insertion products were constructed using authentic standards prepared synthetically using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ as catalyst as described in Synthetic Procedures. All measurements were performed at least in duplicate. For each experiment, negative control samples containing either no hemoprotein or no reductant were included.

Synthetic Procedures:

General procedure for chemical synthesis of authentic $\mathbf{N}-\mathbf{H}$ insertion product standards

To a flame dried round bottom flask under argon, equipped with a stir bar was added amine (1 equiv.) and $\mathrm{Rh}_{2}(\mathrm{OAC})_{4}(1 \mathrm{~mol} \%)$ in toluene ($2-3 \mathrm{~mL}$). To this solution was added a solution of diazo compound (1 equiv.) in toluene ($1-2 \mathrm{~mL}$) over 30 minutes at $0^{\circ} \mathrm{C}$. The resulting mixture was heated at $80^{\circ} \mathrm{C}$ for another $15-18 \mathrm{hrs}$. The solvent was removed under vacuum and the crude mixture was purified by flash column chromatography (hexanes/ethyl acetate) to provide $\mathrm{N}-\mathrm{H}$ insertion products in good to excellent yield. The insertion products were characterized by GCMS, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR techniques.

Ethyl phenylglycinate (3):

Following the standard procedure, pale brown solid, \% yield (88), GC-MS m/z (\% relative intensity): 179(32.1), 106(100), 77(21.2), 51(5.9); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.23(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.24(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 1.33$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 171.2,147.1,129.3,118.1,113.0,61.3$, 45.8, 14.2 ppm .

Ethyl p-tolylglycinate (4b):

Following the standard procedure, light brown solid, \% yield (86), GC-MS m/z (\% relative intensity): 193(26.3), 120(100), 91(18.7), 65(5.7); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.03(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.3,144.8,129.8,127.4,113.2,61.2$, 46.2, 20.4, 14.2 ppm .

Ethyl (4-methoxyphenyl)glycinate (5b):

Following the standard procedure, colorless solid, \% yield (80), GC-MS m/z (\% relative intensity): 209(42.0), 136(100), 121(14.6), 108(13.0), 77(10.0); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.84$ (s, 2H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.4,152.6$, $141.3,114.8,114.3,61.2,55.7,46.8,14.2 \mathrm{ppm}$.

Ethyl (4-chlorophenyl)glycinate (6b):

Following the standard procedure, colorless solid, \% yield (82), GC-MS m/z (\% relative intensity): 213(22.7), 142(42.5), 140(100), 105(14.1), 77(13.3); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $7.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.8,145.6,129.1,122.8,114.0,61.4$, 45.8, 14.2 ppm .

Ethyl (4-nitrophenyl)glycinate (7b):

Following the standard procedure, yellow solid, \% yield (75), GC-MS m/z (\% relative intensity): 224(12.6), 151(100), 105(47.4), 76(4.2); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 169.7,151.9,126.3,111.5,61.9,44.9,14.1 \mathrm{ppm}$.

Ethyl (4-isopropylphenyl)glycinate (8b):

Following the standard procedure, light brown oil, \% yield (82), GC-MS m/z (\% relative intensity): $221(33.7), 206(32.2), 178(12.5), 148(100), 132(30.6) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.85-2.79(\mathrm{~m}$, 1H), 1.34-1.28 (m, 3H), 1.24-1.21 (m, 6H) ppm; $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,100 \mathrm{MHz}\right): \delta 171.3,145.1$, 138.7, 127.2, 113.1, 61.2, 46.1, 33.2, 24.2, 14.2 ppm.

Ethyl (4-(tert-butyl)phenyl)glycinate (9b):

Following the standard procedure, brown oil, \% yield (80), GC-MS m/z (\% relative intensity): 235(34.6), 220(87.9), 192(26.3), 162(100), 146(36.1); $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.23(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 12$ H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.3,144.6,140.9,126.1,112.8,61.3,46.1,33.9$, 31.5, 31.3, 14.2 ppm .

Ethyl m-tolylglycinate (10b):

Following the standard procedure, colorless solid, \% yield (83), GC-MS m/z (\% relative intensity): 193(41.4), 120(100), 91(35.1), 65(11.2); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.12(\mathrm{t}, J=$ 7.6 Hz, 1H), $6.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45-6.43(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 2.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.2,147.1,139.1,129.2$, $119.1,113.8,110.1,61.3,45.9,21.6,14.2 \mathrm{ppm}$.

Ethyl o-tolylglycinate (11b):

Following the standard procedure, light brown oil, \% yield (85), GC-MS m/z (\% relative intensity): 193(31.2), 120(100), 91(25.1), 65(7.0); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.16(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 171.3,145.1,130.2,127.1,122.5,117.8,109.9,61.3,45.9,17.3,14.2 \mathrm{ppm}$.

Ethyl N-methyl- N-phenylglycinate (12b):

Following the standard procedure, brown oil, \% yield (79), GC-MS m/z (\% relative intensity): 193(27.1), 120(100), 91(18.5), 65(5.75); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.78-6.70 (m, 3H), $4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 171.1,148.9,129.2,117.3,112.3,60.8,54.5,39.5,14.2$ ppm.

Ethyl benzo[d][1,3]dioxol-5-ylglycinate (13b):

Following the standard procedure, light brown solid, \% yield (75), GC-MS m/z (\% relative intensity): 223(36.7), $150(100), 120(9.4), 92(12.7), 65(16.9) ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 4.21-4.19(\mathrm{~m}, 2 \mathrm{H})$, $4.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.2$, $148.4,142.7,140.2,108.6,104.5,100.7,96.3,61.3,46.7,14.2 \mathrm{ppm}$.

Ethyl naphthalen-2-ylglycinate (14b):

Following the standard procedure, purple solid, \% yield (78), GC-MS m/z (\% relative intensity): 229(19.7), 156(100), 127(19.7); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.71-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.31$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $171.0,144.7,135.0,129.1,127.8,127.7,126.4,126.0,122.3,117.9,104.7,61.4,45.8,14.2 \mathrm{ppm}$. tert-butyl phenylglycinate (15):

Following the standard procedure, yellow oil, \% yield (89), GC-MS m/z (\% relative intensity): 207(13.5), 151(37.3), 106(100), 77(18.7), 57(27.9), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.21-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.3,147.2,129.2,118.0,113.0,81.9,45.5,28.1 \mathrm{ppm}$.

References

[1] M. Bordeaux, R. Singh, R. Fasan, Bioorg. Med. Chem. 2014, 22, 5697-5704.
[2] C. Redaelli, E. Monzani, L. Santagostini, L. Casella, A. M. Sanangelantoni, R. Pierattelli, L. Banci, Chembiochem 2002, 3, 226-233.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

VVK

$\stackrel{\substack{\sim \\ \underset{\sim}{*} \\ \mid}}{\mid}$

		雨	
Y	W1		V

$11 /$
 1

YVV|

N N N N

111

金空霥
V

(V)

