**Electronic Supporting Information** 

# Caught! Crystal Trapping of a side-on peroxo bound to Cr(IV)

David P. de Sousa,<sup>a</sup> Jennifer Bigelow,<sup>b</sup> Jonas Sundberg,<sup>a</sup> Lawrence Que Jr.<sup>b</sup> and Christine J. McKenzie<sup>\*a</sup>

<sup>a</sup> Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark). Fax: +45 6615 8760; Tel: +45 6550 2518; E-mail: <u>mckenzie@sdu.dk</u> <sup>b</sup> Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota, 55455, USA

| Experimental Details      |                                                                                        |       |  |  |
|---------------------------|----------------------------------------------------------------------------------------|-------|--|--|
| Bond Valence Sum Analysis |                                                                                        |       |  |  |
| Supporting                | g figures and tables                                                                   |       |  |  |
| Figure S1                 | X-ray crystal structure $[Cr(tpena)](ClO_4)_2(C_4H_8O_2)_{0.5}$ .                      | p. 4  |  |  |
| Figure S2                 | ESI-MS spectrum [Cr(tpena)] <sup>2+</sup> in water.                                    | p. 4  |  |  |
| Figure S3                 | Cyclic voltammogram [Cr(tpena)] <sup>2+</sup> in aqueous electrolyte.                  | p. 5  |  |  |
| Figure S4                 | EPR spectrum $[CrO_2(tpenaH)]^{2+}$ .                                                  | p. 5  |  |  |
| Figure S5                 | EPR spectrum $[Cr(tpena)]^{2+}$                                                        | p. 6  |  |  |
| Figure S6                 | GC-TCD chromatogram headspace gas $[CrO_2(tpenaH)]^{2+}$ formation.                    | p. 6  |  |  |
| Figure S7                 | Time-resolved UV-Vis spectroscopy [CrO <sub>2</sub> (tpenaH)] <sup>2+</sup> formation. | p. 7  |  |  |
| Figure S8                 | rRaman spectra recorded with 514.5 and 413.1 nm laser excitation.                      | p. 8  |  |  |
| Table S1                  | Stretching vibrations of Cr-O <sub>2</sub> complexes.                                  | p. 9  |  |  |
| Table S2                  | Crystallographic data $[CrO_2(tpenaH)](ClO_4)_2(H_2O_2)_4$ .                           | p. 10 |  |  |
| Table S3                  | Bond distances and angles $[CrO_2(tpenaH)](ClO_4)_2(H_2O_2)_4$ .                       | p. 11 |  |  |
| Table S4                  | Crystallographic data $[Cr(tpena)](ClO_4)_2(C_4H_8O_2)_{0.5}$ .                        | p. 12 |  |  |
| Table S5                  | Bond distances and angles $[Cr(tpena)](ClO_4)_2(C_4H_8O_2)_{0.5}$ .                    | p. 13 |  |  |

### **Experimental Details**

Elemental analysis was performed at the Chemistry Department at Copenhagen University. ATR-IR spectra were recorded as neat solids on a PerkinElmer Spectrum Two spectrometer. All spectra have been ATR- and baseline corrected. UV-Vis spectra were recorded on an Agilent 8453 spectrophotometer using 1 cm quartz cuvettes. EPR spectra where recorded on a Bruker EMX Plus CW spectrometer. ESI-MS spectra were recorded on a microspray LC-MS Bruker micrOTOF-O II spectrometer. CV spectra were recorded using an Autolab system controlled by the GPES software. The working electrode was a platinum disk, the auxiliary electrode a platinum wire and the reference electrode an Ag wire/Ag<sup>+</sup> (10 mM AgNO<sub>3</sub>). Electrodes were polished with diamond paste, rinsed and sonicated before use. Resonance Raman spectra where collected using Spectra-Physics Model 2060 Kr<sup>+</sup> and 2030-15 Ar<sup>+</sup> lasers and an Action AM-506 monochromator equipped with a Princeton LN/CCD data collection system. Samples were generated and then frozen in EPR tubes in liquid nitrogen. Spectra were obtained at 77 K and kept cold with liquid nitrogen in an EPR dewar. Raman frequencies were calibrated to indene prior to data collection. The monochromator slit width was set for a bandpass of 4 cm<sup>-1</sup> for all spectra. X-ray crystal diffraction data were collected using a Bruker-Nonius X8 APEX-II instrument (Mo-Ka radiation, graphite monochromated fine-focused sealed tube). Structure solution was carried out with SHELXS-2013, and refined against  $F^2$  by full matrix least squares using SHELXL-2013. Hydrogen atoms was placed at calculated positions and allowed to ride on their carrier atoms with isotropic displacement parameters  $U_{iso}(H) = 1.2U_{eq}$ . Syntheses. Commercially available reagents were purchased from Sigma-Aldrich and used without further purification. Na<sub>2</sub>(tpena)<sub>2</sub>(CH<sub>3</sub>CH<sub>2</sub>OH)<sub>2</sub> was synthesized following Vad et al.<sup>1</sup>. Acetonitrile and diethylether were dried over activated 3 Å mol sieves and contain 10 and 9 ppm residual water, respectively, as measured by Carl-Fisher titration. *Caution:* Perchlorate salts are potentially explosive upon exposure to excess heat or shock, and should be handled with care and only in small quantities.

### [Cr(tpena)](ClO<sub>4</sub>)<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>0.5</sub>. (1.(ClO<sub>4</sub>)<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>0.5</sub>). 111 mg (0.12 mmol)

Na<sub>2</sub>(tpena)<sub>2</sub>(CH<sub>3</sub>CH<sub>2</sub>OH)<sub>2</sub> was dissolved in 1 mL water. A filtered solution of 96 mg (0.24 mmol) Cr(NO<sub>3</sub>)<sub>6</sub>·9H<sub>2</sub>O and 68 mg (0.48 mmol) NaClO<sub>4</sub>·H<sub>2</sub>O in 1 mL water was added. The solution was acidified with 1 drop of 12 M perchloric acid. Initially a thick blue-green dispersion was formed, but after stirring for 1 hr at rt, the solution became almost clear red. The solution was diluted with 3 mL dioxane and filtered. Slow evaporation of the filtered solution yielded the product as red rubies over 10 days (102 mg, 62%). Anal. Calc. for  $C_{24}H_{28}Cl_2CrN_5O_{11}$ : C, 42.06; H, 4.12; N, 10.22. Found: C, 41.95; H, 3.97; N, 10.08. ESI-MS (H<sub>2</sub>O), *m/z*: 442.1 ([Cr<sup>II</sup>(tpena)]<sup>+</sup>, 17%), 459.1 ([Cr<sup>III</sup>(tpena)OH]<sup>+</sup>, 100%). IR (neat): 1681 (vs, br, C=O), 1611 (s), 1336 (m), 1298 (br, s, C=O), 1091 (vs, br, ClO<sub>4</sub>), 1031 (m), 772 (s, br, ClO<sub>4</sub>), 624 cm<sup>-1</sup> (s). UV-Vis (H<sub>2</sub>O): 366 (86), 483 nm (139 M<sup>-1</sup>cm<sup>-1</sup>); UV-Vis (CH<sub>3</sub>CN): 376 (104), 487 nm (189 M<sup>-1</sup>cm<sup>-1</sup>).

(1) M. S. Vad, A. Nielsen, A. Lennartson, A. D. Bond, J. E. McGrady, C. J. McKenzie, *Dalton Trans.*, 2011, **40**, 10698.

[CrO<sub>2</sub>(tpenaH)](ClO<sub>4</sub>)<sub>2</sub> (4.(ClO<sub>4</sub>)). 40 mg (58 µmol) [Cr<sup>III</sup>(tpena)](ClO<sub>4</sub>)<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>0.5</sub> was dissolved in 3 mL acetonitrile and added 3 ml (32 mmol) 10.9 M H<sub>2</sub>O<sub>2</sub> (*aq*). After stirring for 40 mins a dark violet powder was precipitated by addition of 12 mL 3:2 diethylether/dioxane and isolated by centrifugation. The solid was dried over a stream of nitrogen and stored at -40 °C (25 mg, 64%). X-ray grade crystals of were grown by placing two large single crystals of 1.ClO<sub>4</sub>)<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>0.5</sub> in a drop of 33% H<sub>2</sub>O<sub>2</sub> (*aq*) in a covered glass container. After standing undisturbed at 4 °C for ~24 hs violet plates of 4.(ClO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O<sub>2</sub>)<sub>4</sub> formed. ESI-MS (H<sub>2</sub>O), *m/z*: 350.10 ([Cr<sup>III</sup>(tpena ÷ CHC<sub>5</sub>H<sub>4</sub>N)]<sup>+</sup>, 6%), 442.1 ([Cr<sup>II</sup>(tpena)]<sup>+</sup>, 100%), 459.1 ([Cr(tpena)OH)]<sup>+</sup>, 14%), 474.1 ([CrO<sub>2</sub>(tpena)]<sup>+</sup>, 34%). IR (neat): 1669 (vs, br, C=O), 1608 (s), 1373 (m), 1256 (br, s, C=O), 1095 (vs, br, ClO<sub>4</sub>), 890 (m), 871 (vs, s, O-O), 624 cm<sup>-1</sup> (s). UV-Vis (H<sub>2</sub>O): 535 nm (142 M<sup>-1</sup>cm<sup>-1</sup>); UV-Vis (CH<sub>3</sub>CN): 553 nm (150 M<sup>-1</sup>cm<sup>-1</sup>).

**Generation of**  $[Cr(tpena)OH]^+$  (3). If solutions of  $[Cr(tpena)]^{2+}$  (1) in water or acetonitrile are made alkaline with NaOH or Et<sub>3</sub>N, the "true" hydroxide  $[Cr(tpena)OH]^+$  (3) is formed. The formation of **3** is indicated by a color change from red to blue (UV-Vis (H<sub>2</sub>O) = 410, 561 nm (63, 88 M<sup>-1</sup>cm<sup>-1</sup>); UV-Vis (CH<sub>3</sub>CN) = 409, 578 nm (112, 137 M<sup>-1</sup>cm<sup>-1</sup>)). The blue solutions of **3** also yields aqueous ESI-MS spectra with  $[Cr^{III}(tpena)OH]^+$  as the dominant ion. The conversion is accompanied by a dramatic change in electrochemical behaviour. In contrast to  $[Cr(tpena)]^{2+}$ , only irreversible aqueous electrochemistry is observed for **3**, with an strong irreversible oxidation peak in the anodic region,  $E_{pa} = + 571$  mV (*vs* Ag/Ag<sup>+</sup>; Cr<sup>III</sup>OH/Cr<sup>IV</sup>OH), and a irreversible reduction peak in the catodic region at  $E_{pc} = - 830$  mV (Cr<sup>III</sup>OH/Cr<sup>II</sup>OH).

#### **Bond Valence Analysis**

The BVS analysis was carried out as previously reported<sup>2,3</sup> using the formula BVS =  $\sum_i [r_0(M-X)-r_i(M-X)] / 0.73$  Å and  $r_0(M-O) = 1.759$  Å,  $r_0(M-N) = 1.831$  Å. For reference a BVS = 3.306 was obtained for [Cr<sup>III</sup>(tpena)](ClO<sub>4</sub>)<sub>2</sub>. The published structure of [Cr<sup>IV</sup>O<sub>2</sub>(TMC)OH<sub>2</sub>]Cl<sub>2</sub> yielded a BVS = 3.635. The validity of the model was confirmed by calculating the BVS of 15 known mononuclear Cr(IV) compounds from the Cambridge Structural Database (2014) with O and N donors, which yielded an average BVS = 4.039 ± 0.366.

- (2) F. B. Larsen, A. Boisen, K. J. Berry, B. Moubaraki, K. S. Murray, V. McKee, R. C. Scarrow, C. J. McKenzie, *Eur. J. Inorg. Chem.*, 2006, 3841;
- (3) L. Shu, Y.-M. Chiou, A. M. Orville, M. A. Miller, J. D. Lipscomb, L. Que Jr., *Biochemistry* (*Mosc.*), 1995, **34**, 6649.



**Figure S1.** ORTEP plot of the cation, **1**, of  $[Cr(tpena)](ClO_4)_2(C_4H_8O_2)_{0.5}$  showing 50% probability ellipsoids. See Table S3 for selected bond distances and angles.



Figure S2. ESI-MS spectra of  $[Cr(tpena)](ClO_4)_2(C_4H_8O_2)_{0.5}$  dissolved in H<sub>2</sub>O.



**Figure S3.** CV of 1 mM [Cr(tpena)](ClO<sub>4</sub>)<sub>2</sub> dissolved in 0.1 M aqueous KPF<sub>6</sub>. The redox couple at  $E_{\frac{1}{2}} = -1099$  (vs Ag/Ag<sup>+</sup>) is assigned to [Cr<sup>III</sup>(tpena)]<sup>2+</sup>/[Cr<sup>II</sup>(tpena)]<sup>+</sup>. The redox couple at  $E_{\frac{1}{2}} = -885$  mV is assigned to [Cr<sup>III</sup>(tpena)OH<sub>2</sub>]<sup>2+</sup>/[Cr<sup>II</sup>(tpena)OH<sub>2</sub>]<sup>+</sup>. Sweep rate: 10 mV s<sup>-1</sup>.



Figure S4. X-band EPR spectrum of a frozen 5 mM CH<sub>3</sub>CN solution of [CrO<sub>2</sub>(tpenaH)]<sup>2+</sup> at 110 K.



Figure S5. X-band EPR spectrum of a frozen 5 mM CH<sub>3</sub>CN solution of [Cr(tpena)]<sup>2+</sup> at 110 K.



Figure S6. GC-TCD chromatogram of the headspace gas of the reaction of  $[Cr(tpena)]^{2+}$  with excess H<sub>2</sub>O<sub>2</sub>. The reaction were carried out under an initially oxygen free N<sub>2</sub> atmosphere. The signal at 1.62 min is due to O<sub>2</sub> and the signal at 1.90 min is due to N<sub>2</sub>.



**Figure S7.** (*a*) Time resolved UV-Vis spectra of the oxidation of a 2 mM CH<sub>3</sub>CN solution of  $[Cr(tpena)]^{2+}$  after addition of 700 eq. 11.9 M aqueous H<sub>2</sub>O<sub>2</sub> (1.26 M). (*b*) Numerical fitting and simulation of the speciation for the kinetic trace at  $\lambda = 553$  nm with Reactlab KINSIM.



**Figure S8.** Frozen solution resonance Raman spectra. (*a*) Full range of spectrum from main article (*b*) Spectrum recorded with an excitation wavelength of  $\lambda_{ex} = 413.1$ .nm (power = 65 mW). [CrO<sub>2</sub>(tpenaH)]<sup>2+</sup> (blue line, 7.9 mM, generated *in-situ* from [Cr(tpena)]<sup>2+</sup> and 200 eq 30% H<sub>2</sub>O<sub>2</sub>) in CH<sub>3</sub>CN, 9 mM [Cr(tpena)]<sup>2+</sup> (red line, 9 mM) in CH<sub>3</sub>CN, [Cr(tpena)OH]<sup>+</sup> (black line, 9 mM, generated *in-situ* from [Cr(tpena)]<sup>2+</sup> and 1.2 eq Et<sub>3</sub>N) in 9:1 CH<sub>3</sub>CN/H<sub>2</sub>O.

| Complex                                              | $v(O-O) / cm^{-1}$ | Ref.                                  |  |  |
|------------------------------------------------------|--------------------|---------------------------------------|--|--|
| "end-on" superoxo                                    |                    |                                       |  |  |
| $[Cr^{III}(OO)(OH_2)_6]^+$                           | 1166               | Bakac <i>et al.</i> <sup>4</sup>      |  |  |
| $[Cr^{III}(OO)(cyclam)(H_2O)]^{2+}$                  | 1134/1145          | Bakac <i>et al.</i> <sup>4</sup>      |  |  |
| $[Cr^{III}(OO)(14-TMC)(Cl)]^+$                       | 1170               | Cho <i>et al</i> . <sup>5</sup>       |  |  |
| "side-on" superoxo                                   |                    |                                       |  |  |
| $\overline{[Cr^{III}(O_2)(Tp^{tBu,Me})(C_6H_5N)]^+}$ | 1083               | Qin <i>et al</i> . <sup>6</sup>       |  |  |
| "side-on" peroxo                                     |                    |                                       |  |  |
| $[Cr^{V}(O_{2})_{4}]^{3}$                            | 875                | Fergussion <i>et al.</i> <sup>7</sup> |  |  |
| $[Cr^{IV}(O_2)(12\text{-}TMC)(Cl)]^+$                | 864                | Yokoyama <i>et al.</i> <sup>8</sup>   |  |  |
| $[Cr^{IV}(O_2)(tpenaH)]^{2+}$                        | 878                | This work                             |  |  |

Table S1. Stretching vibrations of Cr-OO complexes.

- (4) A. Bakac, S. L. Scott, J. H. Espenson, K. R. Rodgers, J. Am. Chem. Soc. 1995, 117, 6483.
- (5) J. Cho, J. Woo, W. Nam, J. Am. Chem. Soc. 2010, 132, 5958.
- (6) K. Qin, C. D. Incarvito, A. L. Rheingold, K. L. Theopold, Angew. Chem. Int. Ed. 2002, 41, 2333.
- (7) J. E. Fergusson, C. J. Wilkins, J. F. Young, Chem. Soc. Resumed 1962, 2136.
- (8) A. Yokoyama, J. E. Han, J. Cho, M. Kubo, T. Ogura, M. A. Siegler, K. D. Karlin, W. Nam, W. *J. Am. Chem. Soc.* 2012, **134**, 15269.

# Crystallographic information for [CrO<sub>2</sub>(tpenaH)](ClO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O<sub>2</sub>)<sub>3</sub>(H<sub>2</sub>O).

| Empirical formula                                     | $C_{22}H_{33}Cl_2CrN_5O_{19}$                          |
|-------------------------------------------------------|--------------------------------------------------------|
| Formula weight (g/mol)                                | 794.42                                                 |
| Temperature (K)                                       | 150                                                    |
| Crystal system                                        | monoclinic                                             |
| Space group                                           | P2 <sub>1</sub> / <i>n</i>                             |
| a, b, c (Å)                                           | 15.2360 (16), 14.7664 (16), 16.0081 (17)               |
| $\alpha, \beta, \gamma$ (°)                           | 90, 118.237 (5), 90                                    |
| Volume (Å <sup>3</sup> )                              | 3172.9 (6)                                             |
| Ζ                                                     | 4                                                      |
| $\rho_{\text{calc}} (\text{g cm}^{-3})$               | 1.680                                                  |
| Abs. coefficient (mm <sup>-1</sup> )                  | 0.624                                                  |
| F(000)                                                | 1640                                                   |
| Crystal size (mm <sup>3</sup> )                       | 0.28 x 0.13 x 0.04                                     |
| $2\Theta$ range for data collection                   | 2.5 to 30.6°                                           |
| Index ranges                                          | $-19 \le h \le 19, -18 \le k \le 18, -18 \le l \le 20$ |
| Reflections collected                                 | 43356                                                  |
| Independent reflns $(R_{int})$                        | 6434 (0.082)                                           |
| Data / restraints / parameters                        | 6434 / 1 / 454                                         |
| GOF on $F^2$                                          | 1.076                                                  |
| Final $R_1(F)^a$ (I > 2 $\sigma$ (I)) / $wR_2(F^2)^b$ | 0.1053 / 0.2912                                        |
| $R_1^a / wR_2(F^2)^b$ (all data)                      | 0.1325 / 0.3083                                        |
| Largest diff. peak / hole (eÅ-3)                      | 2.26 / -0.77                                           |

**Table S2.** Selected crystallographic data for [CrO<sub>2</sub>(tpenaH)](ClO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O<sub>2</sub>)<sub>3</sub>(H<sub>2</sub>O).

<sup>a</sup>  $R_1(F) = \Sigma(||F_0| - |F_c||) / \Sigma|F_0|$ 

<sup>b</sup>  $wR_2(F^2) = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{\frac{1}{2}}$ 

|               | - ;       |
|---------------|-----------|
| Cr1 – O2      | 1.931 (5) |
| Cr1 – O3      | 1.884 (5) |
| Cr1 – O4      | 1.884 (5) |
| Cr1 – N4      | 2.041 (6) |
| Cr1 – N5      | 2.086 (6) |
| Cr1 – N3      | 2.109 (6) |
| Cr1 – N2      | 2.165 (6) |
| O4 – O3       | 1.383 (8) |
| O3 - Cr1 - O4 | 43.1 (2)  |
| O3 – O4 – Cr1 | 68.5 (2)  |
| O4 – O3 – Cr1 | 68.5 (3)  |
| O3 – Cr1 – O2 | 95.3 (2)  |
| O4 - Cr1 - O2 | 94.4 (2)  |
| Cr1 – N2 – C6 | 113.4 (4) |
| N2 - Cr1 - O3 | 79.5 (2)  |
| N2 - Cr1 - O4 | 122.2 (2) |
| N2 - Cr1 - N3 | 81.2 (2)  |
| N2 - Cr1 - N4 | 92.5 (2)  |
| N2 - Cr1 - N5 | 155.1 (2) |
| N2 - Cr1 - O2 | 82.9 (2)  |
| N3 - Cr1 - O3 | 159.9 (2) |
| N3 - Cr1 - O4 | 156.5 (3) |
| N3 - Cr1 - N4 | 81.8 (2)  |
| N3 - Cr1 - N5 | 75.5 (2)  |
| N3 – Cr1 – O2 | 88.2 (2)  |
| N4 - Cr1 - O3 | 124.3 (2) |
| N4 - Cr1 - O4 | 95.9 (3)  |
| N4 - Cr1 - N5 | 93.1 (2)  |
| N4 - Cr1 - O2 | 169.6 (2) |
| N5 - Cr1 - O3 | 124.3 (2) |
| N5 - Cr1 - O4 | 81.3 (3)  |
| N5 - Cr1 - O2 | 87.3 (2)  |

Table S3. Selected bond distances (Å) and angles (°) for  $[CrO_2(tpenaH)](ClO_4)_2(H_2O_2)_3(H_2O)$ 

## Crystallographic information for [Cr(tpena)](ClO<sub>4</sub>)<sub>2</sub>(C<sub>6</sub>H<sub>8</sub>O<sub>2</sub>)<sub>0.5</sub>

Table S4. Selected crystallographic data for [Cr(tpena)](ClO<sub>4</sub>)<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>0.5</sub>.

| Empirical formula                                     | $C_{24}H_{28}Cl_2CrN_5O_{11}$                          |
|-------------------------------------------------------|--------------------------------------------------------|
| Formula weight (g/mol)                                | 685.41                                                 |
| Temperature (K)                                       | 100                                                    |
| Crystal system                                        | monoclinic                                             |
| Space group                                           | P2 <sub>1</sub> / <i>c</i>                             |
| a, b, c (Å)                                           | 16.3004 (14), 12.4635 (11), 13.5694 (12)               |
| $\alpha, \beta, \gamma$ (°)                           | 90, 91.647 (5), 90                                     |
| Volume (Å <sup>3</sup> )                              | 2755.6 (4)                                             |
| Ζ                                                     | 4                                                      |
| $\rho_{\text{calc}} (\text{g cm}^{-3})$               | 1.652                                                  |
| Abs. coefficient                                      | 0.680                                                  |
| F(000)                                                | 1412.0                                                 |
| Crystal size (mm <sup>3</sup> )                       | 0.50 x 0.28 x 0.20                                     |
| $2\Theta$ range for data collection                   | 4.114 to 61.412°                                       |
| Index ranges                                          | $-23 \le h \le 23, -17 \le k \le 17, -19 \le l \le 19$ |
| Reflections collected                                 | 88931                                                  |
| Independent reflns $(R_{int})$                        | 8510 (0.0321)                                          |
| Data / restraints / parameters                        | 8510 / 0 / 388                                         |
| GOF on $F^2$                                          | 1.088                                                  |
| Final $R_1(F)^a$ (I > 2 $\sigma$ (I)) / $wR_2(F^2)^b$ | 0.0281 / 0.0796                                        |
| $R_1^{a} / wR_2(F^2)^{b} \text{ (all data)}$          | 0.0341 / 0.0878                                        |
| Largest diff. peak / hole (eÅ-3)                      | 0.62 / -0.54                                           |

<sup>a</sup>  $R_1(F) = \Sigma(||F_0| - |F_c||) / \Sigma |F_0|$ 

<sup>b</sup>  $wR_2(F^2) = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{\frac{1}{2}}$ 

**Table S5.** Selected bond distances (Å) and angles (°) for $[Cr(tpena)](ClO_4)_2(C_4H_8O_2)_{0.5}$ 

| Cr1 – N1      | 2.0590 (11) |
|---------------|-------------|
| Cr1 – N2      | 2.0631 (10) |
| Cr1 – N3      | 2.0516 (10) |
| Cr1 – N4      | 2.0651 (10) |
| Cr1 – N5      | 2.0717 (11) |
| Cr1-02        | 1.9310 (9)  |
| N1 - Cr1 - O2 | 93.43 (4)   |
| N1 - Cr1 - N2 | 79.64 (4)   |
| N1 - Cr1 - N3 | 163.57 (4)  |
| N1 - Cr1 - N4 | 90.60 (4)   |
| N1 - Cr1 - N5 | 115.40 (4)  |
| N2 - Cr1 - O2 | 83.88 (4)   |
| N2 - Cr1 - N3 | 85.69 (4)   |
| N2 - Cr1 - N4 | 92.54 (4)   |
| N2 - Cr1 - N5 | 163.58 (4)  |
| N3 - Cr1 - O2 | 92.31 (4)   |
| N3 - Cr1 - N4 | 82.64 (4)   |
| N3 - Cr1 - N5 | 80.11 (4)   |
| N4 - Cr1 - O2 | 174.03 (4)  |
| N4 - Cr1 - N5 | 93.78 (4)   |