Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Substrate Selective Amide Coupling driven by Encapsulation of a Coupling Agent within a Self-Assembled Hexameric Capsule

Sonia Giust,^a Giorgio La Sorella,^a Laura Sperni,^a Giorgio Strukul,^a Alessandro Scarso^a

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Calle Larga S. Marta 2137, 30123, Venezia (ITALY)

Reagents and Materials.

<u>General</u>

¹H NMR were recorded at 298 K, unless otherwise stated, on a Bruker AVANCE 300 spectrometer operating at 300.15 MHz. δ values in ppm are relative to SiMe4. GC analysis were performed on HP SERIES II 5890 equipped with a HP5 column (30 m, I. D. 0.25 m, film 0.25 μ m) using He as gas carrier and FID. GC-MS analyses were performed on a GC Trace GC 2000 equipped with a HP5-MS column (30 m, I.D. 0.25 mm, film 0.25 μ m) using He gas carrier and coupled with a quadrupole MS Thermo Finnigan Trace MS with *Full Scan* method.

Solvents and reactants were used as received; otherwise they were purified as reported in the literature.¹ TLC analysis were performed on TLC Polygram * Sil G/UV254 of 0.25 mm thickness and flash-chromatography separations were performed on silica gel Merk 60, 230-400 mesh.²

Substrates and capsule

All carboxylic acids **3** and amines **4** as well as the coupling agent 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride **2** are all commercially available products (Aldrich) and were used as received without any further purification. Resorcin[4]arene **1** was prepared as reported in the literature.³ Amide products **5** were determined by GC-MS analysis.

Catalytic Studies

<u>Catalytic reactions of amide coupling between acids 3 with amines 4 mediated by the carbodiimide 2 in the presence of the</u> <u>capsule $\mathbf{1}_{6}$ ·8H₂O</u>

Water saturated solvent was prepared by shaking chloroform-d with bidistilled water at room temperature in a separation funnel. Resorcin[4]arene **1** (6.6 equivalents, 81.4 mM) was placed in a screw-capped vial equipped with silicone septum and dissolved in the water saturated chloroform-d (1 mL) stirring for few minutes. To this solution, 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride **2** (1 equivalent, 13.2 mM) was added, followed after few minutes stirring, by octane, decane, dodecane, tetradecane, or docosane as GC-MS standard (3.3 mM), a series of carboxylic acids (0.5 equivalents each, 6.7 mM) and a series of amines (0.5 equivalents each, 6.7 mM). The reaction was then left at 60°C under vigorous stirring for 2 days and the reaction progress was monitored by GC-MS analysis by periodically sampling directly from the reaction mixtures. Conversion, product assignment and distribution were determined by direct GC-MS analysis of the reaction mixture as the average of three experiments.

GC-MS analyses were performed on a GC Trace GC 2000 coupled with a quadrupole MS Thermo Finnigan Trace MS with *Full Scan* method. Experimental conditions are reported in the following table.

Figure S1. ¹H NMR spectra in water saturated chloroform-d: A) 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride **2** (26.5 mM), B) **2** (26.5 mM) and $\mathbf{1}_{6} \cdot 8H_2O$ (26.5 mM) after mixing; C) **2** (26.5 mM) and $\mathbf{1}_{6} \cdot 8H_2O$ (26.5 mM) after 15 min; D) **2** (26.5 mM) and $\mathbf{1}_{6} \cdot 8H_2O$ (26.5 mM) after 30 min; E) **2** (26.5 mM) and $\mathbf{1}_{6} \cdot 8H_2O$ (26.5 mM) after 2 h; F) **2** (26.5 mM) and $\mathbf{1}_{6} \cdot 8H_2O$ (26.5 mM) after 3 days; G) **2** (26.5 mM) and $\mathbf{1}_{6} \cdot 8H_2O$ (26.5 mM) after 11 days.

Figure S2. ¹H NMR spectra in water saturated chloroform-d: A) 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride **2** (26.5 mM), B) **2** (26.5 mM) and $\mathbf{1}_{6}\cdot 8H_2O$ (26.5 mM) C) **2** (26.5 mM) and $\mathbf{1}_{6}\cdot 8H_2O$ (26.5 mM) and tetraethylammonium tetrafluoroborate **6** (265.3 mM); D) **2** (26.5 mM) and $\mathbf{1}_{6}\cdot 8H_2O$ (26.5 mM) and tetraethylammonium tetrafluoroborate **6** (265.3 mM); D) **2** (26.5 mM) and $\mathbf{1}_{6}\cdot 8H_2O$ (26.5 mM) and tetraethylammonium tetrafluoroborate **6** (265.3 mM); E) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM).

Figure S3. ¹H NMR spectra in water saturated chloroform-d: A) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM); B) $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) with 0.2 eq. of hexanoic acid; C) $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) with 0.4 eq. of hexanoic acid; D) $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) with 0.6 eq. of hexanoic acid; E) $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) with 0.8 eq. of hexanoic acid; F) $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) with 1.0 eq. of hexanoic acid; G)

 $\mathbf{1}_{6}\cdot 8H_{2}O$ (13.5 mM) with 1.2 eq. of hexanoic acid; H) $\mathbf{1}_{6}\cdot 8H_{2}O$ (13.5 mM) with 1.6 eq. of hexanoic acid; I) $\mathbf{1}_{6}\cdot 8H_{2}O$ (13.5 mM) with 2.0 eq. of hexanoic acid.

Figure S4. ¹H NMR spectra in water saturated chloroform-d: A) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM); B) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.2 eq. of butylamine; C) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.4 eq. of butylamine; D) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.4 eq. of butylamine; D) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.8 eq. of butylamine; F) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.8 eq. of butylamine; F) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 1.0 eq. of butylamine; G) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 1.2 eq. of butylamine; H) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 1.6 eq. of butylamine; I) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 2.0 eq. of butylamine. Ψ encapsulated n-butylammonium cation.

New encapsulated species

Figure S6. ¹H NMR spectra in water saturated chloroform-d: A) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.1 eq. of butylamine and 0.1 eq. of hexanoic acid; B) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.2 eq. of butylamine and 0.2 eq. of hexanoic acid; C) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.4 eq. of butylamine and 0.4 eq. of hexanoic acid; D) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.6 eq. of butylamine and 0.6 eq. of hexanoic acid; E) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.6 eq. of hexanoic acid; F) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 0.8 eq. of hexanoic acid; F) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 1.0 eq. of butylamine and 0.8 eq. of hexanoic acid; G) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 1.0 eq. of hexanoic acid; G) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 1.5 eq. of butylamine and 1.5 eq. of hexanoic acid; H) Hexameric capsule $\mathbf{1}_{6}\cdot 8H_2O$ (13.5 mM) and 2.0 eq. of butylamine and 2.0 eq. of hexanoic acid. Ψ encapsulated new species.

Figure S7. ¹H NMR spectra in water saturated chloroform-d for the reaction at 50°C monitored every 1h (from bottom to top) for the hexameric capsule 1_6 ·8H₂O (13.5 mM) octylamine (6.7 mM) hexanoic acid (6.7 mM) and **2** (13.2 mM).

GC-MS spectra of amide products

				Internal
Reagents	RT	Product	PM	Standard
C3COOH + C4NH2	9.57		143	Octane
C5COOH + C4NH2	10.63		171	Decane
C3COOH + C8NH2	11.51	NH NH	199	Dodecane
C5COOH + C8NH2	12.27		227	Tetradecane
C5COOH + C10NH2	12.97	NH NH	255	Tetradecane
C11COOH + C4NH2	12.99	O NH	255	Octane
C11COOH + C8NH2	14.31	O NH	311	Docosane
C12COOH + C8NH2	14.72		325	Docosane
C5COOH + C16NH2	15.21	NH NH	339	Docosane
C11COOH + C16NH2	20.66	NA NA	423	Tetradecane

Esca-Exp1B-2gg_250714 #1548 RT: 14.30 AV: 1 NL: 3.20E5 T: {0;0} + c El det=350.00 Full ms [35.00-500.00]

- 2 W. C. Still, M. Khan, A. Mitra J. Org. Chem. 1978, 43, 2923.
- 3 Y. Aoyama, Y. Tanaka, S. Sugahara, J. Am. Chem. Soc., 1989, 111, 5397-5404.

¹ D.D. Perrin, W.L.F. Armarego, Purification of laboratory chemicals, 3rd edition, , Pergamon Press, 1993.