Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Selective and General Exhaustive Cross-Coupling of Di-Chloroarenes With a Deficit of Nucleophile Mediated by a Pd-NHC Complex

Benjamin J. Groombridge,^a Stephen M. Goldup^{b*} and Igor Larrosa^{c*}

^aSchool of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, El 4NS, UK.

^bDepartment of Chemistry, University of Southampton, Highfield, Southampton, Hampshire, SO17 1BJ, UK. Email: <u>s.goldup@soton.ac.uk</u>

^cSchool of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. Email: <u>igor.larrosa@manchester.ac.uk</u>

Table of Contents	S2
General Experimental Section	S 3
General Procedures	S 4
Experimental Data	\$5
Scheme 2	\$5
Figure 1	87
Synthesis of Starting Materials	S25
¹ H and ¹³ C NMR Spectra	S28
References	S42

General Experimental

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. Anhydrous solvents were obtained by passing the solvent through an activated alumina column on an MBRAUN MB SPS-800 solvent purification system. 2,7-Dichlorofluorenone,¹ **4a-e**,^{2,3,4} were prepared according to reported procedures. All reactions were carried out under an atmosphere of N₂ unless otherwise stated. Microwave vials were supplied by CEM. Flash column chromatography was carried out using a Varian Inteliflash or Biotage Isolera with Biotage Snap cartridges. THF stands for tetrahydrofuran, NMP stands for *N*-methylpyrrolidone and DMI stands for 1,3-dimethyl-2-imidazolidinone, dba stands for dibenzylideneacetone and Binap stands for 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl. Petrol refers to the fraction of petroleum ether boiling in the range 40 – 60 °C. Solutions of organometallic reagents were titrated prior to use according to literature procedures.⁵

¹H and ¹³C NMR spectra were recorded on a Bruker AV600, AV 400 or AVIII 400 instrument. Chemical shifts are reported in parts per million and referenced to residual solvent. Coupling constants (J) are reported in Hz. Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint. = quintet, q = quartet, t = triplet, d = doublet, s = singlet. Low resolution GC-MS samples were recorded at Queen Mary University of London analytical services on Varian combined 450-GC and 220-MS (ESI) or Agilent combined 6890N-GC and 5973N-MS (ESI) systems. High resolution mass spectrometry was carried out by the EPSRC National Mass Spectrometry Centre in Swansea. Melting points were determined using a Sanyo Gallenkamp apparatus and are uncorrected.

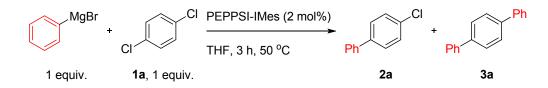
General Procedures

Titration of Organometallics:³ A CEM microwave vial was charged with I_2 (0.127 g, 0.50 mmol), sealed, purged with N_2 and anhydrous LiBr (0.5 M in THF, 4.0 mL, 2.0 mmol) was added. The resulting brown solution was cooled to 0 °C. A solution of the organometallic compound of interest was added dropwise until the solution became colourless which indicated consumption of one equivalent (0.50 mmol) of the organometallic.

Preparation of ZnCl₂ (1M in THF): A flask equipped with a Young's tap was charged with $ZnCl_2$ (35.2 g, 251 mmol) and the solid dried under high vacuum at 160 °C for 16 h. The flask was cooled to rt and filled with N₂. THF (251 mL) was added and the mixture stirred for 24 h at rt until all solid had fully dissolved.

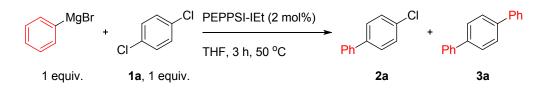
General procedure for Kumada couplings:⁶ A CEM microwave vial was charged with PEPPSI-IPent (4.0 mg, 5.0 μmol), and, if solid at rt, the organohalide (0.25 mmol). The vial was sealed, flushed with N₂, THF (0.88 mL) was added and the solution was stirred at 50 °C. If the organohalide was a liquid at rt, it was added immediately after the addition of THF. PhMgBr (1.0 M in THF, 0.25 mL, 0.25 mmol) was added and the resultant solution was stirred for 3 h at 50 °C. Mesitylene was added as an internal standard (0.50 M in CDCl₃, 0.50 mL, 0.25 mmol), and the crude reaction mixture was analysed by GC-MS and ¹H NMR. To facilitate the analysis of the outcome of cross coupling reactions the major product was isolated to confirm its identity and to verify the peaks of interest in the crude reaction mixture. All novel compounds were fully characterized.

General procedure for Suzuki couplings:² A CEM microwave vial was charged with PEPPSI-IPent (4.0 mg, 5.0 μ mol), K₂CO₃ (105 mg, 0.75 mmol), PhB(OH)₂ (30 mg, 0.25 mmol) and, if solid at rt, the organohalide (0.25 mmol). The vial was sealed, flushed with N₂, 1,4-dioxane (1.0 mL) was added and the resultant mixture was stirred at 60 °C for 12 h. If the organohalide was a liquid at rt, it was added immediately after the addition of 1,4-dioxane. Mesitylene was added as an internal standard (0.50 M in CDCl₃, 0.50 mL, 0.25 mmol), and the crude reaction mixture was analysed by GC-MS and ¹H NMR. To facilitate the analysis of the outcome of cross coupling reactions the major product was

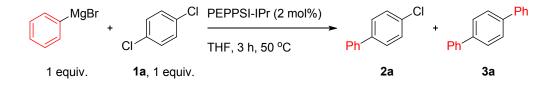

isolated to confirm its identity and to verify the peaks of interest in the crude reaction mixture. All novel compounds were fully characterized.

General procedure for Negishi couplings:⁷ ZnCl₂ (1.0 M in THF, 2.0 mL, 2.0 mmol) and PhMgBr (1.0 M in THF, 2.0 mL, 2.0 mmol) were stirred vigorously under N₂ at rt for 30 min. NMP (4.0 mL) was added to the mixture and the resulting PhZnCl (1.0 mL, 0.25 mmol) was added by syringe to a CEM vial charged with PEPPSI-IPent (4.0 mg, 5.0 µmol), and the organohalide (0.25 mmol) in NMP (0.50 mL). The reaction mixture was stirred at 30 °C for 2 h. Mesitylene was added as an internal standard (0.50 M in CDCl₃, 0.50 mL, 0.25 mmol), and the crude reaction mixture was analysed by GC-MS and ¹H NMR. To facilitate the analysis of the outcome of cross coupling reactions the major product was isolated to confirm its identity and to verify the peaks of interest in the crude reaction mixture. All novel compounds were fully characterized.

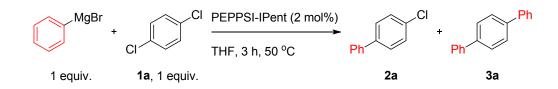
The characterization data for 2a, ${}^{8} 3a$, ${}^{9} 3b$, ${}^{10} 3c$, ${}^{11} 3f$, ${}^{12} 3h$, ${}^{13} 3j$, ${}^{14} 3k$, ${}^{15} 3n$, ${}^{16} 3o$, ${}^{17} 3p$, ${}^{18} 3q$, ${}^{19} 3r$, ${}^{20} 2s$, ${}^{21} 3u$, ${}^{22} 3v$, 23 and $3w^{24}$ matched those previously reported.


Experimental Data

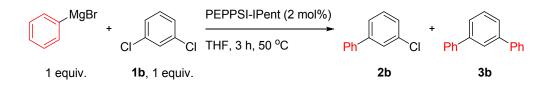
Scheme 1, Entry 1:


Using the general procedure for Kumada couplings employing PEPPSI-IMes (3.0 mg, 5.0 μ mol) in place of PEPPSI-IPent a product mixture of **2a** and **3a** is obtained in a >99 : <1 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 16% yield of **2a+3a** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 9 CH₂Cl₂ : petrol) gave an analytical sample of major product **2a** as a white solid: m.p. 78 - 79 °C (lit.²⁵ 77-78); ¹H NMR (400 MHz, CDCl₃) δ 7.59 - 7.49 (m, 4H), 7.48 - 7.39 (m, 4H), 7.39 - 7.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 139.8, 133.5 129.1, 129.0, 128.5, 127.7, 127.1.

Scheme 1, Entry 2:


Using the general procedure for Kumada couplings, employing PEPPSI-IEt (3.1 mg, 5.0 μ mol) in place of PEPPSI-IPent, a product mixture of **2a** and **3a** is obtained in a 70 : 30 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 50% yield of **2a**+**3a** based on PhMgBr.

Scheme 1, Entry 3:


Using the general procedure for Kumada couplings, employing PEPPSI-IPr (3.4 mg, 5.0 μ mol) in place of PEPPSI-IPent, a product mixture of **2a** and **3a** is obtained in a 45 : 55 ratio by GC-MS. ¹H NMR analysis using mesitylene as internal standard indicates an 83% yield of **2a+3a** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 9 CH₂Cl₂ : petrol) gave an analytical sample of major product **3a** as a white solid: m.p. 207 – 208 °C (lit.²⁶ 210 – 211 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 4H), 7.65 (d, *J* = 7.3, 4H), 7.47 (t, *J* = 7.6, 4H), 7.37 (t, *J* = 7.4, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.3, 129.0, 127.7, 127.5, 127.2.

Scheme 1, Entry 4:

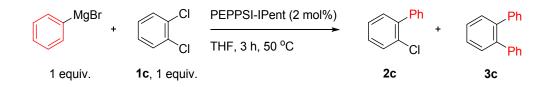
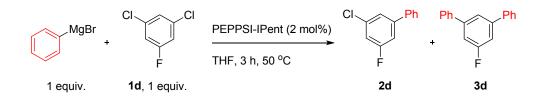

Using the general procedure for Kumada couplings a product mixture of **2a** and **3a** is obtained in a 6 : 94 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 96% yield of **2a+3a** based on PhMgBr.

Figure 1, 3b:

Using the general procedure for Kumada couplings a product mixture of **2b** and **3b** is obtained in a 13 : 87 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates an 80% yield of **2b+3b** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 9 CH₂Cl₂ : petrol) gave an analytical sample of major product **3b** as a white solid: m.p. 86 - 88 °C (lit.²⁷ 84 - 85); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (q, *J* = 1.5, 1H), 7.65 (dq, *J* = 2.5, 1.7, 4H), 7.61 - 7.56 (m, 2H), 7.55 - 7.43 (m, 5H), 7.41 - 7.34 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.4, 129.3, 129.0, 127.6, 127.4, 126.3, 126.3.


Figure 1, 3c:

Using the general procedure for Kumada couplings a product mixture of 2c and 3c is obtained in a 84 : 16 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 66% yield of 2c+3c based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 9 CH₂Cl₂ : petrol) gave an analytical sample of major product 3c as a white solid: m.p. 55 – 58 °C

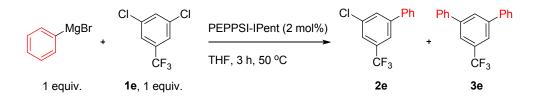
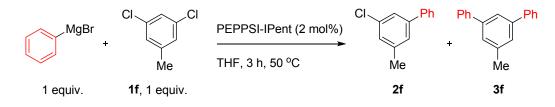

(lit.²⁴ 56 – 57 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 4H), 7.25 – 7.12 (m, 10H); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 140.7, 130.7, 130.0, 128.0, 127.6, 126.6.

Figure 1, 3d:

Using the general procedure for Kumada couplings a product mixture of **2d** and **3d** is obtained in a 3 : 97 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 91% yield of **2d+3d** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 9 CH₂Cl₂ : petrol) gave an analytical sample of major product **3d** as a white solid: m.p. 70 – 71 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.57 (m, 5H), 7.48 (dd, *J* = 10.2, 4.7, 4H), 7.43 – 7.37 (m, 2H), 7.28 (dd, *J* = 9.7, 1.5, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 162.4, 144.0, 143.9, 129.1, 128.1, 127.3, 121.9, 121.9, 113.1, 112.8; LRMS (ESI) 248.6 [M]⁺; IR (cm⁻¹) 3064, 3037, 2925, 1594, 1575, 1408, 1336, 1165, 866, 756, 695, 689.


Figure 1, 3e:

Using the general procedure for Kumada couplings a product mixture of 2e and 3e is obtained in a 5 : 95 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 94% yield of 2e+3e based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol) gave an analytical sample of major product 3e as a white solid: m.p. 75 - 76 °C; ¹H NMR (400 MHz, CDCl3)

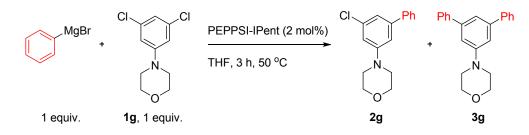
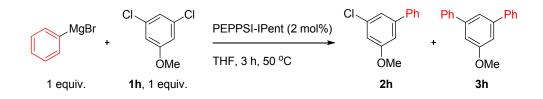

δ 8.02 – 7.98 (m, 1H), 7.85 (dd, J = 1.6, 0.7, 2H), 7.72 - 7.66 (m, 4H), 7.56 – 7.50 (m, 4H), 7.49 - 7.43 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 134.0, 129.4, 129.2, 128.3, 127.4, 122.9, 122.9; LRMS (ESI) 298.2 [M⁺]; HRMS (EI) 298.0965 [M]⁺ (calc. for C₁₉H₁₃F₃ 298.0964 [M]⁺); IR (cm⁻¹) 3036, 1363, 1264, 1167, 1110, 758, 694.

Figure 1, 3f:

Using the general procedure for Kumada couplings a product mixture of **2f** and **3f** is obtained in a 2 : 98 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 84% yield of **2h+3h** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 9 CH₂Cl₂ : petrol) gave an analytical sample of major product **3f** as a white solid: m.p. 137 - 140 °C (lit.²⁸ 135 – 138 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (m, 5H), 7.48 (t, *J* = 7.6, 4H), 7.43 (d, *J* = 0.7, 2H), 7.41 – 7.36 (m, 2H), 2.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.5, 138.9, 128.9, 127.5, 127.4, 127.1, 123.6, 21.8.


Figure 1, 3g:

Using the general procedure for Kumada couplings a product mixture of 2g and 3g is obtained in a >1 : 99 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 71% yield of 2g+3g based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (1 : 9 petrol : CH₂Cl₂ raising to CH₂Cl₂) gave an analytical sample of major product 3g as a white solid:

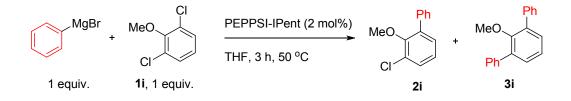
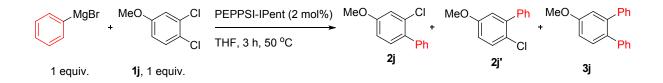
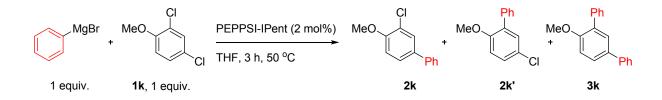

m.p. 100 - 102 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dq, J = 2.6, 1.7, 4H), 7.48 - 7.42 (m, 4H), 7.40 - 7.34 (m, 2H), 7.32 (t, J = 1.5, 1H), 7.11 (d, J = 1.5, 2H), 3.94 - 3.88 (m, 4H), 3.33 - 3.27 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 141.9, 128.9, 127.6, 127.5, 118.7, 114.0, 67.1, 49.8; LRMS (ESI) 315.3 [M]⁺; HRMS (EI) 315.1617 [M]⁺ (calc. for C₂₂H₂₁ON 315.1618 [M]⁺); IR (cm⁻¹) 2967, 2849, 1592, 1419, 1448, 118, 955, 753, 695.

Figure 1, 3h:

Using the general procedure for Kumada couplings a product mixture of **2h** and **3h** is obtained in a <1: >99 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 82% yield of **2h+3h** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 3 : 7 CH₂Cl₂ : petrol) gave an analytical sample of major product **3h** as a white solid: m.p. 91 - 93 °C (lit.²⁹ 91 – 92 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 5.2, 3.3, 4H), 7.47 (dd, *J* = 10.3, 4.7, 4H), 7.43 – 7.35 (m, 3H), 7.13 (d, *J* = 1.5, 2H), 3.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 143.3, 141.3, 128.9, 127.7, 127.4, 119.1, 111.9, 55.6.


Figure 1, 3i:

Using the general procedure for Kumada couplings a product mixture of **2i** and **3i** is obtained in a 8 : 92 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 85% yield of **2i+3i** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered


through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 3 : 7 CH_2Cl_2 : petrol) gave an analytical sample of major product **3i** as a colourless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.60 (m, 4H), 7.48 – 7.41 (m, 4H), 7.40 – 7.33 (m, 4H), 7.25 (dd, *J* = 8.2, 6.9, 1H), 3.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 138.9, 135.9, 130.5, 129.5, 128.3, 127.3, 124.4, 60.6; LRMS (ESI) 260.2 [M⁺]; HRMS (EI) 260.1198 [M]⁺ (calc. for C₁₉H₁₆O 260.1196 [M]⁺); IR (cm⁻¹) 3060, 3025, 2929, 1462, 1407, 1226, 1005, 749, 697.

<u>Figure 1, 3j :</u>

Using the general procedure for Kumada couplings a product mixture of **2j** or **2j'** and **3j** is obtained in a 12 : 0 : 88 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates an 81% yield of **2j+3j** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 3 : 7 CH₂Cl₂ : petrol) gave an analytical sample of major product **3j** as a white solid: m.p. 116-117 °C (lit.³⁰ 113 – 115 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 1H), 7.26 – 7.13 (m, 8H), 7.13 – 7.08 (m, 2H), 7.00 – 6.96 (m, 2H), 3.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 141.8, 141.5, 141.2, 133.3, 131.7, 130.0, 129.8, 127.9, 127.8, 126.6, 126.1, 115.9, 113.1, 55.4.

Figure 1, 3k:

Using the general procedure for Kumada couplings a product mixture of **2k**, **2k'** and **3k** is obtained in a 29 : 1 : 70 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard

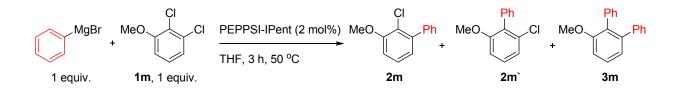

indicates a 94% yield of $2\mathbf{k}+2\mathbf{k}+3\mathbf{k}$ based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 3 : 7 CH₂Cl₂ : petrol) gave an analytical sample of major product $3\mathbf{k}$ as a white solid: m.p. 99 - 100 °C (lit.³¹ 93 – 94 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.54 (m, 6H), 7.43 (ddd, J =7.9, 5.9, 2.9 , 4H), 7.38 – 7.29 (m, 2H), 7.07 (d, J = 8.5 , 1H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 140.9, 138.6, 134.1, 131.2, 129.9, 129.7, 128.9, 128.2, 127.2, 127.2, 126.9, 126.9, 111.7, 55.9.

Figure 1, 31:

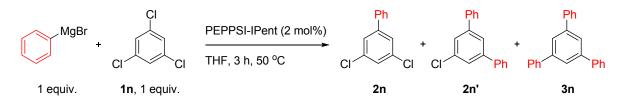

Using the general procedure for Kumada couplings a product mixture of **21**, **21'** and **31** is obtained in a 21 : 0 : 79 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 99% yield of **21+31** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 3 : 7 CH₂Cl₂ : petrol) gave an analytical sample of major product **31** as a white solid: m.p. 96 - 100 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.64 (m, 2H), 7.63 – 7.58 (m, 2H), 7.52 – 7.33 (m, 7H), 7.31 – 7.27 (m, 1H), 7.22 (d, *J* = 1.5, 1H), 3.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 142.1, 141.2, 138.4, 131.3, 129.9, 129.7, 128.9, 128.2, 127.6, 127.3, 127.1, 119.9, 110.4, 55.8.; LRMS (ESI) 260.2 [M]⁺; HRMS (EI) 260.1200 [M]⁺ (calc. for C₁₉H₁₆O 260.1196 [M]⁺); IR (cm⁻¹) 3033, 2956, 2932, 1215, 753, 694.

Figure 1, 3m:

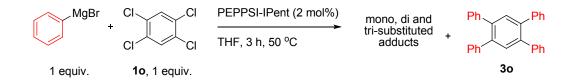

Using the general procedure for Kumada couplings a product mixture of **2m**, **2m**[•] and **3m** is obtained in a 70 : 0 : 30 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates an 85% yield of **2m+3m** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 3 : 7 CH₂Cl₂ : petrol) gave analytical samples of **2m**. **2m** (colourless oil): ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.42 (m, 4H), 7.41 – 7.36 (m, 1H), 7.30 – 7.26 (m, 1H), 6.97 – 6.94 (m, 2H), 3.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 142.4, 139.6, 129.6, 128.1, 127.7, 127.1, 123.4, 121.3, 110.9, 56.5; LRMS (ESI) 218.3 [M]⁺; HRMS (APCI) 219.0571 [M+H]⁺ (calc. for C₁₃H₁₂O³⁵Cl 219.0571 [M+H]⁺); IR (cm⁻¹) 3060, 2939, 2839, 1568, 1465, 1422, 1262, 1218, 757, 698. 3m (white solid): m.p. 108 – 109 °C ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, *J* = 8.0 Hz, 1H), 7.24 – 7.03 (m, 11H), 7.01 (dd, *J* = 8.3, 0.8 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 143.0, 141.6, 137.0, 131.4, 130.0, 129.9, 128.4, 127.7, 127.5, 126.5, 126.4, 122.9, 110.2, 56.1.

Figure 1, 3n:

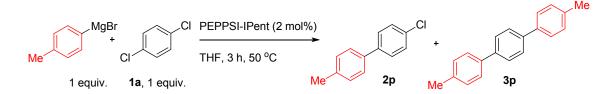

Using the general procedure for Kumada couplings a product mixture of **2n**, **2n**' and **3n** is obtained in a 2 : 5 : 93 ratio by GC-MS. ¹H NMR analysis using mesitylene as internal standard indicates an 75% yield of **2n+2n'+3n** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 4 : 6 CH₂Cl₂ : petrol) gave an analytical sample of major product **3n** as a white solid: m.p. 172 °C (lit.³² 173 – 174 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 3H), 7.71 (dq, *J* = 2.5, 1.7, 6H), 7.52 – 7.45 (m, 6H), 7.43 – 7.36 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 141.3, 129.0, 127.7, 127.5, 125.3.

Figure 1, 30:

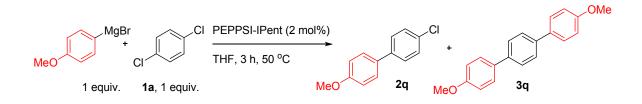

Using the general procedure for Kumada couplings a product mixture of mono, di and tri-coupled products and **30** is obtained in a 19 : 1 : 2 : 78 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a combined 49% yield based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 6 : 4 CH₂Cl₂ : petrol) gave an analytical sample of major product **30** as a white solid: m.p. >250 °C (lit.³³ 274 – 275 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 2H), 7.25 – 7.21 (m, 20H); ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 139.8, 133.1, 130.1, 128.1, 126.8.

Figure 1, 3p:

Using the general procedure for Kumada couplings a product mixture of **2p** and **3p** is obtained in a 11 : 89 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 92% yield of **2p+3p** based on 4-MePhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 2 : 8 CH₂Cl₂ : petrol) gave an analytical sample of major product **3p** as a white solid: m.p. >250 °C (lit.³⁴ 249 – 250 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 4H), 7.49 – 7.44 (m, 4H), 7.22 – 7.17 (m, 4H), 2.33 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 138.1, 137.2, 129.7, 127.4, 127.0, 21.3.

Figure 1, 3q:

Using the general procedure for Kumada couplings a product mixture of 2q and 3q is obtained in a 10 : 90 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 72% yield of 2q+3q based on 4-MeOPhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 7 : 3 CH₂Cl₂ : petrol) gave an analytical sample of major product 3q as a white solid: m.p. >250 °C (lit.³⁵ 270 – 271 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 4H), 7.60 – 7.55 (m, 4H), 7.02 – 6.97 (m, 4H), 3.86 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 139.3, 133.5, 128.2, 127.2, 114.4, 55.5.

Figure 1, 3r:

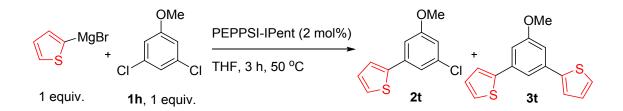

Using the general procedure for Kumada couplings a product mixture of $2\mathbf{r}$ and $3\mathbf{r}$ is obtained in a 4 : 96 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 93% yield of $2\mathbf{r}+3\mathbf{r}$ based on 4-FPhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 4 : 6 CH₂Cl₂ : petrol) gave an analytical sample of major product $3\mathbf{r}$ as a white solid: m.p. 224 - 226 °C (lit.³⁶ 219 – 222 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 8H), 7.19 – 7.11 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 161.5, 139.3, 136.9, 136.9, 128.8, 128.7, 127.6, 116.0, 115.8.

Figure 1, 3s:

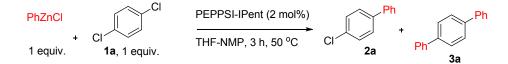

Using the general procedure for Kumada couplings a product mixture of **2s** and **3s** is obtained in a 81 : 19 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 92% yield of **2s+3s** based on 2-thienylMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol) gave an analytical sample of major product **2s** as a white solid: m.p. 71 – 72 °C (lit.³⁷ 71 - 73 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.38 – 7.31 (m, 2H), 7.31 – 7.27 (m, 2H), 7.08 (dd, *J* = 4.9, 3.8, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 133.4, 133.1, 129.2, 128.3, 127.3, 125.3, 123.6.

Figure 1, 3t:

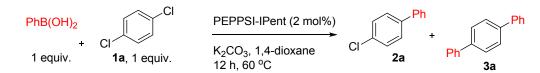

Using the general procedure for Kumada couplings a product mixture of **2t** and **3t** is obtained in a 2 : 98 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 77% yield of **2t+3t** based on 2-thienylMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 1 CH₂Cl₂ : petrol) gave an analytical sample of major product **3t** as a pale blue oil: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, *J* = 1.4, 1H), 7.36 (dd, *J* = 3.6, 1.0, 2H), 7.31 (dd, *J* = 5.1, 1.0, 2H), 7.13 - 7.06 (m, 4H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 144.0, 136.4, 128.1, 125.3, 123.8, 116.7, 110.9, 55.6; LRMS (ESI) 272.2 [M]⁺; HRMS (APCI) 273.0403 [M+H]⁺ (calc. for C₁₅H₁₃OS₂ 273.0402 [M+H]⁺); IR (cm⁻¹) 1587, 1222, 1170, 821, 694.

Figure 1, 3a (Negishi coupling)

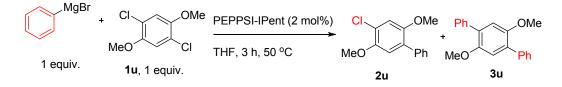

Using the general procedure for Negishi couplings a product mixture of 2a and 3a is obtained in a 11 : 89 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates an 83% yield of 2a+3a based on PhZnCl.

Figure 1, 3a (Suzuki coupling)

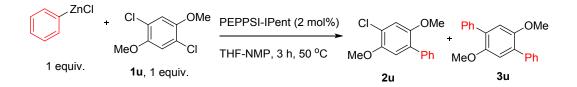

Using the general procedure for Negishi couplings a product mixture of 2a and 3a is obtained in a 3 : 97 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 56% yield of 2a+3a based on PhB(OH)₂.

Figure 1, 3u (Kumada coupling):

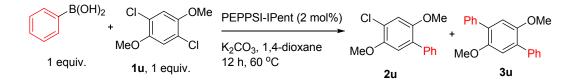

Using the general procedure for Kumada couplings a product mixture of **2u** and **3u** is obtained in a 3 : 97 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 90% yield of **2u+3u** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. The residue was recrystalised from EtOH to give an analytical sample of major product **3u** as a white solid: m.p. 146 - 148 °C (lit.³⁸ 149 – 150 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 4H), 7.48 – 7.41 (m, 4H), 7.39 – 7.32 (m, 2H), 6.98 (s, J = 4.6, 2H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 138.5, 130.6, 129.6, 128.3, 127.3, 114.9, 56.6.

Figure 1, 3u (Negishi coupling):

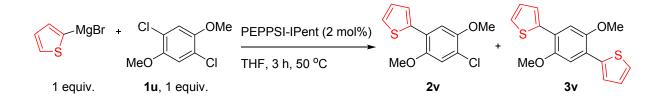
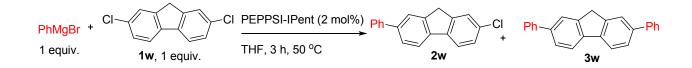

Using the general procedure for Negishi couplings a product mixture of **2u** and **3u** is obtained in a 14 : 86 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 67% yield of **2u+3u** based on PhZnCl.

Figure 1, 3u (Suzuki coupling):

Using the general procedure for Negishi couplings a product mixture of 2u and 3u is obtained in a 15 : 85 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 71% yield of 2u+3u based on PhB(OH)₂.


Figure 1, 3v:

Using the general procedure for Kumada couplings a product mixture of 2v and 3v is obtained in a 10 : 90 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 83% yield of 2v+3v based on 2-thienylMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. The residue was recrystalized from EtOH to give an analytical sample of major product 3v as a white solid: m.p. 134 - 136 °C (lit.³⁹ 135 - 136 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 3.7, 1.2, 2H), 7.35 (dd, J = 5.1, 1.1, 2H), 7.26 (s, 2H),

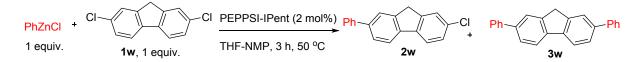

7.11 (dd, *J* = 5.1, 3.7, 2H), 3.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 139.2, 127.1, 125.9, 125.6, 123.2, 112.5, 56.6.

Figure 1, 3w (Kumada coupling):

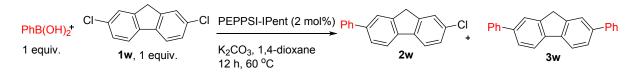

Using the general procedure for Kumada couplings a product mixture of **2w** and **3w** is obtained in a 8 : 92 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 68% yield of **2w+3w** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 1 CH₂Cl₂ : petrol) gave an analytical sample of major product **3a** as a white solid: m.p. >250 °C (lit.⁴⁰ 269 – 270 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.9 , 2H), 7.80 (s, *J* = 0.7 , 2H), 7.70 – 7.62 (m, 6H), 7.50 – 7.43 (m, 4H), 7.39 – 7.33 (m, 2H), 4.03 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 141.6, 140.8, 140.1, 128.9, 127.3, 127.3, 126.3, 124.0, 120.4, 37.2.

Figure 1, 3w (Negishi coupling):

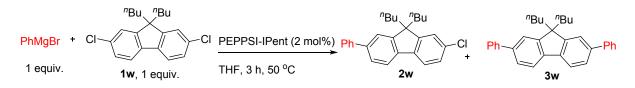

Using the general procedure for Negishi couplings a product mixture of 2w and 3w is obtained in a 11 : 89 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates an 87% yield of 2w+3w based on PhZnCl.

Figure 1, 3w (Suzuki coupling):

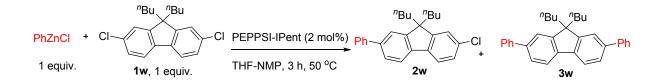

Using the general procedure for Suzuki couplings a product mixture of 2w and 3w is obtained in a 10 : 90 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 58% yield of 2w+3w based on PhB(OH)₂.

Figure 1, 3x (Kumada coupling):

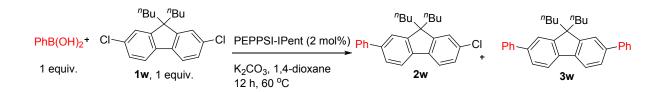

Using the general procedure for Kumada couplings a product mixture of 2x and 3x is obtained in a 11 : 89 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 78% yield of 2x+3x based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 1 CH₂Cl₂ : petrol) gave an analytical sample of major product 3x as a white solid: m.p. 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.8, 2H), 7.74 – 7.68 (m, 4H), 7.64 – 7.57 (m, 4H), 7.49 (t, J = 7.7, 4H), 7.38 (t, J = 7.4, 2H), 2.06 (dt, J = 26.7, 11.4, 4H), 1.18 – 1.05 (m, 4H), 0.79 – 0.66 (m, 10H); ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 141.8, 140.2, 128.9, 127.3, 127.3, 126.2, 121.7, 120.1, 55.3, 40.4, 26.2, 23.2, 14.0; LRMS (ESI) 430 [M]⁺; HRMS (ACPI) 431.2731 [M+H]⁺ (calc. for C₃₃H₃₅ 431.2733 [M+H]⁺); IR (cm⁻¹) 2955, 2926, 2856, 2464, 822, 755, 695.

Figure 1, 3x (Negishi coupling):

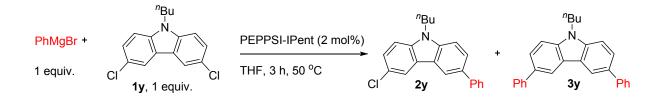

Using the general procedure for sp² Negishi couplings a product mixture of 2x and 3x is obtained in a 9 : 91 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 79% yield of 2x+3x based on PhZnCl.

Figure 1, 3x (Suzuki coupling):

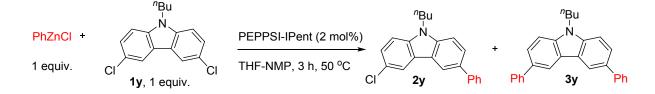
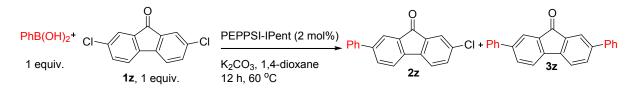

Using the general procedure for Suzuki couplings a product mixture of 2x and 3x is obtained in a 22 : 78 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 44% yield of 2x+3x based on PhB(OH)₂.

Figure 1, 3y (Kumada coupling):

Using the general procedure for Kumada couplings a product mixture of **2y** and **3y** is obtained in a 15 : 85 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates an 86% yield of **2y+3y** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to 1 : 1 CH₂Cl₂ : petrol) gave an analytical sample of major product **3y** as a white solid: m.p. 157 - 158 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, *J* = 1.4, 2H), 7.75 – 7.70 (m, 6H), 7.51 – 7.45 (m, 6H), 7.37 – 7.32 (m, 2H), 4.36 (t, *J* = 7.2, 2H), 1.95 – 1.88 (m, 2H), 1.49 – 1.41 (m, 2H), 0.98 (t, *J* = 7.4, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 142.3, 140.6, 132.6, 128.9, 127.4, 126.6, 125.5, 123.7, 119.1, 109.2, 43.3, 31.4, 20.8, 14.1; LRMS (ESI) 375 [M]⁺; HRMS (APCI) 376.2060 [M+H]⁺ (calc. for C₂₈H₂₆N 376.2060 [M+H]⁺); IR (cm⁻¹) 2956, 2927, 2871, 1600, 1475, 759, 696.

Figure 1, 3y (Nehishi coupling):



Using the general procedure for Negishi couplings a product mixture of 2y and 3y is obtained in a 17 : 83 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 51% yield of 2y+3y based on PhZnCl.

Figure 1, 3z (Negishi coupling):

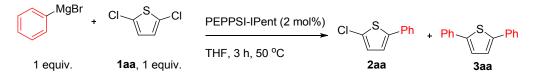

Using the general procedure for sp² Negishi couplings a product mixture of **2z** and **3z** is obtained in a 57 : 43 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 54% yield of **2z+3z** based on PhZnC1. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. Automated flash chromatography (petrol raising to CH₂Cl₂) gave an analytical sample of **2z** and further recrystallization from EtOH gave an analytical sample of **3z**. **2z** (orange solid): m.p. 206 – 210 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 1.3, 1H), 7.74 (dd, *J* = 7.8, 1.8, 1H), 7.66 – 7.55 (m, 4H), 7.52 – 7.44 (m, 4H), 7.42 – 7.36 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 192.6, 142.7, 142.6, 142.6, 139.8, 136.1, 135.2, 134.9, 134.5, 133.7, 129.1, 128.2, 127.0, 124.9, 123.4, 121.6, 121.0; LRMS (ESI) 290.3 [M]⁺; HRMS (APCI) 291.0574 [M+H]⁺ (calc. for C₁₉H₁₂O³⁵Cl 291.0571 [M+H]⁺); IR (cm⁻¹) 1708, 1599, 1451, 1184, 823, 763. **3z** (orange solid): m.p. 214 - 216 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 1.3, 2H), 7.75 (dd, *J* = 7.7, 1.7, 2H), 7.67 – 7.58 (m, 6H), 7.51 – 7.43 (m, 4H), 7.43 – 7.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 143.2, 142.4, 140.0, 135.4, 133.5, 129.1, 128.1, 127.0, 123.2, 120.9; LRMS (ESI) 332 [M]⁺; HRMS (APCI) 333.1274 [M+H]⁺ (calc. for C₂₅H₁₇O 333.1274 [M+H]⁺); IR (cm⁻¹) 3029, 1713, 1607, 1444, 840, 758, 736, 696.

Figure 1, 3z (Suzuki coupling):

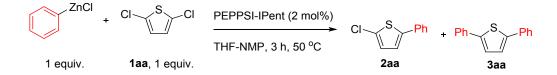

Using the general procedure for Suzuki couplings a product mixture of 2z and 3z is obtained in a 51 : 49 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 46% yield of 2z+3z based on PhB(OH)₂.

Figure 1, 3aa (Kumada coupling):

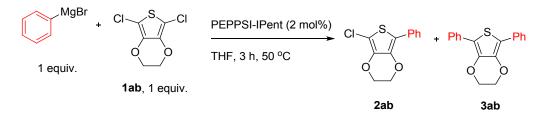

Using the general procedure for Kumada couplings a product mixture of **2aa** and **3aa** is obtained in a 85 : 15 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 62% yield of **2aa+3aa** based on PhMgBr. The remaining reaction mixture was diluted in CH₂Cl₂, filtered through a silica plug and reduced *in vacuo*. The residue was recrystalised from EtOH to give an analytical sample of major product **2aa** as a white solid: m.p. 64 - 66 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.48 (m, 2H), 7.41 - 7.34 (m, 2H), 7.33 - 7.27 (m, 1H), 7.07 (d, *J* = 3.9, 1H), 6.89 (d, *J* = 3.9, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 134.0, 129.3, 129.2, 128.0, 127.2, 125.7, 122.4; LRMS (ESI) 194.3 [M]⁺; HRMS (APCI) 195.0029 [M+H]⁺ (calc. for C₁₀H₈³⁵ClS 195.0030 [M+H]⁺); IR (cm⁻¹) 2952, 2918, 2847, 1448, 794, 147, 684.

Figure 1, 3aa (Negishi coupling):

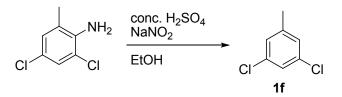
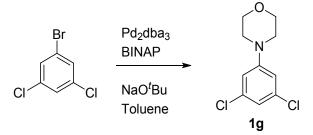
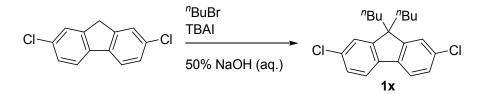

Using the general procedure for sp² Negishi couplings a product mixture of **2aa** and **3aa** is obtained in a 97 : 3 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates a 60% yield of **2aa+3aa** based on PhZnCl.

Figure 1, 3ab:

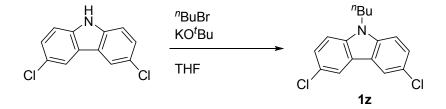


Using the general procedure for Kumada couplings a product mixture of **2ab** and **3ab** is obtained in an 81 : 19 ratio by GC-MS analysis. ¹H NMR analysis using mesitylene as internal standard indicates an 86% yield of **2ab+3ab** based on PhMgBr.

Synthesis of Starting Materials

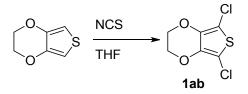


3,5-dichlorotoluene (1f): All manipulations were carried out under air. 2,4-Dichloro-6-methylaniline (880 mg, 5.0 mmol) was dissolved in EtOH (20 mL) and the solution cooled to 0 °C. Concentrated H₂SO₄ (1.8 mL) was added drop-wise and the mixture allowed to warm to rt. NaNO₂ (1.06 g, 12.5 mmol) was added portion-wise and the reaction mixture heated at 75 °C for 3 h. The reaction mixture was cooled to rt and poured onto ice (20 mL). The precipitate was collected by suction filtration, washed with H₂O (10 mL), dissolved in CH₂Cl₂, dried over MgSO₄, and concentrated *in vacuo*. The residue was dissolved in petrol, filtered through a SiO₂ plug and concentrated *in vacuo* to give **1f** as a low melting colourless solid (679 mg, 84%): m.p. 26 °C (lit.⁴¹ 24.5 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 1H), 7.09 – 7.02 (m, 2H) 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 134.7, 127.7, 125.8, 21.2.

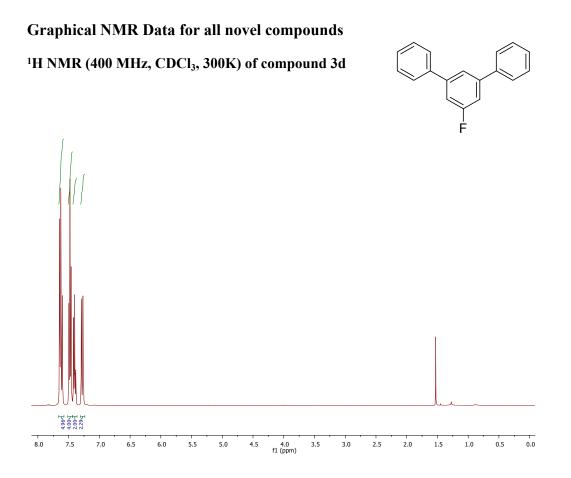


4-(3,5-dichlorophenyl)morpholine (1g): A CEM vial was charged with Pd_2dba_3 (46 mg, 100 µmol), Binap (93 mg, 150 µmol), NaO'Bu (231 mg, 2.4 mmol) and 1-bromo-3,5-dichlorobenzene (452 mg, 2.0 mmol). The vial was sealed and purged with N₂ before the addition of PhMe (5.0 mL) and morpholine (173 µL, 2.0 mmol). The mixture was stirred at 80 °C for 16 h. The reaction mixture was diluted with Et₂O (10 mL), filtered through a pad of Celite and concentrated *in vacuo*. Chromatography (CH₂Cl₂) gave **1g** as a white solid (334 mg, 72%): m.p. 67 - 69 °C (lit.⁴² 86 °C);

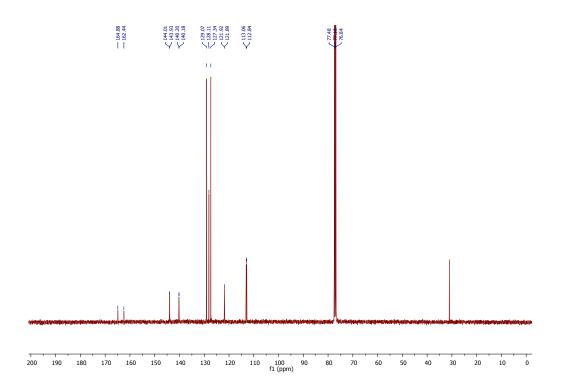
¹H NMR (400 MHz, CDCl₃) δ 6.83 (t, J = 1.7, 1H) 6.73 (d, J = 1.7, 2H), 3.85 – 3.79 (m, 4H), 3.18 – 3.11 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 135.7, 119.4, 113.7, 66.7, 48.5.

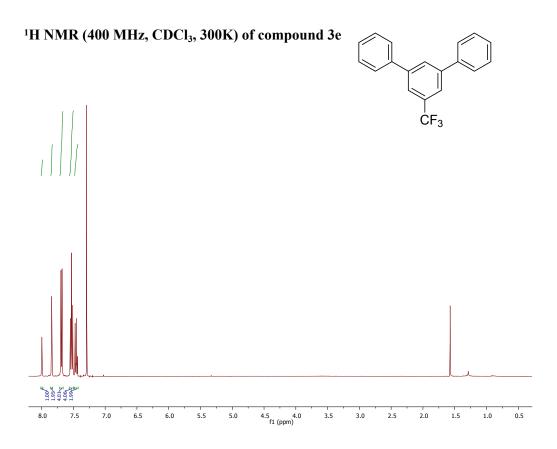


2,7-Dichloro-9,9-dibutylfluorene (1x): A CEM vial was charged with 2,7-dichlorofluorene (235 mg, 2.0 mmol), *"*Bu₄NI (73 mg, 200 µmol) and flushed with N₂. NaOH (50% w/w, degassed, 20 mL) was added and the mixture stirred for 5 minutes at rt. *"*BuBr (1.51 mL, 14.0 mmol) was added and the reaction mixture heated at 70 °C for 12 h. The reaction mixture was cooled to rt and extracted with CHCl₃ (100 mL). The organic phase was washed with H₂O (100 mL), dried over MgSO₄, and concentrated *in vacuo*. Chromatography (9 : 1 petrol-CHCl₃) gave **1x** as a white solid (336 mg, 97%): m.p. 110 - 111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.8, 0.6, 2H), 7.33 – 7.27 (m, 4H), 1.97 – 1.87 (m, 4H), 1.15 – 1.03 (m, 4H), 0.69 (t, *J* = 7.4, 6H), 0.63 – 0.52 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 138.8, 133.3, 127.5, 123.4, 120.9, 55.7, 40.2, 26.0, 23.1, 13.9; LRMS (ESI) 346.3 [M]⁺; HRMS (EI) 346.1256 [M]⁺ (calc. for C₂₁H₂₄³⁵Cl₂ 346.1250 [M]⁺); IR (cm⁻¹) 2952, 2927, 2857, 1451, 1421, 1069, 807.

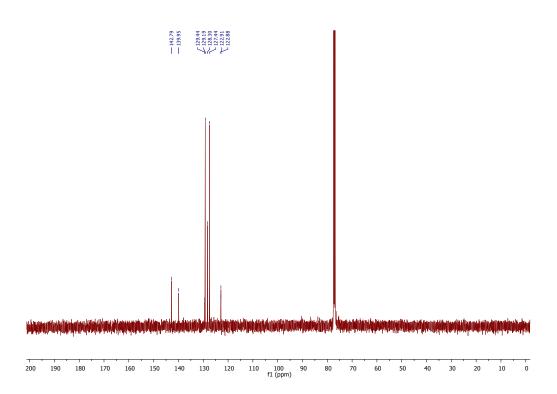


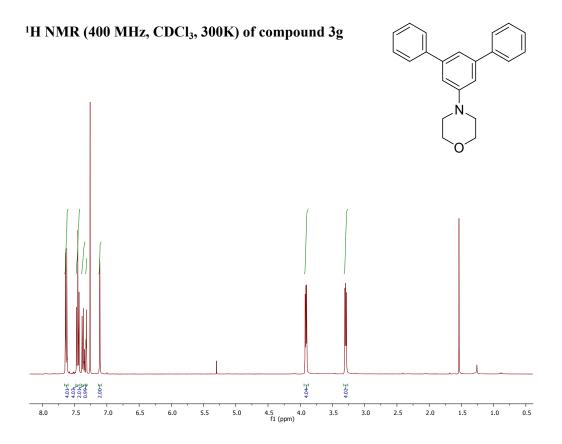
3,6-Dichloro-9-butylcarbazole (1z): To a mixture of 3,6-dichlorocarbazole (472 mg, 2.0 mmol), KO'Bu (270 mg, 2.4 mmol) and THF (10 mL) was added ^{*n*}BuBr (260 μ L, 2.0 mmol) and the resulting mixture was stirred at 60 °C for 4 h. H₂O (50 mL) was added and the mixture extracted with CH₂Cl₂ (50 mL). The organic phase was dried over MgSO₄, and concentrated *in vacuo*. Chromatography (petrol \rightarrow 3 : 1 petrol-CH₂Cl₂) gave **1z** as a white solid (519 mg, 89%): m.p. 68 – 70 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 2.0, 2H), 7.45 (dd, *J* = 8.7, 2.0, 2H), 7.34 (d, *J* = 8.7, 2H), 4.28 (t,

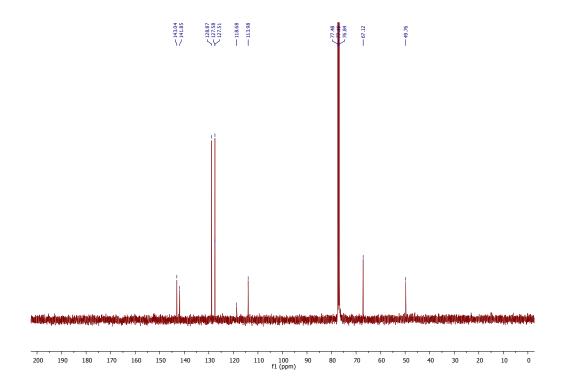

J = 7.2, 2H), 1.89 – 1.79 (m, 2H), 1.45 – 1.33 (m, 2H), 0.97 (t, J = 7.4, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 126.5, 124.7, 123.1, 120.3, 110.1, 43.3, 31.2, 20.6, 14.0; LRMS (ESI) 291.1; HRMS (EI) 291.0573 [M]⁺ (calc. for C₁₆H₁₅³⁵Cl₂N 291.0576 [M]⁺); IR (cm⁻¹) 2959, 2935, 2917, 2876, 2857, 1473, 1439, 1076, 857, 794, 680.

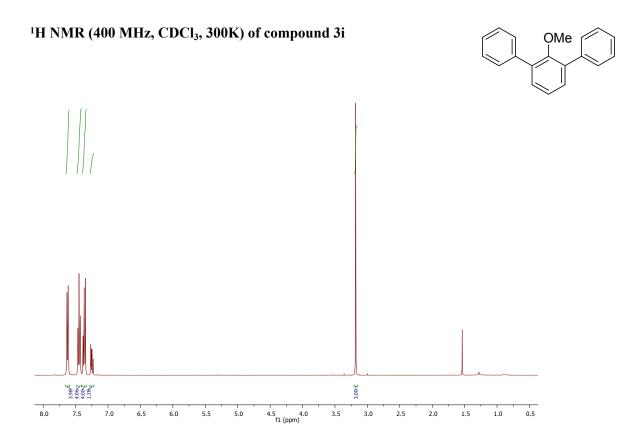


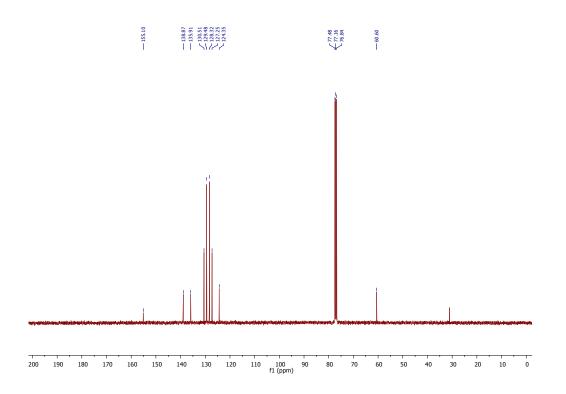
2,5-Dichloro-3,4-ethylenedioxythiophene, 1ab: 3,4-Ethylenedioxythiophene (1.41 g, 10 mmol) was dissolved in THF (50 mL) and cooled to 0 °C. *N*-Chlorosuccinimide (2.94 g, 22 mmol) was added and the resultant mixture was stirred at rt for 48 h. Na₂SO₃ (1.0 g, 7.9 mmol) was added, the suspension filtered and the filtrate concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂, filtered through a short plug of SiO₂ to remove the dark blue colour and concentrated *in vacuo*. Chromatography (petrol \rightarrow 4:1 petrol-CH₂Cl₂) gave **1ab** as a white solid (1.21 g, 57%) which was stored under N₂ at – 18 °C: m.p. 59 – 60 °C (lit.⁴³ 60 –62 °C); ¹H NMR (400 MHz, CDCl₃) δ 4.26 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 137.4, 100.6, 65.1.



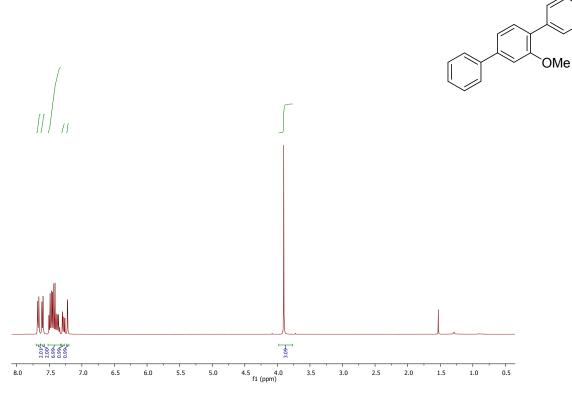

¹³C NMR (101 MHz, CDCl₃, 300K) of compound 3d

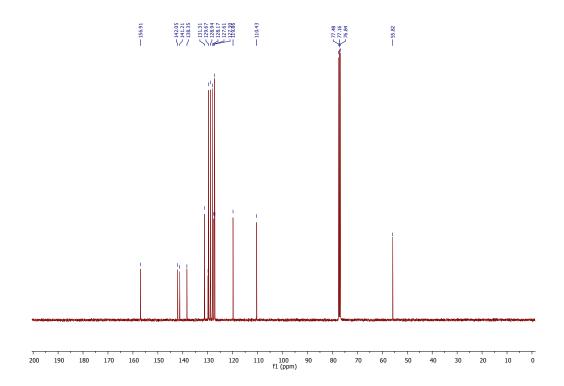


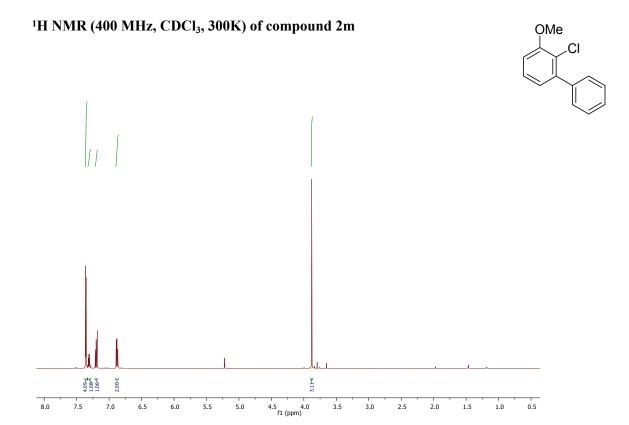

¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3e



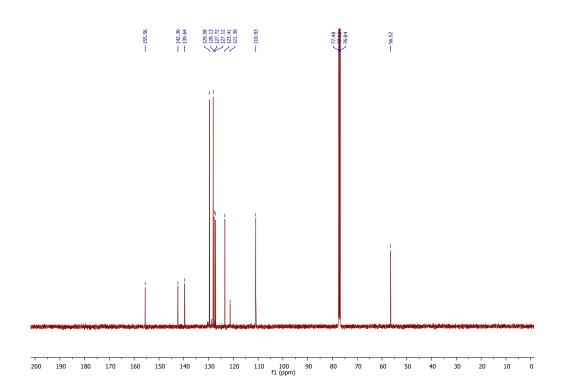
¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3g

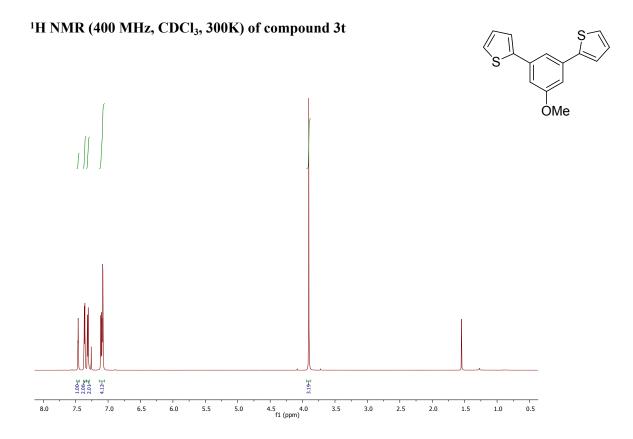


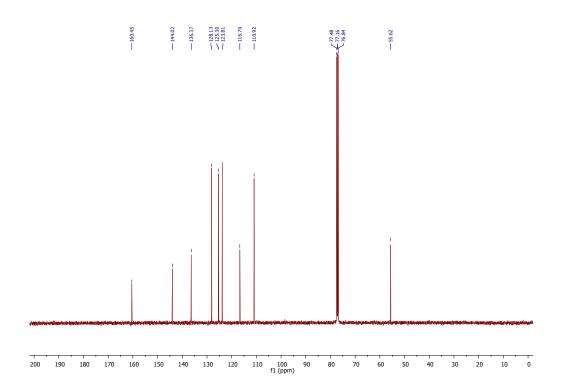

¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3i

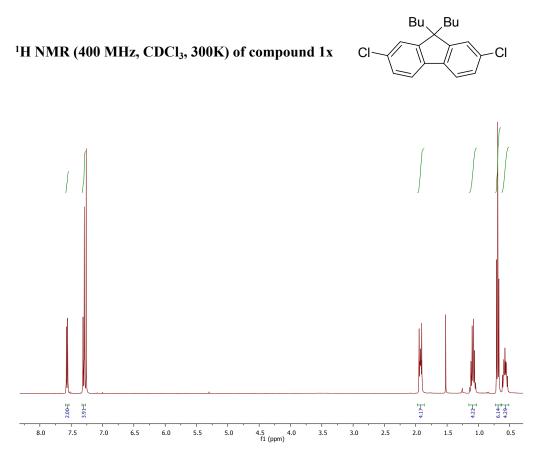


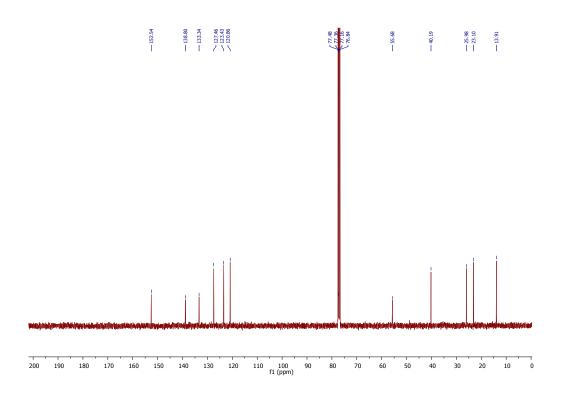
¹H NMR (400 MHz, CDCl₃, 300K) of compound 31

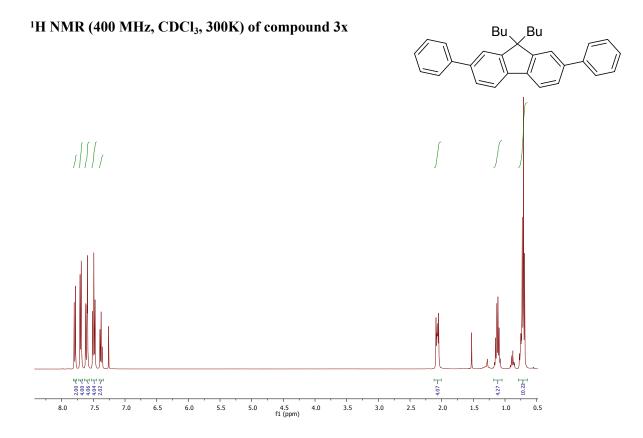


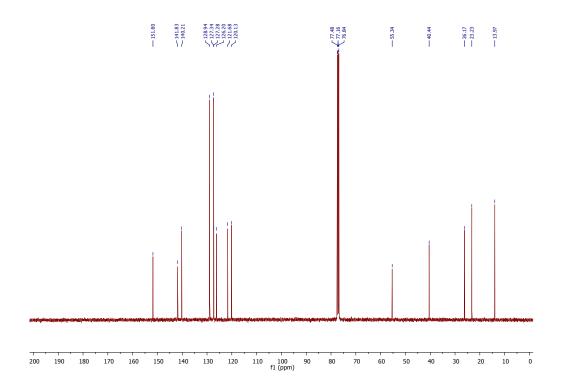

¹³C NMR (100 MHz, CDCl₃, 300K) of compound 31

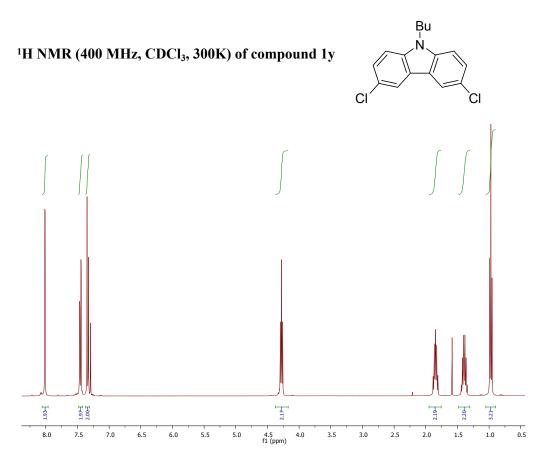


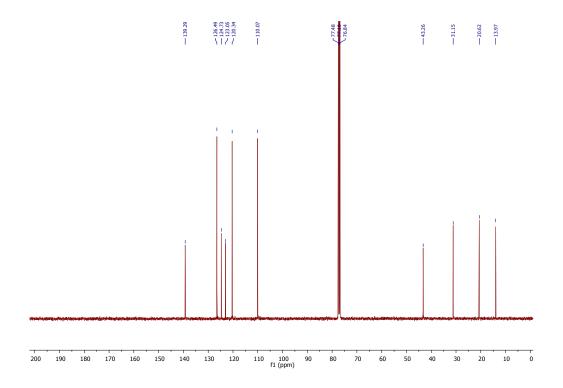

¹³C NMR (100 MHz, CDCl₃, 300K) of compound 2m

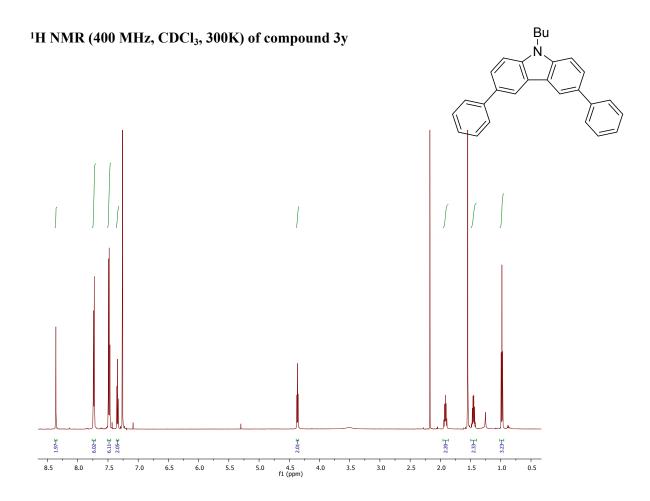


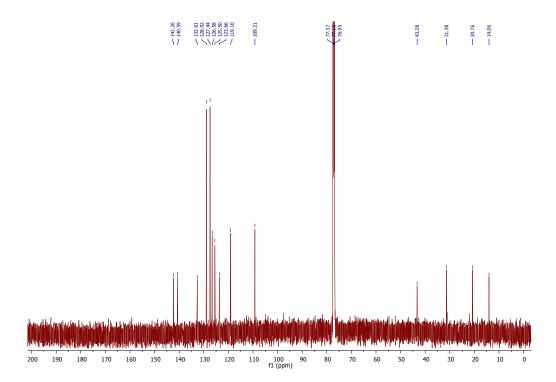

¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3t



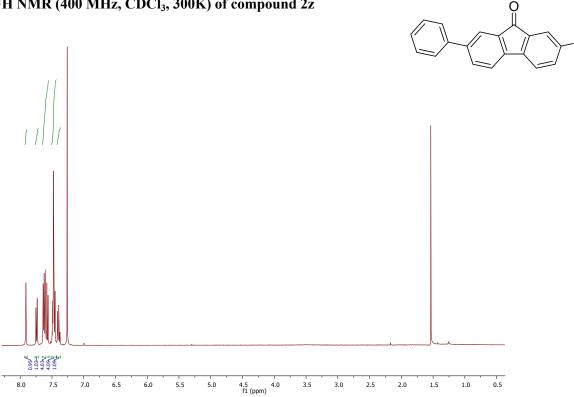

¹³C NMR (100 MHz, CDCl₃, 300K) of compound 1x




¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3x

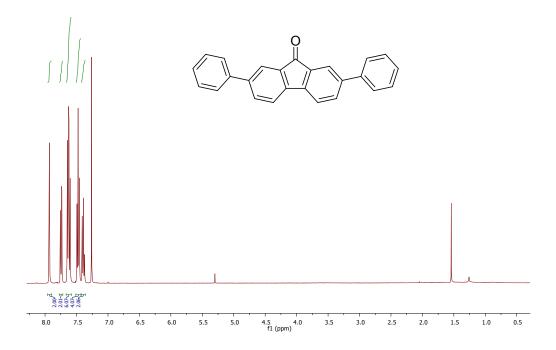


¹³C NMR (100 MHz, CDCl₃, 300K) of compound 1y

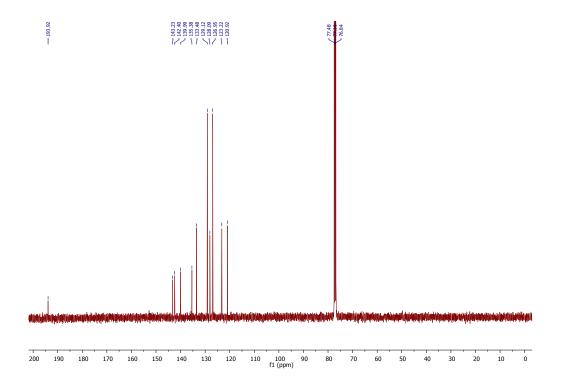


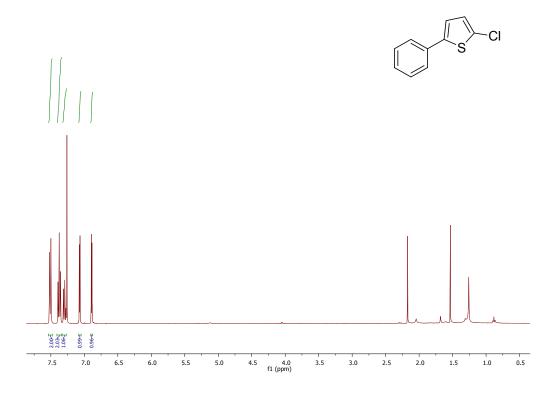
¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3y

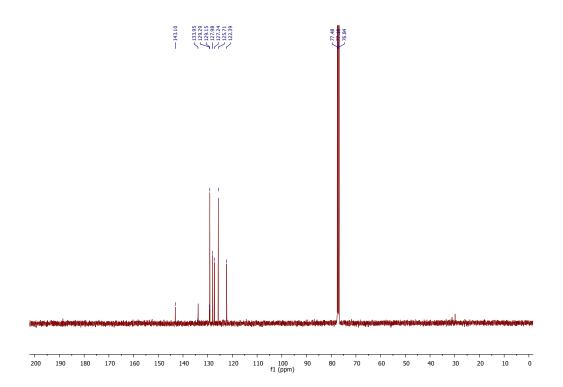
¹H NMR (400 MHz, CDCl₃, 300K) of compound 2z



Cl


¹³C NMR (100 MHz, CDCl₃, 300K) of compound 2z


¹H NMR (400 MHz, CDCl₃, 300K) of compound 3z


¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3z

¹H NMR (400 MHz, CDCl₃, 300K) of compound 3aa

¹³C NMR (100 MHz, CDCl₃, 300K) of compound 3aa

References

- ¹ H. Nakamura, Y. Tomonaga, K. Miyata, M. Uchida, Y. Terao, *Environ. Sci. Technol.* **2007**, *41*, 2190-2195.
- ² C. J. O'Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, *Chem. Eur. J.* **2006**, *12*, 4743-4748.
- ³ C. Valente, S. Çalimsiz, K. H. Hoi, D. Mallik, M. Sayah and M. G. Organ, *Angew. Chem., Int. Ed.*, 2012, **51**, 3314
- ⁴ G. Berthon-Gelloz, M. A. Siegler, A. L. Spek, B. Tinant, J. N. H. Reek, and I. E. Markó, *Dalton Trans.*, 2010, **39**, 1444
- ⁵ A. Krasovskiy, P. Knochel, *Synthesis* **2006**, 890-891.
- ⁶ M. G. Organ, M. Abdel-Hadi, S. Avola, N. Hadei, J. Nasielski, C. J. O'Brien, C. Valente, *Chem. Eur. J.* **2007**, *13*, 150-157.
- ⁷ M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O'Brien, C. Valente, *Chem. Eur. J.* **2006**, *12*, 4749-4755.
- ⁸ J.-H. Li, W.-J. Liu, Org. Lett. 2004, 6, 2809-2811.
- ⁹ S. Basak, P. Hui, S. Boodida, R. Chandrasekar, J. Org. Chem. 2012, 77, 3620-3626.
- ¹⁰ Z. Jin, Y.-J. Li, Y.-Q. Ma, L.-L. Qiu, J.-X. Fang, Chem. Eur. J. 2012, 18, 446-450.
- ¹¹ A. Antoft-Finch, T. Blackburn, V. Snieckus, J. Am. Chem. Soc. 2009, 131, 17750-17752.
- ¹² F. Dötz, J. D. Brand, S. Ito, L. Gherghel, K. Müllen, J. Am. Chem. Soc. 2000, 122, 7707-7717.
- ¹³ K. Naka, A. Sadownik, S. L. Regen, J. Am. Chem. Soc. 1993, 115, 2278-2286.
- ¹⁴ I. V. Kuchurov, A. A. Vasil'ev, S. G. Zlotin, Mendeleev Commun. 2010, 20, 140-142.
- ¹⁵ T. Deckert-Gaudig, S. Hünig, E. Dormann, M. T. Kelemen, Eur. J. Org. Chem. 2001, 1563-1567.
- ¹⁶ X.-H. Xu, A. Azuma, A. Kusuda, E. Tokunaga, N. Shibata, *Eur. J. Org. Chem.* 2012, 1504-1508.
- ¹⁷ T. Hatakeyama, S. Hashimoto, K. Ishizuka, M. Nakamura, *J. Am. Chem. Soc.* **2009**, *131*, 11949-11963.
- ¹⁸ L.-G. Xie, Z.-X. Wang, Angew. Chem. Int. Ed. 2011, 50, 4901-4904.
- ¹⁹ H. L. N. Chaumeil, C. L. Drian, A. Defoin, Synthesis 2002, 757-760.
- ²⁰ J.-H. Li, W.-J. Liu, Org. Lett. 2004, 6, 2809-2811.
- ²¹ N. Kuhl, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 8230-8234.
- ²² J. L. Bolliger, C. M. Frech, Adv. Synth. Catal. 2010, 352, 1075-1080.
- ²³ S. Lois, J.-C. Florès, J.-P. Lère-Porte, F. Serein-Spirau, J. J. E. Moreau, K. Miqueu, J.-M.
- Sotiropoulos, P. Baylère, M. Tillard, C. Belin, Eur. J. Org. Chem. 2007, 4019-4031.
- ²⁴ J. L. Bolliger, C. M. Frech, Adv. Synth. Catal. 2010, 352, 1075-1080.
- ²⁵ E. Ullah, J. McNulty, A. Robertson, Eur. J. Org. Chem. 2012, 11, 2127-2131.
- ²⁶ X.-H. Fan, L.-M. Yang, Eur. J. Org. Chem. 2011, 1467-1471.
- ²⁷ X.-H. Fan, L.-M. Yang, Eur. J. Org. Chem. 2010, 2457-2460.
- ²⁸ P. Rajakumar, K. Ganesan, Synth. Commun. **2004**, *34*, 2009-2017.
- ²⁹ K. Naka, A. Sadownik, S. L. Regen, J. Am. Chem. Soc. 1993, 115, 2278-2286.
- ³⁰ I. V. Kuchurov, A. A. Vasil'ev, S. G. Zlotin, *Mendeleev Commun.* 2010, 20, 140-142.
- ³¹ B. Basu, S. Das, P. Das, B. Mandal, D. Banerjee, F. Almqvist, *Synthesis* **2009**, 1137-1146.
- ³² X.-H. Xu, A. Azuma, A. Kusuda, E. Tokunaga, N. Shibata, *Eur. J. Org. Chem.* 2012, 1504-1508.
- ³³ N. Ishibe, K. Hashimoto, M. Sunami, J. Org. Chem. 1974, 39, 103-104.
- ³⁴ L.-G. Xie, Z.-X. Wang, Chem. Eur. J. 2011, 17, 4972-4975.
- ³⁵ N. Mejías, R. Pleixats, A. Shafir, M. Medio-Simón, G. Asensio, *Eur. J. Org. Chem.* 2010, 5090-5099.
- ³⁶ M. Kamata, C. Satoh, H.-S. Kim, Y. Wataya, *Tet. Lett.* 2002, 43, 8313-8317.
- ³⁷ M. L. N. Rao, D. Banerjee, R. J. Dhanorkar, *Synlett* **2011**, *2011*, 1324-1330.
- ³⁸ K. Nakabayashi, T. Higashihara, M. Ueda, *Macromolecules* 2011, 44, 1603-1609
- ³⁹ S. Lois, J.-C. Florès, J.-P. Lère-Porte, F. Serein-Spirau, J. J. E. Moreau, K. Miqueu, J.-M.
- Sotiropoulos, P. Baylère, M. Tillard, C. Belin, Eur. J. Org. Chem. 2007, 2007, 4019-4031.
- ⁴⁰ H. G. Alt, R. Zenk, J. Organomet. Chem. 1996, 522, 39-54.
- ⁴¹ C. S. Marvel, C. G. Overberger, R. E. Allen, H. W. Johnston, J. H. Saunders, J. D. Young, *J. Am. Chem. Soc.* **1946**, *68*, 861.

⁴² C. Desmarets, R. Schneider, Y. Fort, *Tetrahedron* 2001, *57*, 7657.
⁴³ H. Meng, D. F. Perepichka, M. Bendikov, F. Wudl, G. Z. Pan, W. Yu, W. Dong, S. I. Brown, *J. Am. Chem. Soc.* 2003, *125*, 15151.