Electronic Supplementary Information

One-pot multicomponent synthesis of tetrahydropyridines promoted by luminescent ZnO nanoparticles supported by the aggregates of 6,6-dicyanopentafulvene

Meenal Kataria, Subhamay Pramanik, Manoj Kumar and Vandana Bhalla*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, and Punjab, India

vanmanan@yahoo.co.in

S4-S5 General Experimental Procedures.
--

- **S6** Synthesis of ZnO nanoparticles and catalysis in one pot multicomponent synthesis of tetrahydropyridine derivatives **12a-f**.
- **S7-S8** Table S1: Comparison of this method in present manuscript over other procedures for the preparation of ZnO nanoparticles reported in literature.
- **S9** Table S2: Comparison of catalytic activity ZnO nanoparticles for Synthesis of tetrahydropyridine derivatives over other procedures reported in literature.
- **S10-S11** Synthetic route and characteristic data of compounds **2a**, **2b** and **4**.
- **S12** UV-vis and fluorescence spectra of **4** in the presence of different percentage of water in THF.
- **S13** SEM images and dynamic light scattering (DLS) results showing the particle size diameter of the aggregates of **4** in H₂O/THF (8:2, v/v) mixture.
- **S14** Variation in quantum yield value with the deviation of water fractions in THF solution of derivative **4**, Fluorescence spectra of **4** in the presence of in different percentage TEG in THF and Fluorescence spectra of **4** at different concentration in THF.
- S15 Time resolved fluorescence decays of 4 with increasing water fraction up to 80% and the table S3 showing the radiative, non-radiative decay rate constants.
- **S16** Polarised optical microscope (POM) image of derivative **4** and ZnO nanoparticles and UV-vis spectra of aggregates of compound **4** (5 μ M) in presence of Zn²⁺ ions at room temperature.

S17	Graphical representation of rate constant for the formation of ZnO nanoparticles.
S18	UV-vis spectra of compound 4 upon additions of various metal ions as their perchlorate and chloride salt in H ₂ O-THF (8:2, v/v).
S19	Fluorescence emission spectra of 4 in H ₂ O-THF (8:2, v/v) on excited at different wavelengths (300-345nm) and Excitation spectra of derivative 4 in H ₂ O-THF (8:2, v/v) for the emission at 510 nm.
S20	Detection limit of Zn^{2+} by using compound 4 in H ₂ O-THF (8:2, v/v).
S21	Competitive and selectivity fluorescence bar diagram of derivative 4 towards various metal ions as their perchlorate and chloride salt in H ₂ O-THF (8:2, v/v).
S22	Time resolved fluorescence decays of 4 in H ₂ O-THF (8:2, v/v) mixture upon addition of Zn ²⁺ ions and table S4 showing the radiative, non-radiative decay rate constants.
S23	TEM images of derivative 4 showing the presence of spherical ZnO nanoparticles and confocal microscopy image of derivative 4 in H ₂ O-THF (8:2, v/v) mixture on addition of Zn^{2+} ions.
S24	Overlay ¹ H NMR spectra of 4 and ZnO nanoparticles of 4 after filtration with THF and table S5 showing the ¹ H NMR shifts in ppm.
S25	Photographs of SEM images showing aggregates of 4 in H_2O -THF (8:2, v/v) after treatment of ZnCl ₂ with compound 4 and the Variation of zeta potential of ZnO nanoparticles at various pH.
S26	XRD pattern of ZnO nanoparticles.
S27	Dynamic light scattering (DLS) results showing the particle size diameter of ZnO nanoparticles and Raman scattering spectra of ZnO nanoparticles.
S28	Synthesis of tetrahydropyridine derivatives and mechanism.
S29-30	Table S6: ZnO nanoparticles catalysed one pot multicomponent reactions of aromatic/primary amine with aromatic aldehyde and β -ketoester for the synthesis of THP derivatives.
S31-33	Characteristic data of derivatives 12a-f , intermediates 9-11 and derivative 13 .
S34	¹ H and ¹³ C NMR of spectrum of 12a.
S35	ESI-MS spectrum of 12a.

S36	¹ H and ¹³ C NMR of spectrum of 12b.
S 37	ESI-MS spectrum of 12b.
S38	¹ H and ¹³ C NMR of spectrum of 12c.
S39	ESI-MS spectrum of 12c.
S40	¹ H and ¹³ C NMR of spectrum of 12d.
S41	ESI-MS spectrum of 12d.
S42	¹ H and ¹³ C NMR of spectrum of 12e.
S43	ESI-MS spectrum of 12e.
S44	¹ H and ¹³ C NMR spectrum of 12f.
S45	ESI-MS spectrum of 12f.
S46-47	¹ H NMR spectra of intermediates 9-11.
S48	¹ H, ESI-MS spectra of compound 13 .
S49	¹ H and ¹³ C NMR of spectrum of 2a .
S50	ESI-MS spectrum and FT-IR spectrum of derivative 2a.
S51	¹ H and ¹³ C NMR of spectrum of 2b .
S52	ESI-MS spectrum of 2b and FT-IR spectrum of derivative 2b .
S53	¹ H and ¹³ C NMR of spectrum of derivative 4 .

S54 ESI-MS spectrum and FT-IR spectrum of derivative **4**.

General Experimental Procedures:

Materials and reagents: All reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium and benzophenone as an indicator. UV-vis studies were performed in THF, distilled water and HEPES buffer (0.05 M) (pH = 7.05).

UV-vis spectra were recorded on a SHIMADZU Instrumentation: UV-2450 spectrophotometer, with a quartz cuvette (path length, 1 cm). The cell holder was thermostatted at 25°C. The fluorescence spectra were recorded with a SHIMADZU- 5301 PC spectrofluorimeter. UV-vis spectra were recorded on Shimadzu UV-2450PC spectrophotometer with a quartz cuvette (path length: 1 cm). The cell holder was thermostatted at 25°C. The scanning electron microscope (SEM) images were obtained with a field-emission scanning electron microscope (SEM CARL ZEISS SUPRA 55). The TEM mages was recorded from Transmission Electron Microscope (TEM) - JEOL 2100F. The FT-IR spectra were recorded with VARIAN 660 IR Spectrometer. The dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). Raman spectrum was recorded with Raneshaw In via reflex micro Raman microscope. The Time resolved fluorescence spectra were recorded with a HORIBA Time Resolved Fluorescence Spectrometer. Polarized optical microscope (POM) images were recorded on NIKON ECLIPSE LV100 POL. Elemental analysis was done using a Flash EA 1112 CHNS/O analyser from Thermo Electron Corporation. ¹H and ¹³C NMR spectra were recorded on a BRUKER-AVANCE-II FT-NMR-AL 500 MHz spectrophotometer using CDCl₃, DMSO-d₆ as solvent and tetramethylsilane, SiMe₄ as internal standards. Data are reported as follows: chemical shifts in ppm, multiplicity (s = singlet, br = broad signal, d = doublet, t = triplet, m = multiplet), coupling constants J (Hz), integration and interpretation. Silica gel 60 (60-120 mesh) was used for column chromatography.

Quantum yield calculations: Fluorescence quantum yield was determined by using optically matching solution of diphenylanthracene ($\Phi_{\rm fr} = 0.90$ in cyclohexane) as standard at an excitation wavelength of 373 nm and quantum yield is calculated using the equation:

$$\Phi_{\rm fs} = \Phi_{\rm fr} \times \frac{1 - 10^{-\rm ArLr}}{1 - 10^{-\rm AsLs}} \times \frac{N_{\rm s}^2}{N_{\rm r}^2} \times \frac{D_{\rm s}}{D_{\rm r}}$$

 Φ_{fs} and Φ_{fr} are the radiative quantum yields of sample and the reference respectively, A_s and A_r are the absorbance of the sample and the reference respectively, D_s and D_r are the respective areas of emission for sample and reference. L_s and L_r are the lengths of the absorption cells of sample and reference respectively. N_s and N_r are the refractive indices of the sample and reference solutions (pure solvents were assumed respectively).

UV-vis and fluorescence titrations: The concentration of HEPES buffer (pH = 7.05) is 0.05 M. For each experiment we have taken 3 ml solution which contains solution of derivative 4 in 15 μ l (10⁻³M) of THF solution was diluted with 585 μ l of THF and 2.4 ml HEPES buffer (0.05 M, pH = 7.05) or double distilled water. UV-vis and fluorescence titrations were performed with 5.0 μ M solutions of ligand in H₂O-THF (8:2, v/v). Typically, aliquots of freshly prepared standard solutions (10⁻¹M to 10⁻³M) of metal ions such as Zn²⁺, Hg²⁺, Cu²⁺, Fe²⁺, Fe³⁺, Co²⁺, Pb²⁺, Ni²⁺, Cd²⁺, Ag⁺, Ba²⁺, Al³⁺, Mg²⁺, K⁺ and Na⁺ ions as their perchlorate [M(ClO₄)_x; X = 1-3]/chloride [M(Cl)_x; X = 1-3] in THF and distilled water were added to record the UV-vis and fluorescence spectra.

Synthesis of ZnO Nanoparticles:

Aqueous solution of 1 M ZnCl₂ (550 μ L) was added to a 3 ml solution of compound 4 (0.2 mM) in H₂O-THF (8:2, v/v). The reaction was stirred at room temperature for 3h and formations of ZnO nanoparticles take place. A 100 μ L solution of the nanoparticles was used as a catalyst in each reaction.

General Procedure for the synthesis of tetrahydropyridine derivatives 12a-f:

To a mixture of β -ketoester **6a/6b** (1.0 mmol / 1 equiv.) and aromatic/aliphatic amine **7a/7b** (2.0 mmol / 2 equiv.), was added 100 µL solution of ZnO nanocatalyst (0.5 mol% / 0.005 equiv.) followed by the addition of aromatic aldehyde (2.0 mmol / 2 equiv.) **8a/8b/8c/8d**. The reaction mixture was stirred at room temperature / 50°C until the completion the reaction as indicated by TLC. A solid separated during the course of the reaction. 5 ml of ethanol was added to this solid which was then filtered, washed and recrystallized from ethanol:CHCl₃ (8:2) to give the pure products **12a-f**.

Table S1: Comparison of this method in present manuscript over other procedures for the preparation of ZnO nanoparticles reported in literature.

Sr.no.	Publication	Method of formation of ZnO nanoparticles	Reagent used	Oxidising/ Reducing/ base	Temp. required	Time required	Size of ZnO nanoparticles	Shape of ZnO nanoparticles
1	Present manuscript	Wet Chemical Method	Compound 4 in H ₂ O-THF; 8:2 (v/v)	No	RT	3 h	10-20 nm	Nanosphers
2	<i>Green Chem.</i> , 2014, 16 , 4922- 4930	Sol gel method	Zinc perchlorate, NaOH, Alcohol	Base (NaOH)	500°C	2 h, 6 h	Various sizes	Different Morphologies
3	J. Mater. Chem. A, 2014, 2 , 15377- 15388	Hydrothermal method	Zinc nitrate hexahydrate, NH4HCO3, Hexamethylenetreia mine, methanol	Base (NH4HCO3)	RT to ultrasonic to 150°C	24 h	2-50 nm depends upon calcination temperature	Nano sheets
4	J. Mater. Chem. B, 2014, 2 , 3956- 3964	Hydrolysis method	Zinc acetate, Igepal CO-520, double distilled water	Surfactant (Igepal CO- 520)	80°C & 350°C	12 h	50-100 nm diameter of sphere,100-200 nm rod length	Nanosphere & Nanorod
5	Phys. Chem. Chem. Phys., 2014, 16 , 11471- 11480	Solvothermal method	Zinc acetate/Zinc chloride, sodium hydroxide, sodium acetate, CTAB	Base (NaOH)	150°C	16 h	Nanosphere (100-150 nm), Nanorods (200- 400 nm)	Nanorods & Nanospheres
6	ACS Appl. Mater. Interfaces, 2013, 5 , 3026-3032	Solvothermal method	Zinc nitrate hexahydrate, sodium hydroxide, Methanol,Teflon- lined stainless steel autoclave	Base (NaOH)	120°C	24 h	100-150 nm (length)	Nano rods
7	<i>Chem. Mater.</i> , 2013, 25 , 1775- 1782	Precipitation method	Zinc acetate dehydrate, excess NaOH, Absolute ethanol	Precipitating agent	Ambient temp	30 days	16±3nm, 20±5nm	Nano powder
8	<i>Chem. Mater.</i> 2013, 25 , 2927- 2933	Electron beam induced method	Zinc nitrate, HMTA, Polyvinylpyrrolidone (PVP)	Surfactant (PVP)	Current density -1 Am ⁻²	36 min	400nm	Wurtizite nanopwder
9	ACS Sustainable Chem. Eng., 2013, 1, 1207-1213	Electro spinning technique	Zinc nitratehexahydrate, polyvinylpyrrolidon, Ethanol	Capping Agent (polyvinylp yrrolidon)	Calcination at 500°C	1 h	24 nm	Mesoporous nanofibres
10	<i>Langmuir</i> , 2012, 28 , 4787-4792	Hydrothermal method	Zinc acetate dihydrate, sodium hydroxide, ethanol, methanol	Base (NaOH)	60°C	2 h	5-10 nm diameter	Nanosphers
11	Ind. Eng. Chem. Res., 2012, 51 , 4922-4926	Hydrothermal method	Zinc chloride, NaOH	Base (NaOH)	200°C	24 h	10-20μm, 50- 100nm	Bullet shaped (10-20 µm), rod shaped (50- 100nm)
12	<i>Chem. Mater.</i> , 2011 23 , 5237-	i) Metal organic	i) Dimethyl Zinc, toluene Diethyl	Oxidizing	-78°C, 120°C	Several days	3-50 nm diameter	Nano spheres

	5242	ii) Evaporation & thermal decomposition	ether, isopropanol, - 78°c ii) O ₂ , 85 to 120°C					
13	Crystal Growth & Design, 2010, 10 ,1500-1507	Hydrothermal synthesis	Zinc nitrate , hexamethylenetetram ine $(C_6H_{12}N_4)$ and PEG, ITO	Base (C ₆ H ₁₂ N ₄)	95°C	4 h	Spheres with diameter (100 nm)	Nano spheres and Nano rods
14	<i>Chem.Mater.</i> , 2010, 22 , 218-225	Chemical vapour synthesis	Diethyl Zinc,O2, He gas	Oxidizing agent (O ₂)	800-900°C	-	11.7-18.3 nm	Nano crystals

Sr. No.	Publication	Catalyst used	Use of noble metal	Reagent used other than reactant and catalysts	Catalyst Amount (mol%)	Solvent	Nano catal ysis	Re use	Reaction time	Temp (in °C)	Purification	Isolated Yield (%)
1.	Present manuscript	ZnO NPs	No	No	0.5 mol%	Nearly Solvent Free	Yes	Yes	3 h / 9 h	RT / 50°C	Separated by filtration	91%
2.	<i>Org. Lett.</i> , 2014, 16 , 4520-4523	LiBr.H ₂ O	No	No	30 mol%	Nitro Methane (explosive)	No	Yes	Up to 11h	100°C	Preparative TLC	62-99%
3.	Ultason. Sonochem., 2014, 21, 1150-1154	ZrP ₂ O ₇	Yes	No	5 mol%	Methanol	Yes	Yes	60-75 min	Ultra sond	-	89%
4.	<i>Chem.</i> <i>Commun.,</i> 2013, 49 , 3543-3545	Phosphine and amine catalyst	No	No	20 mol%	THF	No	-	24h	66°C	-	49-79%-
5.	Org. Biomol. Chem., 2014, 12 , 2394- 2403	Pd(OAc) ₂	Yes	K ₂ CO ₃ , BINAP, argon atmosphere	10 mol%	Dioxane (carcinogen nic)	No	No	50 min	120°C	Column chromatograp hy	98%
6.	J. Org. Chem. 2013, 78 , 5751-5755	Sc(OTf) ₃	No	1,10 - phenanthroline	10 mol%	DCM	No	No	24-48 h	Reflux	Column chromatograp hy	51-66%
7.	<i>Org. Lett.</i> , 2012, 14 ,5290-5293	Organocat ayst and Au catalyst	Yes	Bronsted acid	5 mol%	Toluene (toxic)	No	No	3-24 h	RT to 100	Flash chromatograp hy	Up to 72%
8.	J. Org. Chem., 2012, 77 , 4252- 4260	DABCO	No	No	-	EtOH	No	No	5-8 h	Reflux	-	73-88%
9.	ACS Comb. Sci., 2011, 13 , 181-185	Ceric ammoniu m nitrate	No	No	15 mol%	ACN (carcinogen nic)	No	No	22 h	RT	Column chromatograp hy	85%
10.	J. Am. Chem. Soc., 2009, 131 , 6318- 6319	PPh ₃	No	No	-	CH ₂ Cl ₂ (flammable)	No	No	72 h	RT	Flash chromatograp hy	37-88%
11.	Angew. Chem. Int. Ed., 2008, 47 , 4851-4854	Pd(PPh ₃) ₂	Yes	K ₂ CO ₃ , HCHO	2 mol%	THF(flammabl e, skin dehydration)	No	No	1-8 h	50°C	-	7-88%
12.	Acc. Chem. Res., 2000, 22 , 225-233	IrH(CO)(P Ph ₃) ₃	Yes	No	3 mol%	THF	No	Yes	-	120°C	-	96%

Table S2: Comparison of catalytic activity ZnO nanoparticles for Synthesis of tetrahydropyridine

 derivatives over other catalytic systems reported in literature.

Synthetic scheme of compound 4:

Scheme 1: Synthesis of 6, 6- dicyanopentafulvene derivatives 4

Synthesis of compound 2a: To a solution of 1, 3,4-bis(4-bromophenyl)-2,5diphenylcyclopenta-2,4-dienon (0.50 g, 0.92 mmol) and malononitrile (0.31 g, 4.61 mmol) in 20 ml dry CH₂Cl₂ were added 0.75 ml pyridine and 0.50 ml of TiCl₄ under N₂ atmosphere. The reaction mixture was refluxed overnight at 80°C. After that the reaction mixture was allowed to cool to room temperature. The mixture was then diluted with dichloromethane and extracted with 2 N HCl solutions in water. The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure to get the crude product. The organic layer was evaporated, and the compound was purified by column chromatography using (40:60) (CHCl₃:Hexane) as an eluent to give 0.28 g (yield 52%) of compound 2a as a green solid; mp: >280°C (Scheme 1). The structure of compound 2a was confirmed from its spectroscopic and analytical data. ¹H NMR (500 MHz, CDCl₃, ppm) δ = 7.45-7.41 (m, 6H, ArH), 7.31-7.28 (m, 4H, ArH), 7.25 (d, J = 10Hz, 4H, ArH), 6.74 (d, {A} 10Hz, 4H, ArH). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 167.64$, 149.32, 132.34, 131.25, 131.19, 131.06, 130.99, 130.91, 129.41, 128.94, 123.41, 111.08, 87.40. ESI-MS mass spectrum of compound 2a showed a parent ion peak, $m/z = 590.4344 [M+H]^+$. The FT-IR spectrum of compound 2a showed stretching band 2220 cm⁻¹ corresponds to -CN group. Elemental analysis: Calculated for C₃₂H₁₈Br₂N₂: C 65.11; H 3.07; N 4.75; Found: C 65.10%; H 3.08%; N 4.77%.

Synthesis of compound 2b: To a solution of 2a (0.3g, 0.5082 mmol) and 3a (0.289 g, 1.32 mmol) in 20 ml 1,4-dioxane were added $K_2CO_3(0.56 \text{ g}, 4.06 \text{ mmol})$, distilled H_2O (2.10 ml) followed by [Pd(PPh_3)_4] catalyst (0.213 g, 0.304mmol) under N₂ atm., then the reaction

mixture was refluxed overnight. 1,4-Dioxane was then distilled off under vacuum and the residue so obtained was treated with water, extracted with CHCl₃, and dried over anhydrous Na₂SO₄. The organic layer was evaporated, and the compound was purified by column chromatography using 80:20 (CHCl₃:hexane) followed by recrystallized with 5:1 (CHCl₃:MeOH) to give 0.174g (56%) of compound **2b** as orange brown solid; mp: >280°C (Scheme 1). The structure of compound **2b** was confirmed from its spectroscopic and analytical data. ¹H NMR (500 MHz, CDCl₃, ppm) δ = 7.71-7.67 (m, 8H, ArH), 7.57 (t, *J* = 7.5 Hz, 6H, ArH), 7.50 (d, *J* = 5 Hz, 4H, ArH), 7.48 (d, *J* = 5 Hz, 4H, ArH), 7.47 (d, *J* = 5 Hz, 2H, ArH), 6.72 (t, *J* = 5 Hz, 2H, ArH), 3.75 (s, 4H, -NH). ¹³C NMR (125 MHz, CDCl₃, ppm) δ = 170.42, 150.72, 144.91, 143.04, 138.39, 135.88, 132.90, 132.14, 132.06, 131.96, 131.92, 128.56, 128.46, 127.84, 113.90, 87.58. ESI-MS mass spectrum of compound **2a** showed a parent ion peak, m/z = 637.4234 [M+Na]⁺. The FT-IR spectrum of compound **2a** showed stretching band 2224 and 3366 cm⁻¹ corresponds to -CN and -NH₂ group. Elemental analysis: Calculated for C₄₄H₃₀N₄: C 85.97; H 4.92; N 9.11; Found: C 85.96%; H 4.91%; N 9.09%.

Synthesis of compound 4: A clear solution of compound 2b and 3b, β -hydroxy naphthaldehyde in dry THF:MeOH (4:6) was stirred at 80°C. After 24 h, the reaction mixture turned turbid. The reaction mixture was concentrated under the reduced pressure and dry methanol was poured into it, solid appears. The solid was filtered and recrystallized from methanol to afford the light yellow coloured compound 4 (0.064g, 85%); mp: >280°C (Scheme 1). The structure of compound 4 was confirmed from its spectroscopic and analytical data. ¹H NMR (500 MHz, DMSO-d₆, ppm) δ = 15.88 (s, 2H, -OH), 9.73 (s, 2H, -HC=N), 8.54 (d, J = 10Hz , 2H, ArH), 8.15 (d, J = 5 Hz, 2H, ArH), 7.95 (d, J = 10Hz, 4H, ArH), 7.90 (d, J = 10Hz, 4H, ArH), 7.79 (t, J = 7.5 Hz, 8H, ArH), 7.57 (q, J = 10Hz, 6H, ArH), 7.37 (t, J = 7.5 Hz, 6H, ArH), 7.25 (d, J = 10 Hz, 4H, ArH), 7.01 (t, J = 7.5 Hz, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃, ppm) δ =171.14, 167.77, 155.42, 149.37, 138.03, 132.33, 131.34, 131.21, 131.09, 130.98, 130.94, 129.44, 128.97, 123.43, 119.46, 114.23, 111.08, 87.30. ESI-MS mass spectrum of compound 4 showed a parent ion peak, m/z = 923.3618 $[M+H]^+$. The FT-IR spectrum of compound 4 showed stretching bands at 1621 and 2225 cm⁻¹ corresponds to -HC=N and -CN group. Elemental analysis: Calculated for C₇₀H₄₈N₆: C 85.88; H 4.59; N 6.07; Found: C 85.86%; H 4.58%; N 6.07%.

Fig. S1A: UV-vis spectra showing the change in absorbance of compound 4 (5 μ M) in various H₂O-THF mixture (0 to 80% volume fraction of water in THF).

Fig. S1B: Fluorescence spectra of compound **4** (5 μ M) showing the variation of fluorescence intensity in H₂O-THF mixture (0 to 80% volume fraction of water in THF); λ_{ex} = 390 nm.

Fig. S2A: Photographs of SEM images of pot shaped aggregates of derivative **4** in H_2O -THF (8:2, v/v) mixture.

Fig. S2B: Dynamic light scattering (DLS) results showing the particle size diameter of aggregates of **4** in H₂O-THF (8:2, v/v) mixture.

Fig. S3A: Variation in quantum yield value with the variation of water fractions (0 to 80% volume fraction of water in THF); $\lambda_{ex} = 390$ nm.

Fig. S3B: (a) Fluorescence spectra of compound **4** (5 μ M) showing the variation of fluorescence intensity in TEG-THF mixture (0 to 80% volume fraction of TEG in THF), $\lambda_{ex} = 390$ nm; (b) Fluorescence spectra of compound **4** showing the variation of fluorescence intensity with different concentration of **4** (1 μ M - 20 μ M) in THF; $\lambda_{ex} = 390$ nm.

Fig. S4: Exponential fluorescence decays of 4 on addition of water fraction measured at 510 nm. Spectra were acquired in Water-THF mixture (0 to 80% volume fraction of water in THF), λ_{ex} = 377 nm.

Water Fraction	Quantumn Yield	A ₁ /A ₂	τ ₁ (ns)	τ ₂ (ns)	$ au_{ m avg}$ (Average lifetime, ns)	$k_{\rm f}$ (10 ⁹ S ⁻¹)	$k_{\rm nr}$ (10 ⁹ S ⁻¹)
0%	0.009	82/18	0.5	1.73	0.78	0.01154	1.27
80%	0.09	56/44	0.74	3.5	2.5	0.032	0.368

Table S3: Fluorescence lifetime of derivative **4** in absence and presence of water (80%) in THF at 510 nm. **A**₁, **A**₂: fractional amount of molecules in each environment. τ_1 , τ_2 and τ_{avg} : bi-exponential and average life time of aggregates in 80 vol% of water in THF; k_f : radiative rate constant ($k_f = \Phi_f / \tau_{avg}$); k_{nr} : non-radiative rate constant [$k_{nr} = (1 - \Phi_f) / \tau_{avg}$]; $\lambda_{ex} = 377$ nm.

Fig. S5A: Polarized optical microscopic images of (a) derivative **4** and (b) in the presence of Zn^{2+} ions at room temperature through crossed polarizing filters.

Fig. 5B: UV-vis spectra of aggregates of compound **4** (5 μ M) in presence of Zn²⁺ ions (0-350 equiv.) in H₂O-THF (8:2, v/v) mixture within 180 min.

Fig. S6: Graphical representation of the rate of formation of ZnO nanoparticles of derivative **4**. (a) Time (mins.) vs. absorbance plot at 370 nm (b) regression plot of a.

The first order rate constant for the formation of ZnO nanoparticles was calculated from the changes of intensity of absorbance of aggregates of derivative **4** in the presence of Zn^{2+} ions at different time interval.

From the time vs. absorbance plot at fixed wavelength 370 nm by using first order rate equation, we get the rate constant = $k = slope \times 2.303 = 5.9 \times 10^{-5} sec^{-1}$.

Fig. S7A: UV-vis spectra of derivative **4** (5 μ M) upon additions of 350 equiv. of various metal ions as their **chloride salt** in H₂O-THF (8:2, v/v) mixture after 3 h.

Fig. S7B. : UV-vis spectra of derivative **4** (5 μ M) upon additions of 350 equiv. of various metal ions as their **perchlorate salts** in in H₂O-THF (8:2, v/v) mixture after 3 h.

Fig. S8A: Normalized emission spectra of ZnO nanoparticles after the addition of Zn^{2+} ions in the aggregates of **4** in H₂O-THF (8:2) mixture buffered with HEPES; pH = 7.05 at different excitation wavelengths (300, 320, 330, 345, 390 nm).

Fig. S8B: Showing the excitation spectra of **4** in H₂O-THF (8:2) mixture buffered with HEPES; pH = 7.05; before and after the addition of Zn^{2+} ions for the emission at 510 nm.

Multiple R = 0.967974R² = 0.936975Standard deviation = 0.008Observation = 13Slope = 25216.97

Fig. S9: Calibrated curve showing the Fluorescence intensity of compound **4** at 510 nm as a function of Zn^{2+} ions concentration (equiv.) in H₂O-THF (8:2, v/v); λ_{ex} = 390.

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor **4** without Zn^{2+} was measured by 10 times and the standard deviation of blank measurements was determined.

The detection limit is then calculated with the following equation:

 $DL = 3 \times SD/S$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

S = 25216.97, and SD value is 0.008

Thus using the formula we get the Detection Limit

 $(DL) = 3 \times 0.008/25216.97 = 950 \times 10^{-9} M = 95 \times 10^{-8} M$

i.e., probe **4** can detect Zn^{2+} ions in this minimum concentration through fluorescence method.

Fig. S10A: Fluorescence response of derivative 4 (5 μ M) to various metal ions of chloride salts in H₂O-THF (8:2) mixture buffered with HEPES; pH = 7.05; λ_{ex} = 390 nm. Bars represent the emission intensity ratio (I–I₀)/I₀×100 (I₀ and I are the initial and final fluorescence intensity at 510 nm after the addition of various metal ions); (a) The sky blue bars represent the addition of individual metal ions, (b) the red bars represent the change in the emission that occurs upon the subsequent addition of Zn²⁺ (350 equiv.) to the above solution.

Fig. S10B: Fluorescence response of derivative **4** (5 μ M) to various metal ions of **perchlorate** salts in H₂O-THF (8:2) mixture buffered with HEPES; pH = 7.05; λ_{ex} = 390 nm. Bars represent the emission intensity ratio (I–I₀)/I₀ ×100 (I₀ and I are the initial and final fluorescence intensity at 510 nm after the addition of various metal ions); (a) The sky blue bars represent the addition of individual metal ions, (b) the red bars represent the change in the emission that occurs upon the subsequent addition of Zn²⁺ (350 equiv.) to the above solution.

Fig. S11: Exponential fluorescence decays of **4** on addition of different amount of Zn^{2+} ions within 180 minutes measured at 510 nm. Spectra were acquired in H₂O-THF (8:2, v/v) mixture buffered with HEPES; pH = 7.05, λ_{ex} = 377 nm.

Zn ²⁺ (equiv.)	Quantumn Yield	A ₁ /A ₂	τ ₁ (ns)	τ ₂ (ns)	τ _{avg} (Average lifetime, ns)	$k_{\rm f}$ (10 ⁹ S ⁻¹)	$k_{\rm nr}$ (10 ⁹ S ⁻¹)
0	0.009	56/44	0.74	3.5	2.5	0.032	0.368
350	0.36	5/95	1.78	9.6	6.7	0.053	0.095

Table S4: Fluorescence lifetime of derivative **4** in absence and presence of Zn²⁺ ions (350 equiv.; 180 minutes) in H₂O-THF (8:2, v/v) mixture buffered with HEPES; pH = 7.05; at 510 nm. **A**₁, **A**₂: fractional amount of molecules in each environment. τ_1 , τ_2 and τ_{avg} : bi-exponential and average life time of aggregates in 80 vol% of water in THF; k_f : radiative rate constant ($k_f = \Phi_f/\tau_{avg}$); k_{nr} : non-radiative rate constant ($k_{nr} = (1 - \Phi_f)/\tau_{avg}$); $\lambda_{ex} = 377$ nm.

Fig. S12A: TEM images (a-b) of ZnO nanoparticles.

Fig. S12B: Confocal Images of ZnO nanoparticles in a solvent mixture of H₂O-THF (8:2, v/v). $\lambda_{ex} = 405$ nm.

Fig. S13: Overlay ¹H NMR spectra of derivative **4** in DMSO- d_6 and ZnO nanoparticles of derivative **4** after filtration with THF.

Compound 4	Compound $4 + Zn^{2+}$,	$\Delta \delta_1 = \delta_4 \text{-} \delta_F$
(δ ₄ , ppm)	After filtration by THF	
	$(\delta_{\rm F}, \rm ppm)$	
+ 15.88 (-OH)	15.10	0.78
★ 9.73 (-N=CH)	9.42	0.31
8.54 (d, aromatic)	8.35	0.19
8.15 (d, aromatic)	7.92	0.23
7.95 (d, aromatic)	7.70	0.25
7.79 (t, aromatic)	7.44	0.35
7.57 (q, aromatic)	7.20	0.37
7.37 (t, aromatic)	7.07	0.30
7.01 (t, aromatic)	6.77	0.24

Table S5: Change in chemical shift (δ) value of ¹H NMR spectra of derivative **4** in DMSO-d₆ and ZnO nanoparticles of derivative **4** after filtration with THF.

Fig. S14A: Photographs of SEM images showing aggregates of **4** in H_2O -THF (8:2, v/v) after treatment of ZnCl₂ with aggregates of derivative **4**.

Fig. S14B: Variation of Zeta Potential of ZnO nanoparticles at various pH after the addition of Zn^{2+} ion to the solution of derivative **4** in H₂O-THF (8:2, v/v).

Fig. S15: Representative XRD diffraction patterns of ZnO nanoparticles prepared by derivative 4.

Fig. S16A: Dynamic light scattering (DLS) results showing the particle size diameter of ZnO nanoparticles prepared by aggregates of **4**.

Fig. S16B: Raman spectrum showing 437 cm^{-1} indicates the formation of spherical ZnO nanoparticles prepared by aggregates of **4**.

Scheme 2: Catalytic applications: one pot Multicomponent Synthesis of Tetrahydropyridines **12a-f**.

Scheme 3: Proposed mechanism of one pot Multicomponent Synthesis of tetrahydropyridines 12a-f in presence of ZnO nanoparticles.

Reactants			Products	Temp.	Time	Yield	Melting
6a-b	7a-b	8a-d	12a-f				Point
O O OMe 6a	NH ₂	O H OMe 8a	NH O OMe MeO OMe	RT	2.5 h	91%	189- 190°C
			(12a)				
O O OEt 6b	NH ₂	O H Me 8b	NH O OEt Me (12b)	RT	3h	89%	229- 230°C
O O OMe 6a	NH ₂	O H Me 8b	NH O OMe Me (12c)	RT	3h	89%	212- 213℃
O O OMe 6a	NH ₂	O H H 8c	NH O OMe (12d)	RT	5h	85%	200- 202°C

Table S6: ZnO nanoparticles catalysed one pot multicomponent reactions of aromatic/primary amine with aromatic aldehyde and β -ketoester for the synthesis of tetrahydropyridines **12a-f**.

<u>6a</u>	7a	NO ₂					
			(12e)				
O O OMe 6a	NH ₂ 7b	O H OMe 8a	NH O OMe MeO OMe	50°C	12h	63%	150- 151℃

Characterization Data:

Compound 12a: The structure of compound **12a** was confirmed from its spectroscopic and analytical data (Fig. S21-S22, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) δ = 10.28 (s, 1H), 7.25 (d, *J* = 12Hz, 2H), 7.11-7.00 (m, 7H), 6.84 (d, *J* = 12Hz, 4H), 6.70 (t, *J* = 12Hz, 1H), 6.53 (d, *J* = 12Hz, 2H), 6.34-6.29 (m, 3H), 5.14-5.07 (m, 1H), 3.93 (s, 3H), 3.75 (s, 3H), 3.71(s, 3H), 2.85 (dd, *J* = 10Hz, 1H), 2.78 (dd, *J* = 10 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, ppm) δ = 168.71, 158.88, 158.01, 156.28, 147.05, 129.26, 128.92, 128.83, 128.79, 126.54, 126.30, 125.81, 125.62, 115.98, 114.14, 112.88, 98.09, 57.91, 54.91, 51.60, 50.98, 33.65. ESI-MS mass spectrum of compound **12a** showed a parent ion peak, m/z = 521.21 [M+H]⁺. Elemental analysis: Calculated for C₃₂H₃₂N₂O₄: C 76.13; H 6.20; N 5.38; Found: C 76.11%; H 6.20%; N 5.37%.

Compound 12b: The structure of compound **12b** was confirmed from its spectroscopic and analytical data (Fig. S10-S20, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 10.23$ (s, 1H), 7.22 (d, J = 10Hz, 2H) 7.01-6.98 (m, 11H), 6.55 (t, J = 5 Hz, 1H), 6.49 (d, J = 10 Hz, 2H), 6.40 (s, 1H), 6.24 (d, J = 10Hz, 2H), 5.05-4.92 (m, 1H), 4.41-4.37 (m, 1H), 4.29-4.27 (m, 1H), 2.96 (dd, J = 10Hz, 1H), 2.78 (dd, J = 12.5, 1H), 2.51 (s, 3H), 2.50 (s, 3H), 1.39 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 168.60$, 156.28, 147.05, 140.93, 139.66, 137.93, 136.60, 129.25, 128.92, 128.79, 126.54, 126.30, 125.81, 125.62, 115.98, 112.88, 98.09, 57.91, 54.91, 50.98, 33.65, 21.10, 21.0, 14.14. ESI-MS mass spectrum of compound **12b** showed a parent ion peak, m/z = 503.25 [M+H]⁺. Elemental analysis: Calculated for C₃₄H₃₄N₂O₂: C 81.24; H 6.82; N 5.57; Found: C 81.22%; H 6.83%; N 5.56%.

Compound 12c: The structure of compound **12c** was confirmed from its spectroscopic and analytical data (Fig. S17-S18, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 10.24$ (s, 1H), 7.19 (d, J = 10 Hz, 2H, ArH), 7.08-7.03 (m, 11H, ArH), 6.56 (t, J = 10 Hz, 1H), 6.52 (d, J = 10 Hz, 2H), 6.39 (s, 1H), 6.31-6.29 (m, 2H, ArH), 5.11 (s, 1H), 3.92 (s, 3H), 2.88 (dd, J = 10 Hz, 1H), 2.75 (dd, J = 10 Hz, 1H), 2.33 (s, 3H), 2.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 168.60$, 156.28, 147.05, 140.93, 139.67, 137.93, 136.60, 135.77, 128.92, 128.83, 128.79, 125.81, 115.98, 112.89, 98.09, 57.91, 54.91, 50.98, 33.65, 21.11, 21.02). ESI-MS mass spectrum of compound **12c** showed a parent ion peak, m/z = 489.25 [M+H]⁺. Elemental analysis: Calculated for C₃₃H₃₂N₂O₂: C 81.12; H 6.60; N 5.73; Found: C 81.11%; H 6.61%; N 5.71%.

Compound 12d: The structure of compound **12d** was confirmed from its spectroscopic and analytical data (Fig. S23-S24, ESI†). ¹H NMR (500 MHz, CDCl₃, ppm) δ = 10.05 (s, 1H), 7.20-7.18 (m, 8H), 7.16 (d, *J* = 10 Hz, 2H), 7.07-7.03 (m, 5H), 6.91 (d, *J* = 10 Hz, 1H), 6.64 (d, *J* = 10Hz, 2H), 6.58 (s, 1H), 6.29 (d, *J* = 10Hz, 2H), 5.37-5.35 (m, 1H), 3.51 (s, 3H), 2.35 (dd, *J* = 10 Hz, 1H), 2.32 (dd, *J* = 10 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, ppm) δ = 168.70, 156.52, 147.04, 144.46, 142.65, 137.92, 129.25, 128.91, 128.82, 128.78, 125.80, 116.80, 113.67, 98.08, 58.38, 55.34, 51.37, 33.64. ESI-MS mass spectrum of compound **12d** showed a parent ion peak, m/z = 461.30 [M+H]⁺. Elemental analysis: Calculated for C₃₁H₂₈N₂O₂: C 80.84; H 6.13; N 6.08; Found: C 80.82%; H 6.11%; N 6.07%.

Compound 12e: The structure of compound **12e** was confirmed from its spectroscopic and analytical data (Fig. S25-S26, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta =10.72$ (s, 1H), 8.60 (d, J = 5 Hz, 1H), 8.37 (t, J = 10Hz, 4H), 8.27-8.10 (m, 4H), 7.66 (t, J = 10 Hz, 2H), 7.57 (t, J = 10 Hz, 2H), 7.46 (t, J = 10 Hz, 2H), 6.92-6.73 (t, J = 10 Hz, 4H), 5.75-5.49 (m, 1H), 2.42-2.40 (m, 1H), 2.39-2.31 (m, 1H). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 168.77$, 155.38, 151.06, 149.94, 147.21, 146.14, 145.32, 137.14, 129.50, 129.21, 128.69, 127.32, 127.02, 126.26, 125.43, 123.53, 118.62, 113.43, 96.24, 57.23, 55.32, 51.77, 33.25. ESI-MS mass spectrum of compound **12e** showed a parent ion peak, m/z = 551.16 [M+H]⁺. Elemental analysis: Calculated for C₃₁H₂₆N₄O₆: C 67.63.13; H 4.76; N 10.18; Found: C 67.62%; H 4.75%; N 10.18%.

Compound 12f: The structure of compound **12f** was confirmed from its spectroscopic and analytical data (Fig. S27-S28, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) δ = 9.89 (s, 1H), 7.85 (d, *J* = 15 Hz, 2H), 7.13 (d, *J* = 15 Hz, 2H), 7.01 (d, *J* = 15 Hz, 2H), 6.82 (d, *J* = 15Hz, 2H), 4.01 (s, 1H), 3.93 (dd, *J* = 15 Hz, 1H), 3.78 (s, 3H), 3.57 (s, 3H), 3.40 (s, 3H), 3.04-3.00 (m, 2H), 2.71 (dd, 1H), 2.49 (dd, *J* = 15 Hz, 1H), 1.58-1.25 (m, 10H), 0.83 (t, *J* = 10 Hz, 3H), 0.70 (t, *J* =10 Hz, 3H). ¹³C NMR (500 MHz, CDCl₃, ppm) δ = 174.22, 158.97, 142.38, 139.62, 136.28, 132.00, 130.10, 128.78, 127.79, 88.50, 58.79, 57.33, 55.19, 52.62, 44.33, 42.01, 41.67, 28.67, 28.10, 23.49, 20.94, 20.22, 14,36, 13.51. ESI-MS mass spectrum of compound **12f** showed a parent ion peak, m/z = 481.18 [M+H]⁺. Elemental analysis: Calculated for C₂₉H₄₀N₂O₄: C 72.37; H 8.39; N 5.83; Found: C 72.36%; H 8.38%; N 5.82%.

Intermediate 9: The structure of intermediate **9** was confirmed from its spectroscopic data (Fig. S29A, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) δ =10.36 (s, 1H), 7.34-7.29 (m, 2H), 7.17-7.09 (m, 2H), 6.76-6.66 (m, 1H), 4.70 (s, 1H, -NH), 3.68 (s, 3H), 1.98 (s, 3H).

Intermediate 10: The structure of intermediate **10** was confirmed from its spectroscopic data (Fig. S29B, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 8.32$ (d, J = 5 Hz, 2H, ArH), 7.80 (s, 1H), 7.35-7.23 (m, 2H, ArH), 7.19-7.12 (m, 1H, ArH), 7.09-7.01 (m, 2H, ArH), 6.93-6.90 (d, J = 15 Hz, 2H, ArH), 3.79 (s, 3H), 3.62 (s, 3H), 1.93 (s, 3H).

Intermediate 11: The structure of intermediate **11** was confirmed from its spectroscopic data (Fig. S30, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) δ = 9.91 (s, 1H, HC=N), 8.42-8.36 (m, 1H, ArH) 7.86-7.83 (t, *J* = 15 Hz, 2H, ArH), 7.41-7.38 (d, *J* = 15 Hz, 2H, ArH), 7.21 (d, 2H, ArH), 6.99 (d, 2H, ArH), 3.87 (s, 3H).

Compound 13: The structure of intermediate **13** was confirmed from its spectroscopic data (Fig. S31, ESI[†]). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 7.34$ (d, J = 5Hz, 2H, ArH), 7.30 (s, 2H, ArH), 7.25 (t, J = 5Hz, 2H), 7.18-7.12 (m, 1H), 6.78-6.73 (m, 1H), 6.70-6.63 (m, 2H), 4.73 (d, J = 10Hz, 1H), 4.59 (d, J = 10Hz, 1H), 2.81 (t, J = 5Hz, 2H), 1.94-1.84 (m, 4H), 1.80-1.73 (m, 2H). ESI-MS mass spectrum of compound **13** showed a parent ion peak, m/z = 313.16 [M].

Fig. S21A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 12a:

Fig. S21B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 12a:

Fig. S22: ESI-MS spectrum of compound 12a:

Fig. S19A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 12b:

Fig. S19B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 12b:

Fig. S20: ESI-MS spectrum of compound 12b:

Fig. S17A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 12c:

Fig. S17B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 12c:

Fig. S18: ESI-MS spectrum of compound 12c:

Fig. S23A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 12d:

Fig. S23B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 12d:

Fig. S24: ESI-MS spectrum of compound 12d:

Fig. S25B: ¹³C NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 12e:

Fig. S25B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 12e:

Fig. S26: ESI-MS spectrum of compound 12e:

Fig. S27A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 12f:

Fig. S27B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 12f:

Fig. S28: ESI-MS spectrum of compound 12f:

Fig. S29A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound intermediate 9 (12a):

Fig. S29B: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of intermediate 10 (12a):

Fig. S30: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of intermediate 11 (12a):

Scheme 3: Synthesis of β -amino ketones *via* three-component Mannich reaction by ZnO NPs.

Fig. S31A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 13:

Fig. S31B: ESI-MS spectrum of compound 13:

S48

Fig. S32A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 2a:

Fig. S32B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 2a:

Fig. S33A: ESI-MS spectrum of compound 2a:

Fig. S33B: FT-IR spectrum of 2a:

Agilent Resolutions Pro

Fig. S34B: ¹³C Spectra (CDCl₃, 125 MHz, ppm) of compound 2b:

Fig. S35A: ESI-MS spectrum of compound 2b:

Fig. S35B: FT-IR spectrum of 2b:

Agilent Resolutions Pro

Fig. S36A: ¹H NMR Spectra (DMSO-d₆, 500 MHz, ppm) of compound 4:

Fig. S36B: ¹³C Spectra (CDCl₃, 125 MHz, ppm) of compound 4:

Fig. S37A: ESI-MS spectrum of compound 4:

Fig. S37B: FT-IR Spectrum of compound 4:

