Supporting Information

Thyminate(2–)-bridged cyclic tetranuclear rhodium(III) complexes formed by a template of a sodium, calcium or lanthanoid ion

Ayana Kashima,[†] Mika Sakate,[†] Hiromi Ota,[§] Akira Fuyuhiro,[‡] Yukinari Sunatsuki,[†]

Takayoshi Suzuki^{†,*}

- [†] Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
- § Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
- [‡] Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Contents:

Experimental Section

Preparation of complexes

Crystallography

Measurements

References

Figures

Perspective drawings of the complexes (Figs. S1 and S7–S9) ESI-mass spectra (Figs. S2, S5, S6 and S10–S14) ¹H NMR spectra (Figs. S3 and S4)

Tables

Crystallographic data (Table S1) Selected structural parameters (Tables S2 and S3)

Preparation of Complexes

The starting hydroxide complex, $[(Cp*Rh)_2(\mu\text{-}OH)_3]OH$ was prepared by the literature method.¹

$[{Cp*Rh(\mu-thym)}_4(NaPF_6)] (1)$

A suspension of H₂thym (13 mg, 0.10 mmol) in methanol (10 mL) was added to a methanol solution (10 mL) of $[(Cp*Rh)_2(\mu-OH)_3]OH$ (27 mg, 0.050 mmol), and the mixture was stirred for 3 h at ambient temperature. A methanol solution (10 mL) of NaPF₆ (4.2 mg, 0.025 mmol) was added and the mixture was further stirred for 2 h. The resulting solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (20 mL). The filtered extract was evaporated, again, to dryness under reduced pressure. The crude product was recrystallized from a methanol solution by vapor diffusion of diethyl ether, and the resulting orange crystals were collected by filtration and dried in vacuo. Yield: 7.8 mg (21%). ¹H NMR (CD₃OD, 300 MHz, 22 °C): δ 1.79 (s, 15H, Cp*), 1.81 (s, 3H, thym CH₃), 7.28 (s, 1H, thym C⁶-*H*). ESI-MS (MeOH): *m/z* 1471.12 ([{Cp*Rh(μ -thym)}]₄Na]⁺). Anal. Found (after drying in vacuo): C, 44.91; H, 5.12; N, 6.64%. Calcd for C₆₀H₇₆F₆N₈NaO₈PRh₄ = [{Cp*Rh(μ -thym)}₄(NaPF₆)]: C, 44.57; H, 4.74; N, 6.93%. The crystals of **1**•Et₂O•MeOH suitable for X-ray analysis were obtained from a methanol solution by vapor diffusion of diethyl ether.

$[{Cp*Rh(\mu-thym)}_4(NaBF_4)] \cdot 2CH_3OH (2 \cdot 2CH_3OH)$

This compound was prepared by a similar method to that for **1**, using NaBF₄ (4.8 mg, 0.025 mmol) instead of NaPF₆. Yield: 13 mg (33%). ¹H NMR (CD₃OD, 300 MHz, 22 °C): δ 1.79 (s, 15H, Cp*), 1.81 (s, 3H, thym CH₃), 7.27 (s, 1H, thym C⁶-*H*). ESI-MS (MeOH): *m/z* 1471.18 ([{Cp*Rh(µ-thym)}₄Na]⁺). Anal. Found: C, 44.60; H, 5.16; N, 6.60%. Calcd for C₆₂H₈₄BF₄N₈NaO₁₀Rh₄ = [{Cp*Rh(µ-thym)}₄(NaBF₄)]•2CH₃OH: C, 45.73; H, 5.36; N, 6.77%. The crystals of **2**•Et₂O•MeOH•H₂O suitable for X-ray analysis were obtained from a methanol solution by vapor diffusion of diethyl ether.

$[{Cp*Rh(\mu-thym)}_4(NaNO_3)] \cdot H_2O(3 \cdot H_2O)$

A suspension of H₂thym (26 mg, 0.20 mmol) in methanol (10 mL) was added to a methanol

solution (10 mL) of [(Cp*Rh)₂(μ -OH)₃]OH (55 mg, 0.10 mmol), and the mixture was stirred for 3 h at ambient temperature. A methanol solution (10 mL) of NaNO₃ (7.0 mg, 0.08 mmol) was added and the mixture was further stirred for 2 h. The resulting solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (20 mL). The filtered extract was evaporated, again, to dryness under reduced pressure. The crude product was recrystallized from an acetonitrile solution by layering of diisopropyl ether, and the resulting orange crystals were collected by filtration and dried in air. Yield: 29.4 mg (35%). ¹H NMR (CD₃CN, 400 MHz, 21 °C): δ 1.79 (s, 15H, Cp*), 1.81 (s, 3H, thym CH₃), 7.28 (s, 1H, thym C⁶-H). ¹³C {¹H} NMR (CD₃CN, 100.6 MHz, 22 °C): δ 9.9 (s, Cp* *C*H₃), 13.4 (s, thym CH₃), 95.3 (d, *J* = 9.1 Hz, Cp**C*Me), 115.4 (s, thym), 116.8 (s, thym), 152.9 (s, thym), 173.4 (s, thym). Anal. Found: C, 46.21; H, 5.01; N, 8.30%. Calcd for C₆₀H₇₈N₉NaO₁₂Rh₄ = [{Cp*Rh(μ -thym)}₄(NaNO₃)]•H₂O): C, 46.05; H, 4.90; N, 8.50%. The crystals of **3**•3MeCN•H₂O suitable for X-ray analysis were obtained from a mixture of acetonitrile and diisopropyl ether.

$[{Cp*Rh(\mu-thym)}_{4}{(CaNO_{3})(MeCN)}](NO_{3})_{0.5}(OH)_{0.5}\bullet9H_{2}O(4\bullet9H_{2}O)$

A suspension of H₂thym (26 mg, 0.20 mmol) in methanol (10 mL) was added to a methanol solution (10 mL) of $[(Cp*Rh)_2(\mu-OH)_3]OH$ (54 mg, 0.10 mmol), and the mixture was stirred for 3 h at ambient temperature. A methanol solution (10 mL) of Ca(NO₃)₂•4H₂O (12 mg, 0.050 mmol) was added and the mixture was further stirred for 2 h. The resulting solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (20 mL). The filtered extract was evaporated, again, to dryness under reduced pressure. The crude product was recrystallized from an acetonitrile solution by vapor diffusion of diisopropyl ether, affording orange crystals suitable for X-ray analysis. Yield: 26.5 mg (30%). ¹H NMR (CD₃CN, 400 MHz, 21 °C): δ 1.57 (s, 3H, thym CH₃), 1.70 (s, 15H, Cp*), 7.09 (s,1H, thym C⁶-H). ESI-MS (MeCN): *m/z* 1551.00 ([{Cp*Rh(μ -thym)}₄(CaNO₃)]⁺), 744.50 ([{Cp*Rh(μ -thym})}₄(Ca)]²⁺). Anal. Found (partially efflorescent sample): C, 42.15; H, 4.45; N, 8.21%. Calcd for C₆₂H_{93.5}N_{10.5}O₂₀CaRh₄ = [{Cp*Rh(μ -thym})₄(CaNO₃)(MeCN)](NO₃)_{0.5}(OH)_{0.5}•7H₂O: C, 42.37; H, 5.36; N, 8.37%.

$[{Cp*Rh(\mu-thym)}_{4}{La(NO_{3})_{2}(MeCN)}]NO_{3}\bullet 2H_{2}O(5\bullet 2H_{2}O)$

A suspension of H₂thym (13 mg, 0.10 mmol) in methanol (10 mL) was added to a methanol

solution (10 mL) of [(Cp*Rh)₂(μ -OH)₃]OH (27 mg, 0.050 mmol), and the mixture was stirred for 3 h at ambient temperature. A methanol solution (10 mL) of La(NO₃)₃•6H₂O (12 mg, 0.025 mmol) was added and the mixture was further stirred for 2 h. The resulting solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (20 mL). The filtered extract was evaporated, again, to dryness under reduced pressure. The crude product was recrystallized from an acetonitrile solution by vapor diffusion of diethyl ether, affording orange crystals suitable for X-ray analysis. Yield: 11 mg (26%). ¹H NMR (CD₃OD, 300 MHz, 22 °C): δ 1.79 (s, 15H, Cp*), 1.81 (s, 3H, thym CH₃), 7.28 (s, 1H, thym C⁶-H). ESI-MS (MeCN): *m/z* 1711.08 ([{Cp*Rh(μ -thym)}₄La(NO₃)₂]⁺), 824.55 ([{Cp*Rh(μ -thym})}₄La(NO₃)]²⁺). Anal. Found (after drying in vacuo): C, 39.69; H, 3.63; N, 8.94%. Calcd for C₆₀H₇₆LaN₁₁O₁₇Rh₄ = [{Cp*Rh(μ -thym})}₄La(NO₃)₂]NO₃: C, 40.63; H, 4.32; N, 8.69%.

$[{Cp*Rh(\mu-thym)}_{4}{Eu(NO_{3})_{2}(MeCN)}]NO_{3}\bullet 2H_{2}O(6\bullet 2H_{2}O)$

This compound was prepared by a similar method to that for **5** using Eu(NO₃)₃•6H₂O (11 mg, 0.025 mmol), instead of La(NO₃)₃•6H₂O. Recrystallization from an acetonitrile solution by vapor diffusion of diethyl ether gave orange crystals. Yield: 7.8 mg (18%). ESI-MS (MeCN): m/z 1724.98 ([{Cp*Rh(µ-thym)}₄Eu(NO₃)₂]⁺), 831.56 ([{Cp*Rh(µ-thym)}₄Eu(NO₃)]²⁺). Anal. Found (after drying in vacuo): C, 39.61; H, 4.15; N, 8.59%. Calcd for C₆₀H₇₆EuN₁₁O₁₇Rh₄ = [{Cp*Rh(µ-thym)}₄Eu(NO₃)₂]NO₃: C, 40.33; H, 4.29; N, 8.62%.

$[{Cp*Rh(\mu-thym)}_{4}{Dy(NO_{3})_{2}}]NO_{3}\bullet MeOH (7\bullet MeOH)$

A suspension of H₂thym (32 mg, 0.25 mmol) in methanol (10 mL) was added to a methanol solution (10 mL) of $[(Cp*Rh)_2(\mu-OH)_3]OH$ (54 mg, 0.10 mmol), and the mixture was stirred for 3 h at ambient temperature. A methanol solution (10 mL) of Dy(NO₃)₃•6H₂O (24 mg, 0.053 mmol) was added and the mixture was further stirred for 2 h. The resulting solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (20 mL). The filtered extract was evaporated, again, to dryness under reduced pressure. The crude product was recrystallized from a methanol solution by layering of diisopropyl ether, affording orange crystals of **7**•MeOH. Yield: 42 mg (42%). ESI-MS (MeCN): m/z 1736.07 ([{Cp*Rh(μ -thym)}]₄Dy(NO₃)₂]⁺), 835.53 ([{Cp*Rh(μ -thym})}₄Dy(NO₃)]²⁺). Anal. Found: C, 40.05; H, 4.41;

N, 8.42%. Calcd for $C_{61}H_{80}DyN_{11}O_{18}Rh_4 = [{Cp*Rh(\mu-thym)}_4{Dy(NO_3)_2}]NO_3 \cdot MeOH: C, 40.09;$ H, 4.26; N, 8.57%. Single-crystals suitable for X-ray analysis were obtained by recrystallization from a mixture of methanol and diisopropyl ether, but the analysis revealed that they contained a free H₂thym ligand per tetrarhodium–dysprosium unit: 7•H₂thym•MeOH

$[{Cp*Rh(\mu-thym)}_{4}{Er(NO_3)_{2}}]NO_3 \bullet MeOH (8 \bullet MeOH)$

This compound was prepared by a similar method to that for 7 using $Er(NO_3)_3 \cdot 6H_2O$ (24 mg, 0.052 mmol), instead of $Dy(NO_3)_3 \cdot 6H_2O$. Recrystallization from a methanol solution by vapor diffusion of diethyl ether gave orange crystals. Yield: 41mg (42%). ESI-MS (MeCN): m/z 1740.08 ([{Cp*Rh(μ -thym)}]_4Er(NO_3)_2]^+), 837.06 ([{Cp*Rh(μ -thym)}]_4Er(NO_3)]^2^+). Anal. Found: C, 38.86; H, 4.40; N, 8.61%. Calcd for C₆₁H₈₀ErN₁₁O₁₈Rh₄ = [{Cp*Rh(μ -thym)}]_4{Er(NO_3)_2}]NO_3 \cdot MeOH: C, 39.94; H, 4.40; N, 8.40%. Single-crystals suitable for X-ray analysis were also contained a free H₂thym molecule: 8 \cdot H_2thym \cdot MeOH.

Crystallography

The X-ray diffraction data were obtained using a Rigaku R-axis rapid imaging plate detector with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). A suitable crystal was mounted with a cryoloop and flash cooled using a cold nitrogen gas stream. The data were processed using the Process-Auto software package,² and the absorption corrections were applied using the numerical method from the crystal shapes.³ The structures were solved using the direct method employing the SIR2004 software package⁴ or SHELXS97 software package,⁵ and refined on F^2 (with all independent reflections) using the SHELXL97 software package.⁵ All non-H atoms were refined anisotropically (except for those noted below), and all H atoms in the complexes were introduced at the theoretical positions and treated using riding models. All the calculations were carried out using the CrystalStructure software package.⁶ Crystal data of all compound analyzed in this study are summarized in Table S1.

Non-standard techniques used for individual analysis are listed below: $1 \cdot \text{Et}_2\text{O} \cdot \text{MeOH}$: H atoms of a solvated methanol molecule were not included in the calculation. $2 \cdot \text{Et}_2\text{O} \cdot \text{MeOH} \cdot \text{H}_2\text{O}$: The ligating F atom of BF₄⁻ anion and the O atom of hydrated water molecule were disordered over two possible positions with their occupation factors of 0.5. H atoms of a solvated methanol and

water molecules were not included in the calculation. **3**•3MeCN•H₂O: The coordinated O atoms of the NO₃⁻ anion and one of three acetonitrile molecules of crystallization were disordered over two possible positions. H atoms of the disordered acetonitrile molecule and a hydrated water molecule were not included in the calculation. 4•9H₂O: The anions of NO₃⁻ and OH⁻ were treated as the disordered atoms with their occupancies of 0.5, and one of nine water molecules of crystallization was also positionally disordered with occupation factor of 0.333. All H atoms of the hydrated water molecules were not included in the calculation. 5•2H₂O and 6•2H₂O: These complexes were crystallized in a chiral space group $P2_12_12$ (no. 18), and a homochiral aggregation of Cp*Rh^{III} fragments and the bridging thym^{2–} ligands were achieved. However, both enantiomers were co-crystallized in the analyzed crystal as disordered atoms. Thus, we analyzed the overlapped model of two structures of cyclic tetramers (with the same Ln(NO₃)₂ moiety) in the occupation factors of 0.683:0.317 and 0.779:0.221 for 5•2H₂O and 6•2H₂O, respectively. The noncoordinate NO₃⁻ anion was also treated as disordered atoms over two possible positions. 7•H₂thym•MeOH: H atoms of a solvated methanol molecule were not included in the calculation. 8•H₂thym•MeOH: Non-H atoms of a free H₂thym, a non-coordinated NO₃⁻ anion, and a solvated methanol molecule were treated isotropically, and H atoms of a solvated methanol molecule were not included in the calculation.

Measurements

Elemental analyses were performed at Department of Instrumental Analysis, Advanced Science Research Center, Okayama University. ¹H and ¹³C{¹H} NMR spectra were acquired on Varian Mercury 300, 400-MR, and VXR 500 spectrometers at 22 °C; the chemical shifts were referenced to residual ¹H and ¹³C NMR signals of solvents and are reported versus TMS. The ESI mass spectra (positive mode) of complexes in MeOH or MeCN were measured on an ABI QSTAR-Elite mass spectrometer using a turbo spray ionization mode and cone voltage of 20 V. Exact mass numbers were calibrated using plasticizer (+Na⁺) signals.

References

- 1. A. Nutton, P. M. Bailey and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1981, 1997–2002.
- 2. PROCESS-AUTO, Automatic Data Acquisition and Processing Package for Imaging Plate

Diffractometer, Rigaku Corporation, Akishima, Tokyo, Japan, 1998.

- T. Higashi, SHAPE, Program for Absorption Correction, Rigaku Corporation, Akishima, Japan, 1999.
- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, *J. Appl. Cryst.*, 2005, 38, 381–388.
- 5. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112–122.
- Rigaku and Rigaku/MSC, CrystalStructure, Crystal structure analysis package, ver. 3.7.0, The Woodlands, TX, USA, 2000–2005.

Fig. S1 Perspective views of (*a*) the $[(Cp*Rh)_4(\mu-thym)_4Na]^+$ moiety and (*b*) the Na(NO₃) and the CH₃CN moieties in **3**•3MeCN•H₂O. Color code: Rh, green; Na, orange; O, red; N, blue; C, black; H, white.

Fig. S2 ESI-mass spectra of complexes (a) 1 and (b) 2 in MeOH

Fig. S3 ¹H NMR spectrum of the isolated $[(Cp*Rh)_4(\mu-thym)_4Na(PF_6)]$ (1) in CD₃OD.

(a)

Fig. S4 (*a*) ¹H NMR spectrum of a reaction mixture of $[(Cp*Rh)_2(\mu-OH)_3]OH$ and thymine (in 1:2 molar ratio) in CD₃OD, and (*b*) that of the same reaction mixture after addition of excess NaPF₆. Orange arrows indicated the resonances of starting materials and blue arrows showed the resonances of complex 1.

Fig. S5 ESI-mass spectra of the reaction mixture of $[(Cp*Rh)_2(\mu-OH)_3]OH$, H₂thym (2 equiv.) and LiBF₄ in MeOH.

Fig. S6 ESI-mass spectra of the reaction mixture of $[(Cp*Rh)_2(\mu-OH)_3]OH$, H₂thym (2 equiv.) and KPF₆ in MeOH.

Fig. S7 A perspective view of the $[(Cp*Rh)_4(\mu-thym)_4Ca]^{2+}$ moiety in **3**•3CH₃CN•H₂O. Color code: Rh, green; Ca, orange; O, red; N, blue; C, black; H, white.

Fig. S8 A perspective view of an unit of $[(Cp*Rh)_4(\mu-thym)_4Dy(NO_3)_2](NO_3)\cdot H_2thym\cdot MeOH$ in **7**•H₂thym•MeOH, illustrating the hydrogen bonds between one of the bridging thym^{2–} and a free H₂thym, and between the free H₂thym and a NO₃[–] anion. Color code: Dy, purple; Rh, green; O, red; N, blue; C, black; H, white.

Fig. S9 Perspective view of the overlapped enantiomeric $[(Cp*Rh)_4(\mu-thym)_4Eu(NO_3)_2]^+$ cations found in a non-centrosymmetric crystal of **6**•2MeOH. Color code: Eu, bright pink; Rh, green; O, red; N, blue; C, black; H, white, and the lighter colors are the minor conformer.

Fig. S10 ESI-mass spectra of complex 4 in MeCN.

Fig. S11 ESI-mass spectra of complex 5 in MeOH.

Fig. S12 ESI-mass spectra of complex 6 in MeOH.

Fig. S13 ESI-mass spectra of complex 7 in MeCN.

Fig. S14 ESI-mass spectra of complex 8 in MeCN.

Complex	1•Et ₂ O•MeOH	2•Et ₂ O•MeOH•H ₂ O	3• 3MeCN•H ₂ O	4• 9H ₂ O
Chemical formula	$C_{65}H_{90}F_6N_8NaO_{10}PRh_4$	$C_{65}H_{92}BF_4N_8NaO_{11}Rh_4$	$C_{66}H_{87}N_{12}NaO_{12}Rh_4$	C ₆₂ H _{97.5} CaN _{10.5} O ₂₂ Rh ₄
Formula weight	1723.05	1682.90	1675.10	1793.72
T / K	185(2)	233(2)	186(2)	192(2)
Crystal color and shape	orange, prism	orange, plate	orange, block	orange, block
Size of specimen / mm	$0.30 \times 0.20 \times 0.10$	$0.25\times0.20\times0.20$	$0.40 \times 0.40 \times 0.40$	$0.25\times0.25\times0.40$
Crystal system	monoclinic	monoclinic	orthorhombic	triclinic
Space group, Z	$P2_{1}/c, 4$	$P2_{1}/c, 4$	Pbca, 8	<i>P</i> ⁻ , 8
<i>a</i> / Å	16.7562(6)	16.6620(7)	22.6289(7)	11.3211(7)
b / Å	16.3493(8)	16.4372(7)	21.7265(7)	18.6735(10)
<i>c</i> / Å	27.6506(9)	27.4724(10)	29.7275(15)	18.7302(8)
α / °	90	90	90	89.602(2)
eta / °	91.707(1)	94.940(1)	90	75.171(2)
γ□/ °	90	90	90	87.676(3)
U / Å ³	7571.6(5)	7496.1(5)	14615.4(10)	3824.6(4)
$D_{ m calc}$ / Mg m ⁻³	1.512	1.491	1.523	1.558
μ (Mo K $lpha$) / mm ⁻¹	0.955	0.940	0.959	0.991
<i>R</i> _{int}	0.0484	0.0443	0.0426	0.0699
No. reflns / params.	17312 / 856	17152 / 865	16164 / 871	17268 / 937
$R1 (F^2: F_o^2 > 2\sigma(F_o^2))$	0.0811	0.0605	0.0434	0.0545
$wR2$ (F^2 : all data)	0.2495	0.1818	0.1464	0.1585
GoF	1.030	1.028	1.052	1.068
Flack param.		_		

Table S1Crystallographic data for compounds 1–8.

Complex	5• 2H ₂ O	6• 2H ₂ O	7•H ₂ thym•MeOH	8•H ₂ thym•MeOH
Chemical formula	$C_{62}H_{83}LaN_{12}O_{19}Rh_4$	$C_{62}H_{83}EuN_{12}O_{19}Rh_4$	$C_{66}H_{86}DyN_{13}O_{20}Rh_4$	C ₆₆ H ₈₆ ErN ₁₃ O ₂₀ Rh ₄
Formula weight	1850.95	1864.00	1955.62	1960.38
<i>T</i> / K	186(2)	186(2)	191(2)	193(2)
Crystal color and shape	orange, block	orange, block	orange, block	orange, prism
Size of specimen / mm	$0.28 \times 0.23 \times 0.20$	$0.25 \times 0.20 \times 0.10$	$0.45 \times 0.30 \times 0.20$	$0.10 \times 0.10 \times 0.10$
Crystal system	orthorhombic	orthorhombic	monoclinic	monoclinic
Space group, Z	$P2_12_12, 2$	$P2_12_12, 2$	$P2_{1}/c, 4$	$P2_{1}/c, 4$
<i>a</i> / Å	18.7826(10)	18.4641(7)	13.9749(6)	13.8619(4)
<i>b</i> / Å	19.9113(12)	19.8783(8)	18.7743(6)	18.8672(8)
<i>c</i> / Å	10.6111(5)	10.5405(3)	28.0431(10)	28.1155(9)
lpha / °	90	90	90	90
eta / °	90	90	93.975(1)	93.687(1)
γ/\circ	90	90	90	90
U / Å ³	3968.4(4)	3868.7(2)	7339.9(5)	7338.0(4)
$D_{\rm calc}$ / Mg m ⁻³	1.549	1.600	1.770	1.774
μ (Mo K α) / mm ⁻¹	1.410	1.705	1.966	2.092
R _{int}	0.0661	0.0472	0.0521	0.0917
No. reflns / params.	9089 / 571	8861 / 573	16784 / 937	16780 / 862
$R1 (F^2: F_o^2 > 2\sigma(F_o^2))$	0.0624	0.0493	0.0507	0.0668
$wR2$ (F^2 : all data)	0.1827	0.1349	0.1323	0.1810
GoF	1.069	1.077	0.965	0.986
Flack param.	0.50(3)	0.503(16)	_	

Table S1 (Continued)Crystallographic data for compounds 1–8.

	1	2	3	4
	2 096(6)	2 107(4)	2 096(3)	2 104(3)
Rh2–N3	2.084(6)	2.102(4)	2.096(3)	2.097(3)
Rh3–N5	2.092(7)	2.110(5)	2.083(3)	2.103(3)
Rh4–N7	2.133(6)	2.098(4)	2.091(3)	2.088(3)
Rh1–N8	2.053(8)	2.072(4)	2.075(3)	2.091(3)
Rh2–N2	2.095(6)	2.095(5)	2.071(4)	2.071(3)
Rh3–N4	2.066(7)	2.101(4)	2.075(3)	2.076(3)
Rh4–N6	2.072(7)	2.079(5)	2.067(3)	2.094(3)
Rh1–O7	2.169(5)	2.198(3)	2.204(3)	2.263(3)
Rh2–O1	2.190(5)	2.215(3)	2.214(2)	2.265(3)
Rh3–O3	2.249(5)	2.215(3)	2.206(3)	2.287(3)
Rh4–O5	2.218(5)	2.225(3)	2.201(2)	2.273(3)
Na1(Ca1)–O1	2.497(6)	2.416(4)	2.428(3)	2.356(3)
Na1(Ca1)–O3	2.484(6)	2.387(4)	2.427(3)	2.382(3)
Na1(Ca1)–O5	2.434(6)	2.382(4)	2.425(3)	2.355(3)
Na1(Ca1)–O7	2.496(6)	2.397(4)	2.408(3)	2.372(3)
Na1 $-F(BF_4 \text{ or } PF_6)$	1.990(11)	2.548(15)		
Na1(Ca1)–O(NO ₃)		— 2.4	415(10)-2.499(12)	2.440(5), 2.445(4)
Ca1-N10(CH ₃ CN)			<u> </u>	2.611(4)
O7–Rh1–N8	62.4(2)	62.32(14)	61.61(11)	60.77(11)
O1-Rh2-N2	61.9(2)	61.72(14)	61.48(11)	60.84(11)
O3-Rh3-N4	60.8(2)	61.28(15)	61.80(12)	60.32(11)
O5-Rh4-N6	60.3(2)	61.63(15)	61.78(11)	60.65(12)
O7–Rh1–N1	91.6(2)	89.44(14)	89.32(12)	90.74(11)
O1-Rh2-N3	90.7(2)	89.08(15)	89.51(11)	90.29(11)
O3-Rh3-N5	91.2(2)	90.09(15)	90.47(12)	90.26(11)
O5–Rh4–N7	90.6(2)	91.01(14)	90.05(11)	91.87(11)
N8–Rh1–N1	85.9(3)	84.00(16)	85.54(13)	85.88(13)
N2-Rh2-N3	85.4(2)	86.92(17)	84.37(14)	85.73(13)
N4–Rh3–N5	84.9(3)	84.82(17)	84.27(12)	86.31(13)
N6-Rh4-N7	85.5(3)	86.60(17)	85.29(13)	85.51(13)
O1-Na1(Ca1)-O5	137.8(2)	144.97(14)	143.03(11)	159.25(11)
O3-Na1(Ca1)-O7	139.3(2)	146.57(14)	142.67(10)	158.22(11)
O1-Na1(Ca1)-O3	81.00(19)	82.91(13)	84.42(10)	87.53(9)
O3-Na1(Ca1)-O5	83.2(2)	85.34(14)	83.97(11)	87.19(9)
O5-Na1(Ca1)-O7	84.23(19)	85.73(13)	84.10(10)	88.80(10)
O7-Na1(Ca1)-O1	82.82(18)	86.20(13)	84.22(10)	88.70(9)
Rh2–O1–Na1(Ca1)	118.9(2)	120.67(16)	117.71(13)	116.91(10)
Rh3–O3–Na1(Ca1)	116.8(2)	117.40(15)	118.46(12)	117.44(12)
Rh4–O5–Na1(Ca1)	117.5(2)	117.70(16)	118.17(12)	115.22(11)
Rh1–O7–Na1(Ca1)	117.7(2)	117.55(15)	118.22(12)	116.49(12)

Table S2 Selected bond lengths (l/Å) and angles (ϕ°) of complexes 1–8.

	5 ^a	6 ^a	7	8
Rh1–N1			2.104(5)	2.094(7)
Rh2–N3			2.085(5)	2.103(7)
Rh3-N5(102)	2.082(10)	2.103(7)	2.092(5)	2.093(7)
Rh4–N7(202)	2.072(9)	2.102(7)	2.098(5)	2.087(7)
Rh1–N8			2.143(5)	2.130(7)
Rh2–N2			2.129(5)	2.138(6)
Rh3-N4(201')	2.119(9)	2.102(7)	2.116(5)	2.123(7)
Rh4–N6(101)	2.104(9)	2.108(7)	2.131(5)	2.114(7)
Rh1-O8		_	2.209(4)	2.222(6)
Rh2–O2			2.186(5)	2.221(6)
Rh3-O4(202')	2.178(9)	2.171(7)	2.215(5)	2.217(6)
Rh4–O6(102)	2.165(8)	2.158(6)	2.201(4)	2.205(7)
Ln1–O1(101)	2.498(7)	2.378(5)	2.242(4)	2.230(5)
Ln1-O3(201)	2.481(7)	2.354(5)	2.251(4)	2.235(6)
Ln1–O5			2.290(4)	2.229(6)
Ln1–O7			2.252(4)	2.277(5)
$Ln1-O(NO_3)$	2.632(8),	2.501(7)	2.385(7), 2.387(6)	2.410(8), 2.402(7)
	2.722(7)	2.710(8)	2.266(4)	2.253(6)
Ln1-N511	2.761(8)	2.663(7)	_	
O8-Rh1-N8			59.81(16)	59.7(2)
O2-Rh2-N2		_	60.08(17)	59.7(2)
O4(202')–Rh3–N4(201')	61.7(3)	61.7(2)	60.14(18)	59.8(2)
O6(102)–Rh4–N6(101)	61.7(3)	61.6(2)	60.30(16)	59.7(2)
O8-Rh1-N1			91.73(19)	89.9(2)
O2-Rh2-N3			91.37(19)	91.3(3)
O4(202')-Rh3-N5(102)	86.2(3)	87.0(2)	91.11(19)	91.3(3)
O6(102)–Rh4–N7(202)	86.2(3)	86.0(2)	89.40(17)	90.8(3)
N8–Rh1–N1			91.02(18)	88.3(2)
N2-Rh2-N3			87.32(18)	90.5(2)
N4(201')–Rh3–N5(102)	83.6(3)	83.2(2)	90.52(19)	87.4(3)
N6(101)–Rh4–N7(202)	85.5(3)	84.8(2)	88.49(17)	90.3(3)
O1(101)–Ln1–O5(101')	142.5(3)	146.4(3)	163.60(15)	165.58(19)
O3(201)–Ln1–O7(201')	141.4(3)	144.2(3)	164.55(14)	163.4(2)
O1(101)–Ln1–O3(201)	82.5(2)	83.9(2)	88.19(16)	87.6(2)
O3(201)–Ln1–O5(101')	85.3(2)	85.9(2)	89.31(16)	88.5(2)
O5–Ln1–O7			90.78(16)	89.0(2)
O7–Ln1–O1			87.37(16)	90.7(2)
Ln1–O1(101)–C11(101)	129.7(4)	129.6(4)	132.6(4)	125.6(5)
Ln1-O3(201)-C26(201)	133.8(4)	135.4(4)	126.3(4)	134.0(5)
Ln1-O5-C41			125.5(4)	125.8(5)
Ln1-07-C56			125.4(3)	126.6(5)

Table S2 (Continued) Selected bond lengths (l/Å) and angles (ϕ°) of complexes 1–8.

^a Only the parameters in the major isomer was listed.

	1	2	3	4
Na(Ca)…pl(4O-thym)	0.876(4)	0.704(3)	0.772(2)	0.436(2)
Rh1…Na1(Ca1)	4.039(3)	3.931(2)	3.9589(17)	3.9422(8)
Rh2…Na1(Ca1)	4.033(3)	4.025(2)	3.9746(16)	3.9389(10)
Rh3…Na1(Ca1)	3.979(2)	3.933(2)	3.9826(18)	3.9894(9)
Rh4…Na1(Ca1)	3.996(3)	3.944(2)	3.9706(16)	3.9083(10)
Rh1…Rh2	5.4170(9)	5.4308(6)	5.3835(6)	5.4719(6)
Rh1…Rh3	7.6321(8)	7.6362(7)	7.6067(8)	7.7423(6)
Rh1…Rh4	5.3853(8)	5.3632(6)	5.3866(9)	5.4317(6)
Rh2…Rh3	5.3982(8)	5.3954(7)	5.3852(9)	5.4450(6)
Rh2…Rh4	7.6358(9)	7.6262(6)	7.6251(7)	7.6896(7)
Rh3…Rh4	5.3918(9)	5.4122(7)	5.3859(6)	5.4777(6)
O1-Na1(Ca1)-O5	137.8(2)	144.97(14)	143.03(11)	159.25(11)
O3-Na1(Ca1)-O7	139.3(2)	146.57(14)	142.67(10)	158.22(11)
01…05	4.670(7)	4.575(5)	4.603(4)	4.635(4)
03…07	4.601(7)	4.582(5)	4.581(4)	4.674(4)
C5…C15	9.311(18)	9.615(12)	9.078(9)	8.772(8)
C10···C20	9.389(19)	9.144(11)	9.262(7)	8.713(8)
Pl (thym1) vs. pl(thym3)	54.9(2)	59.3(1)	54.62(8)	51.67(9)
Pl(thym2) vs. pl(thym4)	56.3(2)	55.0(1)	55.33(9)	50.97(9)

Table S3 Selected dihedral angles ($\phi/^{\circ}$) and non-bonding distances (l/Å) of complexes 1–8.

	5	6	7	8
La…pl(4O-thym)	0.812(4)	0.706(3)	0.311(2)	0.304(3)
- · · · /	0.797(8)	0.68(1)		
Rh1…La1			4.6432(6)	4.6456(8)
Rh2…La1			4.5871(7)	4.6419(7)
Rh3…La1	4.8208(14)	4.7495(10)	4.6674(6)	4.5799(8)
(Rh8…La1)	4.914(3)	4.852(3)		
Rh4…La1	4.9263(14)	4.8509(10)	4.6601(7)	4.6665(7)
(Rh9…La1)	4.814(4)	4.742(3)		
Rh1…Rh2	_		6.3489(6)	6.2795(8)
Rh1(Rh3')…Rh3	8.884(2)	8.8649(14)	8.8045(7)	8.9738(8)
(Rh8'…Rh8)	9.009(5)	8.965(5)		
Rh1(Rh3')…Rh4	6.348(2)	6.3351(14)	6.2500(8)	6.2962(8)
(Rh8'…Rh9)	6.342(5)	6.319(5)		
Rh2(Rh4')…Rh3	_		6.2959(8)	6.3326(8)
Rh2(Rh4')··Rh4	9.023(2)	8.9800(14)	8.9831(8)	8.8184(8)
(Rh9'…Rh9)	8.871(5)	8.839(5)		
Rh3…Rh4	6.316(2)	6.2860(13)	6.3166(6)	6.3105(8)
(Rh8…Rh9)	6.303(5)	6.274(5)		
O1(101)–Ln1–O5(101')	142.5(3)	146.4(3)	163.60(15)	165.58(19)
O3(201)–Ln1–O7(201')	141.4(3)	144.2(3)	164.55(14)	163.4(2)
01(0101)…05(0101')	4.730(9)	4.552(7)	4.485(6)	4.426(7)
(O601···O601')	4.728(19)	4.73(2)		
O3(O201)····O7(O201')	4.682(10)	4.479(7)	4.463(6)	4.465(7)
(O701···O701')	4.71(2)	4.66(2)		
C5(C105)····C15(C105')	8.835(19)	8.930(17)	10.571(10)	9.272(15)
(C605···C605')	8.85(3)	8.44(3)		
C10(C205)···C20(C205')	9.567(17)	9.767(15)	9.304(12)	10.566(13)
(C705····C705')	9.19(3)	9.31(4)		
Pl(thym1) vs. pl(thym3	42.5(2)	44.9(2)	64.5(1)	54.7(2)
or thym1')	52.1(2)	38.6(5)		
Pl(thym2) vs. pl(thym4	43.4(4)	56.4(2)	54.4(1)	65.1(2)
or thym2')	47.5(4)	49.5(5)		

Table S3 (Continued)