Electronic Supplementary Information

Electronic structures and optical spectra of all-boron fullerene B₄₀

Rongxing He,^{a,b}* Xiao Cheng Zeng^b*

^aKey Laboratory of Luminescence and Real-Time Analytical chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. *E-mail: herx@swu.edu.cn*

^bDepartment of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA. E-mail: xzeng1@unl.edu

Table of Contents

I. Computational details

II. Tables

Table S1. Predicted normal mode frequencies (cm⁻¹) of the ground state (S_0) of the boron fullerene B₄₀ based on PBE0 and BHandLYP functional with 6-311G* and 6-31G* basis sets.

Table S2. Predicted infrared and Raman absorption peaks of B_{40} and the corresponding intensities and assignments (6-31G*).

Table S3. Normal modes and their incorporation with the electronic states in the absorption and emission spectra of B_{40} , calculated at the PBE0/6-31G* level.

Table S4. Predicted normal mode frequencies (cm⁻¹) of the ground state (S_0) and the first excited state (S_1)^a for B₄₀ fullerene (at the PBE0/6-31g* level).

Table S5. Computed Huang-Rhys factors (*S*) of totally-symmetry normal modes (a_1) for absorption and emission spectra of B₄₀ at the PBE0/6-31g* level.

Table S6. Predicted normal mode frequencies (cm⁻¹) of ground state (S_0) and their infrared and Raman activities for quasi-planar isomer of B₄₀ fullerene (at the PBE0/6-311G* level).

III. Figures

Figure S1. The frontier molecular orbitals of B₄₀ computed at PBE0/6-311G* level.

Figure S2. Simulated well-resolved absorption (left column, a-c) and emission (right column, d-f) spectra of B_{40} within a range of 2000 cm⁻¹ (the 0-0 line is set to zero). FC represents the spectra simulated in Franck-Condon approximation; HT is pure Herzberg-Teller spectra; and FCHT represents the total spectra with consideration of both FC and HT effects.

Figure S3. Simulated and highly-resolved absorption and emission spectra of B_{40} within a range of 2000 cm⁻¹, and detailed assignments of the normal modes and combinated bands.

Figure S4. Computed optical spectra of quasi-planar isomer of B_{40} fullerene: (a) IR, and (b) Raman.

IV. Cartesian coordinates of ground and the first excited stated of the B_{40} cluster optimized at different levels.

I. Computational details

Geometry optimizations: In the present work, full geometry optimization and electronic structure computation of the ground state (S_0) of the gas-phase B_{40} fullerene are performed based on the PBE0 and BHandHLYP functionals with 6-31G* basis set. To obtain relatively accurate electronic structures and profiles of the selected molecular orbitals and vertical excitation energies, the ground-state geometry is also re-optimized using a larger basis set 6-311G*. Frequency calculations at the same level were performed to confirm each stationary point to be a true local minimum. We note that the relative energies and frequency calculations at the PBE0/6-311G* level should be reliable for boron clusters, because this level has been tested in the previous studies.^{1,2,3} Based on the optimized ground-state structure, the geometry of the first singlet excited state (S_1) of B_{40} fullerene is computed using the TD-PBE0 and TD-BHandHLYP methods combined with 6-31G* and 6-311* basis sets. However, only the TD-PBE0/6-31* level gives rise to a convergent geometry of S₁ state. Therefore, the adiabatic energy, Huang-Rhys factor, and highly resolved electronic spectra are computed using the optimized S_0 and S_1 geometries at (TD)PBE0/6-31G* level. Note also that both the ground state and the first singlet excited state of B₄₀ fullerene are optimized with the D_{2d} point group symmetry. All computations above are carried out using the Gaussian09 software package.⁴

Simulation of highly resolved electronic spectra: With the harmonic oscillator approximation, the absorption or emission coefficient for the electronic transition $b \rightarrow a$ in the Condon approximation can be expressed as:⁵

$$\alpha(\omega) = \frac{2\pi\omega}{3\hbar c} \left| \vec{\mu}_{ab} \right|^2 \int_{-\infty}^{\infty} dt \exp\left[it(\omega_{ab} - \omega) - \gamma_{ab} |t| \right] \prod_i G_i(t)$$
(1)

where \hbar is Planck's constant, c is the speed of light, $\vec{\mu}_{ab}$ denotes the electronic transition dipole moment and ω_{ab} is the energy gap between the excited vibrational state and ground vibrational state. The time correlation function $G_i(t)$ is given by

$$G_i(t) = \exp\left[-S_i\left\{(2\overline{n}_i + 1) - (\overline{n}_i + 1)e^{it\omega_i} - \overline{n}_i e^{-it\omega_i}\right\}\right]$$
(2)

Huang-Rhys factor $S_i = \omega_i d_i^2 / 2\hbar$. To obtain more reasonable electronic spectra, the transition dipole moment is expanded in a Taylor series in terms of the nuclear coordinate,

$$\vec{\mu}_{ab} = \vec{\mu}_{ab}(\vec{Q}) = \vec{\mu}_{ab}(0) + \sum_{i} \left(\frac{\partial \vec{\mu}_{ab}}{\partial Q_i}\right)_0 Q_i + \cdots$$
(3)

The zero-order term of this expansion is the so-called FC spectrum for strongly allowed transitions, while the first-order term reflects the Herzberg-Teller effect⁶ for weakly allowed or forbidden transition. Here, the vibrational highly-resolved absorption and emission spectra of B_{40} fullerene including the Herzberg-Teller effect are obtained using the method presented in our previous reports.^{7,8}

Supplemental References

- 1 A. P. Sergeeva, Z. A. Piazza, C. Romanescu, W. L. Li, A. I. Boldyrev and L. S. Wang, *Journal of the American Chemical Society*, 2012, **134**, 18065.
- Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li and L. S. Wang, *Nature communications*, 2014, 5, 3113.
- H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W.
 Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li and L. S. Wang, *Nature chemistry*, 2014, 6, 727.
- R. D. Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. asegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. orokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian, Inc., Wallingford CT*, 2013.
- 5 M. H. A. M. Mebel, K. K. Liang, and S. H. Lin, *Journal of Physical Chemistry A*, 1999, **103**, 10674.
- 6 F. Santoro, A. Lami, R. Improta, J. Bloino and V. Barone, *The Journal of chemical physics*, 2008, **128**, 224311.
- 7 M. Guo, R. He, Y. Dai, W. Shen, M. Li, C. Zhu and S. H. Lin, *The Journal of chemical physics*, 2012, **136**, 144313.
- 8 P. Yang, D. Qi, G. You, W. Shen, M. Li and R. He, *The Journal of chemical physics*, 2014, **141**, 124304.

II. Tables

Sym		frequency	Sym		frequency	Sym	f	requency
	PBE0	BHandLYP	=	PBE0	BHandLYP	=	PBE0	BHandLYP
<i>a</i> ₁	171 (171)	176(176)	b_1	244 (244)	256(256)	е	199 (198)	203(201)
	244 (241)	250(248)		278 (278)	292(293)		219 (219)	230(230)
	356 (354)	388(389)		351 (347)	360(356)		328 (326)	348(347)
	427 (429)	434(435)		369 (369)	387(384)		359 (358)	363(366)
	437 (437)	442(443)		448 (454)	446(452)		382 (382)	392(392)
	464 (466)	481(482)		483 (486)	494(496)		390 (393)	395(397)
	518 (524)	532(539)		581 (585)	583(588)		401 (400)	423(423)
	648 (654)	648(655)		623 (632)	624(634)		412 (413)	427(427)
	662 (669)	676(683)		790 (792)	791(794)		434 (436)	446(448)
	695 (699)	698(704)		859 (864)	862(869)		475 (482)	480(486)
	755 (762)	749(758)		925 (930)	939(945)		491 (494)	505(508)
	882 (888)	880(887)		1188 (1193)	1203(1210)		504 (505)	514(517)
	1028 (1031)	1041(1045)		1256 (1261)	1269(1278)		584 (590)	595(603)
	1149 (1154)	1158(1166)		1299 (1305)	1324(1334)		633 (636)	633(638)
	1195 (1200)	1208(1216)	b_2	189 (188)	196(196)		659 (664)	653(660)
	1327 (1333)	1354(1363)		277 (273)	290(286)		691 (696)	681(689)
a_2	244 (243)	257(255)		342 (340)	360(359)		710 (715)	727(732)
	306 (305)	308(308)		428 (432)	440(444)		766 (773)	767(774)
	356 (359)	353(356)		478 (480)	491(494)		822 (826)	826(832)
	412 (412)	420(419)		512 (514)	525(527)		843 (849)	849(856)
	470 (473)	470(476)		565 (567)	571(575)		861 (867)	866(873)
	471 (477)	495(496)		617 (625)	620(630)		999 (1002)	1007(1013)
	614 (620)	606(614)		709 (714)	701(709)		1043 (1048)	1050(1057)

Table S1. Predicted normal mode frequencies (cm⁻¹) of the ground state (S_0) of the boron fullerene B₄₀ based on PBE0 and BHandLYP functional with 6-311G* and 6-31G* basis sets.^a

625 (624)	637(637)	713 (719)	714(722)	1154 (1159)	1165(1173)
772 (779)	782(789)	795 (802)	797(805)	1209 (1215)	1224(1232)
916 (919)	919(923)	817 (820)	828(833)	1252 (1259)	1261(1271)
1062 (1067)	1075(1083)	1103 (1108)	1102(1109)	1275 (1281)	1294(1303)
1247 (1253)	1252(1261)	1200 (1205)	1215(1223)	1314 (1321)	1341(1351)
1280 (1285)	1292(1300)	1264 (1271)	1275(1283)		

^a Data in parenthesis are calculated by 6-31G* basis set.

		6-310]*				6-311	G*	
$V_{\rm IR}$	$I_{\rm IR}$	$V_{ m Raman}$	I _{Raman}	Assignment	$V_{\rm IR}$	$I_{\rm IR}$	V _{Raman}	<i>I</i> _{Raman}	Assignment
		171	44.7	a_1			171	44.9	<i>a</i> ₁
		188	47.3	b_2			189	48.1	b_2
		219	20.5	е			219	22.8	е
		244	23.5	b_1			244	23.7	b_1
273	7.0			b_2	277	2.4			b_2
		278	5.2	b_1			278	8.4	b_1
326	5.1	326	2.2	е			342	909	b_2
		340	12.5	b_2	359	4.7			е
		354	6.0	a_1		•	369	11.7	b_1
	•	369	11.5	b_1	382	19.6	382	6.2	е
382	27.7	382	3.4	е	390	7.3			е
393	7.6	393	1.9	е			412	11.0	a2
		413	12.4	е			427	82.3	a_1
		429	69.5	a_1	428	6.7	428	9.9	b_2
432	5.6	432	15.0	b_2			437	31.2	a_1
		437	9.7	a_1			464	41.7	a_1
		466	28.7	a_1			483	16.3	b_1
		486	21.2	b_1			518	40.2	a_1
		494	5.6	е	565	5.8			b_2
		514	2.4	b_2			584	8.6	е
		524	51.2	a_1	617	13.1			b_2
567	8.1	567	2.6	b_2			648	80.0	a_1
590	3.5	590	13.1	е			662	63.5	a_1
625	19.5			b_2			695	24.9	a_1
		654	71.2	a_1	709	6.7	709	14.3	b_2
		669	88.4	a_1	713	13.7	713	15.3	b_2
		699	44.1	a_1			755	10.4	a_1
714	5.0	714	11.7	b_2	795	19.4	795	11.2	b_2
719	9.6	719	21.6	b_2	817	10.6			b_2
		762	14.1	a_1	822	11.2	822	10.1	е
773	3.9			е	843	5.4			е
802	23.0	802	12.5	b_2			858	4.8	b_1
820	7.7			b_2			882	11.7	a_1
826	10.1	826	8.4	е			925	7.2	b_1
849	3.5	849	2.1	е	999	4.4			е

Table S2. Predicted infrared and Raman absorption peaks (cm^{-1}) of B_{40} and the corresponding intensities and assignments (6-31G*). Note that the intensities less than 2.0 are not given.

		864	3.3	b_1		1043	10.2			е
		888	5.5	a_1		1103	15.8			b_2
		930	6.1	b_1				1149	36.9	a_1
1002	4.7			е		1154	11.9			е
		1031	4.4	a_1				1195	26.0	a_1
1048	10.1			е		1200	10.0	1200	8.9	b_2
1108	14.6			b_2		1209	7.0			е
		1154	32.7	a_1						
1159	12.0			е						
		1200	19.5	a_1		1252	38.7			е
1205	9.1	1205	6.4	b_2				1256	16.5	b_1
1215	5.4			е		1264	99.5	1264	32.1	b_2
1259	35.9			е		1275	159.0	1275	10.9	е
		1261	12.1	b_1				1299	29.4	b_1
1271	92.1	1271	29.0	b_2		1314	12.4	1314	16.6	е
1281	152.8	1281	8.3	е				1327	164.8	a_1
		1305	22.8	b_1	1					
1321	9.7	1321	14.2	е	1					
		1333	144.8	a_1						

	Absorptio	n		Emission	
n^a	ω^{b}	i^c	n	ω	i
0-0		100.00	0-0		100.00
2^1	172.043	17.79	1^1	170.697	18.95
1 ²	197.825	16.02	10 ¹	273.138	2.52
12 ¹	261.231	23.99	13 ¹	325.625	2.23
17^{1}	304.817	2.17	1^2	341.394	1.71
22 ¹	338.943	14.24	17^{1}	354.458	17.95
25 ¹	368.038	1.07	22^{1}	381.699	9.41
$1^{2}2^{1}$	369.869	2.85	24^{1}	392.763	2.20
27 ¹	392.763	32.78	311	428.696	7.89
31 ¹	397.745	8.00	35 ¹	437.142	6.07
32 ¹	407.526	3.58	$10^{1}1^{1}$	443.835	0.48
35 ¹	431.688	5.78	37 ¹	465.890	2.53
$12^{1}2^{1}$	433.275	4.27	41 ¹	481.527	0.70
37 ¹	442.540	9.84	49 ¹	523.981	22.91
38 ¹	454.949	5.91	$17^{1}1^{1}$	525.155	3.10
41 ¹	458.161	2.86	$22^{1}1^{1}$	552.396	1.78
$12^{1}1^{2}$	459.057	3.84	50^{1}	566.795	1.54
42 ¹	475.926	2.02	52 ¹	590.374	0.83
46 ¹	499.814	7.88	31 ¹ 1 ¹	599.393	1.40
22 ¹ 2 ¹	510.986	2.81	56 ¹	624.675	3.55
49 ¹	517.591	25.62	60^{1}	654.246	6.02
50 ¹	563.221	3.35	63 ¹	668.618	2.08
27 ¹ 2 ¹	564.806	5.83	49 ¹ 1 ¹	694.678	4.28
$27^{1}1^{2}$	590.588	5.25	17 ²	708.916	1.94

Table S3. Normal modes and their incorporation with the electronic states in the absorption and emission spectra of B_{40} , computed at the PBE0/6-31G* level.

22 ¹ 12 ¹	600.174	3.42	70^{1}	719.101	1.85
37 ¹ 2 ¹	614.583	1.96	22 ¹ 17 ¹	736.157	1.69
58 ¹	627.184	2.95	$28^{1}20^{1}$	770.656	2.91
37 ¹ 1 ²	640.365	1.57	31 ¹ 17 ¹	783.154	1.34
60^{1}	656.163	36.73	76 ¹	801.925	3.74
63 ¹	659.566	11.77	28^{2}	823.560	2.01
65 ¹	662.389	1.53	37 ¹ 18 ¹	824.101	0.01
46 ¹ 2 ¹	671.858	1.40	49 ¹ 17 ¹	878.439	3.97
49 ¹ 2 ¹	689.635	4.60	49 ¹ 22 ¹	905.680	2.15
37 ¹ 12 ¹	703.771	2.36	49 ¹ 31 ¹	952.677	1.72
49 ¹ 1 ²	715.417	4.10	49 ¹ 35 ¹	961.123	1.46
71 ¹	731.036	2.64	$60^{1}17^{1}$	1008.704	0.94
27 ¹ 22 ¹	731.706	4.67	94 ¹	1108.149	1.24
49 ¹ 12 ¹	778.823	6.14	56 ¹ 49 ¹	1148.656	0.81
60 ¹ 2 ¹	828.206	6.53	96 ¹	1159.349	1.10
37 ¹ 27 ¹	835.303	3.22	60 ¹ 49 ¹	1178.227	1.29
38 ¹ 27 ¹	847.712	1.94	99 ¹	1199.813	10.74
$60^{1}1^{2}$	853.988	5.88	100^{1}	1205.349	1.07
49 ¹ 22 ¹	856.534	3.74	104 ¹	1258.622	2.91
49 ¹ 27 ¹	910.354	8.39	107 ¹	1270.553	8.22
63 ¹ 12 ¹	920.798	2.82	108 ¹	1280.982	11.84
49 ¹ 37 ¹	960.131	2.40	112 ¹	1320.719	0.63
$60^{1}22^{1}$	995.106	5.23	76 ¹ 49 ¹	1325.906	0.85
63 ¹ 22 ¹	998.509	1.90	114 ¹	1333.313	4.48
49 ¹ 46 ¹	1017.406	2.02	99 ¹ 1 ¹	1370.510	2.16
49 ²	1035.182	3.10	$107^{1}1^{1}$	1441.250	1.55
63 ¹ 27 ¹	1052.329	3.85	$108^{1}1^{1}$	1451.679	2.24
60 ¹ 35 ¹	1087.850	2.12	$114^{1}1^{1}$	1504.010	0.80
94 ¹	1090.230	3.13	99 ¹ 17 ¹	1554.271	2.00
$60^{1}37^{1}$	1098.703	3.61	99 ¹ 22 ¹	1581.512	1.01

97^{1}	1109.746	4.59	$107^{1}17^{1}$
60 ¹ 38 ¹	1111.112	2.17	109 ¹ 17 ¹
99 ¹	1148.334	17.08	110 ¹ 28 ¹
60 ¹ 49 ¹	1173.754	9.40	99 ¹ 49 ¹
63 ¹ 49 ¹	1177.158	3.15	$107^{1}49^{1}$
102 ¹	1180.846	13.56	$108^{1}49^{1}$
103 ¹	1189.546	4.11	114 ¹ 49 ¹
108 ¹	1243.965	1.43	
111 ¹	1283.063	7.72	
63 ¹ 60 ¹	1315.729	4.32	
114 ¹	1315.952	6.88	
99 ¹ 2 ¹	1320.378	3.04	
99 ¹ 1 ²	1346.159	2.73	
102 ¹ 2 ¹	1352.890	2.24	
$102^{1}1^{2}$	1378.672	2.17	
102 ¹ 12 ¹	1442.078	3.25	
99 ¹ 22 ¹	1487.277	2.43	
102 ¹ 22 ¹	1519.789	1.83	
102 ¹ 27 ¹	1573.609	4.44	
99 ¹ 37 ¹	1590.874	1.68	
99 ¹ 49 ¹	1665.925	4.37	
102 ¹ 49 ¹	1698.437	3.34	
114 ¹ 27 ¹	1708.715	2.25	
111 ¹ 49 ¹	1800.654	1.97	
99 ¹ 63 ¹	1807.901	2.00	
102 ¹ 60 ¹	1837.009	4.97	

$107^{1}17^{1}$	1625.011	1.47
$109^{1}17^{1}$	1635.440	2.11
110 ¹ 28 ¹	1696.934	1.49
99 ¹ 49 ¹	1723.794	2.54
107 ¹ 49 ¹	1794.534	1.87
108 ¹ 49 ¹	1804.963	2.69
114 ¹ 49 ¹	1857.294	0.97

^{*a*} Fundamental vibrations, assigned as n^q (n is excited normal mode, *q* represents quantum number). ^{*b*} Frequencies (cm⁻¹) relative to the electronic origin band which is set as 0. ^{*c*} Relative peak intensity, the 0-0 origin band intensity is 100.

S0						S1					
mode	freq	sym									
1	171	a_1	58	636	е	1	99	a_2	58	627	b_2
2	188	b_2	59	636	е	2	172	a_1	59	642	b_1
3	199	е	60	654	a_1	3	175	е	60	656	b_2
4	199	е	61	664	e	4	715	е	61	657	е
5	219	е	62	664	е	5	189	b_2	62	657	е
6	219	е	63	669	a_1	6	209	b_1	63	660	a_1
7	241	a_1	64	696	е	7	210	е	64	662	a_1
8	243	a_2	65	696	е	8	210	е	65	662	е
9	244	b_1	66	699	a_1	9	247	a_1	66	662	е
10	273	b_2	67	714	b_2	10	251	a_2	67	683	a_1
11	278	b_1	68	715	e	11	254	b_1	68	703	b_2
12	305	a_2	69	715	e	12	261	b_2	69	709	е
13	326	е	70	719	b_2	13	283	е	70	709	е
14	326	е	71	762	a_1	14	283	е	71	731	b_2
15	340	b_2	72	773	e	15	291	b_2	72	740	a_2
16	347	b_1	73	773	e	16	292	a_2	73	757	е
17	354	a_1	74	779	a_2	17	305	е	74	757	е
18	358	е	75	792	b_1	18	305	е	75	771	a_1
19	358	е	76	802	b_2	19	317	b_1	76	773	b_1
20	359	a_2	77	820	b_2	20	338	е	77	793	b_2
21	369	b_1	78	826	е	21	338	е	78	807	е
22	382	е	79	826	е	22	339	a_1	79	807	е
23	382	е	80	849	e	23	347	b_1	80	833	е
24	393	е	81	849	e	24	368	е	81	833	е
25	393	е	82	864	b_1	25	368	е	82	840	е

Table S4. Predicted normal mode frequencies (cm⁻¹) of the ground state (S_0) and the first excited state (S_1)^a for B₄₀ fullerene (computed at the PBE0/6-31g* level).

26	400	е	83	867	е	26	377	<i>a</i> ₂	83	840	е
27	400	е	84	867	e	27	393	b_2	84	866	b_1
28	412	a_2	85	888	a_l	28	395	е	85	879	a_1
29	413	е	86	919	a_2	29	395	е	86	897	a_2
30	413	е	87	930	b_1	30	398	е	87	921	b_1
31	429	a_1	88	1002	е	31	398	е	88	988	е
32	432	b_2	89	1002	е	32	408	е	89	988	е
33	436	е	90	1031	a_1	33	408	е	90	1014	a_2
34	436	е	91	1048	е	34	415	b_1	91	1016	a_1
35	437	a_1	92	1048	е	35	432	a_1	92	1046	е
36	454	b_1	93	1067	a_2	36	442	a_2	93	1046	е
37	466	a_1	94	1108	b_2	37	443	a_1	94	1090	е
38	473	a_2	95	1154	a_1	38	455	a_1	95	1090	е
39	477	a_2	96	1159	е	39	458	е	96	1104	a_2
40	480	b_2	97	1159	е	40	458	е	97	1110	b_2
41	482	е	98	1193	b_1	41	458	b_2	98	1139	a_1
42	482	е	99	1200	a_1	42	476	е	99	1148	b_2
43	486	b_1	100	1205	b_2	43	476	е	100	1158	е
44	494	е	101	1215	е	44	486	b_1	101	1158	е
45	494	е	102	1215	е	45	498	a_2	102	1181	a_1
46	505	е	103	1253	a_2	46	500	b_2	103	1190	е
47	505	е	104	1259	е	47	502	е	104	1190	е
48	514	b_2	105	1259	е	48	502	е	105	1191	b_1
49	524	a_1	106	1261	b_1	49	518	a_1	106	1222	b_2
50	567	b_2	107	1271	b_2	50	563	b_2	107	1243	b_1
51	585	b_1	108	1281	е	51	578	b_1	108	1244	е
52	590	е	109	1281	е	52	590	е	109	1244	е
53	590	е	110	1285	a_2	53	590	е	110	1245	a_2
54	620	a_2	111	1305	b_1	54	613	<i>a</i> ₂	111	1283	е
55	624	a_2	112	1321	е	55	615	е	112	1283	е

56	625	b_2	113	1321	е	56	615	е	113	1296	b_1
57	632	b_1	114	1333	a_1	57	617	a_2	114	1316	a_1

a. Both of the states S_0 and S_1 belong to D_{2d} point group symmetry.

Table S5. Computed Huang-Rhys factors (*S*) of totally-symmetry normal modes (a_1) for absorption and emission spectra of B₄₀ at the PBE0/6-31g* level.

Absorptio	on		Emission		
mode	frequency (cm ⁻¹)	S	mode	frequency	S
2	172	0.4118	1	171	0.4102
9	247	0.0022	7	241	0.0001
22	339	0.3235	17	354	0.4001
35	432	0.1251	31	429	0.1600
37	443	0.2213	35	437	0.1305
38	455	0.1306	37	466	0.0626
49	518	0.5401	49	524	0.5182
63	660	0.2417	60	654	0.1588
64	662	0.0027	63	669	0.0676
67	683	0.0000	66	699	0.0106
75	771	0.0000	71	762	0.0063
85	879	0.0019	85	888	0.0007
91	1016	0.0123	90	1031	0.0009
98	1139	0.0201	95	1154	0.0171
102	1181	0.2985	99	1200	0.3001
114	1316	0.1242	114	1333	0.1305

Table S6. Predicted normal mode frequencies (cm⁻¹) of ground state (S_0) and the infrared and Raman activities for the quasi-planar isomer of B₄₀ fullerene (at the PBE0/6-311G* level).

Mode	Freq	Infrared	Raman Activity
1	45.33	0.1610	33.8778
2	55.10	0.0297	16.9376
3	80.03	0.4359	18.2961
4	114.83	1.7551	8.2751
5	117.57	0.0103	0.0153
6	138.67	0.5791	2.8517
7	149.58	0.3851	0.6612
8	157.52	1.2937	22,5588
9	196.36	0.5322	0.3272
10	206.94	2.6741	14,5455
11	224.54	0.1662	18,5944
12	230.70	0.2293	11,6072
13	239.27	1.8819	8.3302
14	242.70	0.9247	13,2154
15	254 70	0.0263	13 1753
16	256.95	0.8497	50 0842
17	274 12	1 6131	1 0693
18	289 38	4 0123	27 0578
19	294.92	0.0523	4 8821
20	300.50	4 7480	10 3442
21	308.36	0.6832	1 2134
22	325.07	11 9989	45 7982
22	325.80	0 3652	94 5524
24	341.09	4 0747	6 38/8
25	353.45	0.7995	2 7/30
26	258 55	1 9001	104 4626
20	360.93	0.0100	1 9929
20	364.14	6 2650	11 1466
20	369.07	0.2000	1 5261
20	376.09	0.0000	3 /1973
21	200.00	15 2092	16 0620
22	200.05	0.0500	0.7005
22	200.40	1 /105	10.7003
24	402.00	21 5200	0.7005
25	403.00	2 5671	2 2600
20	404.13	3.30/1	27 1612
27	417.51	1 0000	0.0041
20	430.41	0.4941	14 1729
20	441.32	0.4341	0 2242
33	443.23	0.0201	0.2342
40	402.77	0.2401	0,000
41	400.20	0.4403	1.4020
42	463.73	0.1007	1.4920
43	403.20	2.10/0	1.4100
44	4/3.64	0.1938	1.4698
45	482.33	0.6594	2.6/90
46	486.32	0.2938	U. 1526
4/	458.63	3.0098	4.23/1
48	018.03	0.0007	3.0190
49	523.31	0.6206	7.7413

Mode	Freq	Infrared	Raman Activity
50	528.87	0.0154	3.5429
51	543.48	0.9693	9.8565
52	558.78	6.3007	0.6931
53	578.19	8.5971	34.5311
54	579.86	0.3774	4.5455
55	590.90	1.3787	0.7040
56	601.44	4.6609	9.5441
57	624.29	0.5285	2.6286
58	641.09	0.0080	1.2947
59	649.05	0.0178	39.5059
60	655.09	0.0396	21.0975
61	660.13	4.4277	13,5043
62	674.43	0.1009	38,9569
63	682.95	2.2575	6.7509
64	688.90	0 1008	2 6974
65	696 57	8 1939	2 6660
66	700 15	16 4606	59 638
67	705.34	7 3834	50 2710
68	727.85	2 2611	12 2634
69	729.92	2 0207	24 9894
70	734.85	5 1010	11 0596
71	740.82	4 5895	9.880
72	768.46	0.1169	263 808
72	700.40	21 5990	203.000
74	792.51	45 2056	6 5190
75	002.01	19 1296	72 002/
70	002.00	25 2220	0 210
70	021.21	33.2320	0.310
70	044.31	37.1014	00.300
70	001.13	17 2020	0.0110
/9	0/6.01	17.2020	17 2200
80	0/6.30	0.2040	17.2200
01	007.30	32.2404	0.123
02	910.91	141.8112	9.7794
83	931.13	1.9881	4.708
84	934.10	1.0265	2.638/
85	962.18	1.6934	37.2575
86	9/5.59	9.2432	7.0475
8/	982.63	7.84/3	1.210.
88	1009.48	18.1531	/.446
89	1013.27	/8.6948	38.3528
90	1034.68	18.6491	32.1426
91	1047.33	26.0133	23.6/48
92	1064.95	13.03//	89.2184
93	1068.52	11.3/96	0.3119
94	1081.83	74.5240	111.4712
95	1112.08	20.1803	38.7017
96	1128.54	14.5619	3.548
97	1130.20	37.7634	55.0452
98	1141.21	129.1481	29.781
99	1154.68	6.3795	29.6325

Mode	Freq	Infrared	Raman Activity
99	1154.68	6.3795	29.6325
100	1158.49	1.8903	52.7581
101	1163.35	9.2253	3.0448
102	1171.78	13.2525	27.6671
103	1184.55	0.4565	40.7742
104	1196.98	2.1626	102.1173
105	1216.43	12.8059	2.9580
106	1224.08	7.3154	253.6919
107	1246.93	7.7794	616.9933
108	1267.22	3.9655	11.9421
109	1269.42	0.2180	19.3292
110	1298.67	97.4346	37.2487
111	1305.79	0.4895	46.3490
112	1317.47	2.1039	10.6987
113	1319.00	14.3209	18.2733
114	1333.88	3.4470	243.2841

Continued Table S6

III. Figures

Figure S1. The frontier molecular orbitals of B_{40} computed at PBE0/6-311G* level.

Figure S2. Simulated well-resolved absorption (left column, a-c) and emission (right column, d-f) spectra of B_{40} within a range of 2000 cm⁻¹ (the 0-0 line is set to zero). FC represents the spectra simulated in Franck-Condon approximation; HT represents pure Herzberg-Teller spectra; and FCHT represents the total spectra with consideration of both FC and HT effects.

Figure S3. Simulated highly-resolved absorption and emission spectra of B_{40} within a range of 2000 cm⁻¹, and detailed assignments of the normal modes and combinated bands.

Figure S4. Computed optical spectra of quasi-planar isomer of B_{40} fullerene: (a) IR, and (b) Raman.

IV. Cartesian coordinates of ground and the first excited stated for B40 cluster optimized by different theoretical levels.

Ground state

PBE0/6-311G*

В	-0.87512400	-2.36859900	1.67786000
В	-1.38625700	2.36223600	-1.20078600
В	-2.36859900	-0.87512400	-1.67786000
В	-0.87512400	2.36859900	1.67786000
В	-2.63661500	0.00000000	1.98391700
В	-2.36223600	-1.38625700	1.20078600
В	-0.88680500	1.38805600	-2.53401000
В	1.38625700	2.36223600	-1.20078600
В	1.68762200	0.00000000	-2.86237900
В	-1.38625700	-2.36223600	-1.20078600
В	0.00000000	1.68762200	2.86237900
В	0.00000000	2.63661500	-1.98391700
В	0.00000000	-1.68762200	2.86237900
В	0.88680500	-1.38805600	-2.53401000
В	1.38625700	-2.36223600	-1.20078600
В	-1.68762200	0.00000000	-2.86237900
В	1.38805600	0.88680500	2.53401000
В	2.36859900	-0.87512400	-1.67786000
В	0.00000000	-2.63661500	-1.98391700
В	0.88680500	1.38805600	-2.53401000
В	2.36223600	1.38625700	1.20078600
В	2.36223600	-1.38625700	1.20078600
В	-2.36859900	0.87512400	-1.67786000

В	2.63661500	0.00000000	1.98391700
В	0.87512400	-2.36859900	1.67786000
В	1.38805600	-0.88680500	2.53401000
В	-1.38805600	0.88680500	2.53401000
В	-1.38805600	-0.88680500	2.53401000
В	-2.36223600	1.38625700	1.20078600
В	0.87512400	2.36859900	1.67786000
В	2.36859900	0.87512400	-1.67786000
В	-0.88680500	-1.38805600	-2.53401000
В	-2.72821200	1.74572000	-0.38298800
В	-1.74572000	2.72821200	0.38298800
В	1.74572000	2.72821200	0.38298800
В	2.72821200	1.74572000	-0.38298800
В	1.74572000	-2.72821200	0.38298800
В	2.72821200	-1.74572000	-0.38298800
В	-1.74572000	-2.72821200	0.38298800
В	-2.72821200	-1.74572000	-0.38298800

BHandHLYP/6-311G*

В	-0.877615	-2.379870	1.662873
В	-1.369099	2.356639	-1.187279
В	-2.379870	-0.877615	-1.662873
В	-0.877615	2.379870	1.662873
В	-2.618329	0.000000	1.979723
В	-2.356639	-1.369099	1.187279
В	-0.890385	1.378081	-2.513059
В	1.369099	2.356639	-1.187279
В	1.697528	0.000000	-2.829412
В	-1.369099	-2.356639	-1.187279

В	0.000000	1.697528	2.829412
В	0.000000	2.618329	-1.979723
В	0.000000	-1.697528	2.829412
В	0.890385	-1.378081	-2.513059
В	1.369099	-2.356639	-1.187279
В	-1.697528	0.000000	-2.829412
В	1.378081	0.890385	2.513059
В	2.379870	-0.877615	-1.662873
В	0.000000	-2.618329	-1.979723
В	0.890385	1.378081	-2.513059
В	2.356639	1.369099	1.187279
В	2.356639	-1.369099	1.187279
В	-2.379870	0.877615	-1.662873
В	2.618329	0.000000	1.979723
В	0.877615	-2.379870	1.662873
В	1.378081	-0.890385	2.513059
В	-1.378081	0.890385	2.513059
В	-1.378081	-0.890385	2.513059
В	-2.356639	1.369099	1.187279
В	0.877615	2.379870	1.662873
В	2.379870	0.877615	-1.662873
В	-0.890385	-1.378081	-2.513059
В	-2.729006	1.761978	-0.384856
В	-1.761978	2.729006	0.384856
В	1.761978	2.729006	0.384856
В	2.729006	1.761978	-0.384856
В	1.761978	-2.729006	0.384856
В	2.729006	-1.761978	-0.384856
В	-1.761978	-2.729006	0.384856

PBE0/6-31G*

В	-0.876448	-2.367390	1.679316
В	-1.385435	2.358613	-1.201540
В	-2.367390	-0.876448	-1.679316
В	-0.876448	2.367390	1.679316
В	-2.640146	0.000000	1.990059
В	-2.358613	-1.385435	1.201540
В	-0.888227	1.388026	-2.537266
В	1.385435	2.358613	-1.201540
В	1.693408	0.000000	-2.870169
В	-1.385435	-2.358613	-1.201540
В	0.000000	1.693408	2.870169
В	0.000000	2.640146	-1.990059
В	0.000000	-1.693408	2.870169
В	0.888227	-1.388026	-2.537266
В	1.385435	-2.358613	-1.201540
В	-1.693408	0.000000	-2.870169
В	1.388026	0.888227	2.537266
В	2.367390	-0.876448	-1.679316
В	0.000000	-2.640146	-1.990059
В	0.888227	1.388026	-2.537266
В	2.358613	1.385435	1.201540
В	2.358613	-1.385435	1.201540
В	-2.367390	0.876448	-1.679316
В	2.640146	0.000000	1.990059
В	0.876448	-2.367390	1.679316
В	1.388026	-0.888227	2.537266

В

В	-1.388026	0.888227	2.537266
В	-1.388026	-0.888227	2.537266
В	-2.358613	1.385435	1.201540
В	0.876448	2.367390	1.679316
В	2.367390	0.876448	-1.679316
В	-0.888227	-1.388026	-2.537266
В	-2.733784	1.749051	-0.382624
В	-1.749051	2.733784	0.382624
В	1.749051	2.733784	0.382624
В	2.733784	1.749051	-0.382624
В	1.749051	-2.733784	0.382624
В	2.733784	-1.749051	-0.382624
В	-1.749051	-2.733784	0.382624
В	-2.733784	-1.749051	-0.382624

BHandHLYP/6-31G*

В	-0.878839	-2.378459	1.663191
В	-1.366198	2.350406	-1.186244
В	-2.378459	-0.878839	-1.663191
В	-0.878839	2.378459	1.663191
В	-2.618983	0.000000	1.986141
В	-2.350406	-1.366198	1.186244
В	-0.891595	1.375052	-2.514210
В	1.366198	2.350406	-1.186244
В	1.706083	0.000000	-2.837228
В	-1.366198	-2.350406	-1.186244
В	0.000000	1.706083	2.837228
В	0.000000	2.618983	-1.986141
В	0.000000	-1.706083	2.837228

В	0.891595	-1.375052	-2.514210
В	1.366198	-2.350406	-1.186244
В	-1.706083	0.000000	-2.837228
В	1.375052	0.891595	2.514210
В	2.378459	-0.878839	-1.663191
В	0.000000	-2.618983	-1.986141
В	0.891595	1.375052	-2.514210
В	2.350406	1.366198	1.186244
В	2.350406	-1.366198	1.186244
В	-2.378459	0.878839	-1.663191
В	2.618983	0.000000	1.986141
В	0.878839	-2.378459	1.663191
В	1.375052	-0.891595	2.514210
В	-1.375052	0.891595	2.514210
В	-1.375052	-0.891595	2.514210
В	-2.350406	1.366198	1.186244
В	0.878839	2.378459	1.663191
В	2.378459	0.878839	-1.663191
В	-0.891595	-1.375052	-2.514210
В	-2.734401	1.766081	-0.384588
В	-1.766081	2.734401	0.384588
В	1.766081	2.734401	0.384588
В	2.734401	1.766081	-0.384588
В	1.766081	-2.734401	0.384588
В	2.734401	-1.766081	-0.384588
В	-1.766081	-2.734401	0.384588
В	-2.734401	-1.766081	-0.384588

The first singlet excited state

PBE0/6-31G*

В	-0.873781	-2.340954	1.678356
В	-1.407499	2.351049	-1.220494
В	-2.340954	-0.873781	-1.678356
В	-0.873781	2.340954	1.678356
В	-2.625510	0.000000	1.982163
В	-2.351049	-1.407499	1.220494
В	-0.884010	1.377372	-2.573638
В	1.407499	2.351049	-1.220494
В	1.679873	0.000000	-2.915431
В	-1.407499	-2.351049	-1.220494
В	0.000000	1.679873	2.915431
В	0.000000	2.625510	-1.982163
В	0.000000	-1.679873	2.915431
В	0.884010	-1.377372	-2.573638
В	1.407499	-2.351049	-1.220494
В	-1.679873	0.000000	-2.915431
В	1.377372	0.884010	2.573638
В	2.340954	-0.873781	-1.678356
В	0.000000	-2.625510	-1.982163
В	0.884010	1.377372	-2.573638
В	2.351049	1.407499	1.220494
В	2.351049	-1.407499	1.220494
В	-2.340954	0.873781	-1.678356
В	2.625510	0.000000	1.982163
В	0.873781	-2.340954	1.678356
В	1.377372	-0.884010	2.573638
В	-1.377372	0.884010	2.573638

В	-1.377372	-0.884010	2.573638
В	-2.351049	1.407499	1.220494
В	0.873781	2.340954	1.678356
В	2.340954	0.873781	-1.678356
В	-0.884010	-1.377372	-2.573638
В	-2.721543	1.732541	-0.382007
В	-1.732541	2.721543	0.382007
В	1.732541	2.721543	0.382007
В	2.721543	1.732541	-0.382007
В	1.732541	-2.721543	0.382007
В	2.721543	-1.732541	-0.382007
В	-1.732541	-2.721543	0.382007
В	-2.721543	-1.732541	-0.382007