Supporting Information

A single-molecular twin rotor: correlated motion of two pyrimidine rings coordinated to copper

Yusuke Takara,^{*a*} Tetsuro Kusamoto,^{*a*} Tatsuya Masui,^{*a*} Michihiro Nishikawa,^{*a,b*} Shoko Kume^{*a,c*} and Hiroshi Nishihara^{*a}

Physical measurements

NMR, ESI-TOF MS

¹H NMR spectra were recorded with a Bruker DRX500 spectrometer. ESI-TOF mass spectra were recorded using a Micromass LCT spectrometer. In VT ¹H NMR experiments, the sample tube was introduced into the machine cooled to 203 K, and the data was acquired during the heating process.

Cyclic voltammetry

Cyclic voltammograms was recorded with ALS 750A electrochemical analyzers (BAS. Co., Ltd.). The working electrode was a 0.3 mm o.d. glassy carbon, a platinum wire served as the auxiliary electrode, and the reference electrode was an Ag⁺/Ag electrode (a silver wire immersed in 0.1 M Bu₄NClO₄/0.01 M AgClO₄/CH₃CN). The solutions were deoxygenated with pure argon before measurement. Cyclic voltammograms of $1 \cdot PF_6$ were simulated with the BASi Digisim 3.03a software.

Materials

Tetra-*n*-butylammonium hexafluoro phosphate (purchased from Tokyo Chemical Industry) was recrystallized from HPLC-grade ethanol and dried under vacuum for 24 h. 2,9-Bis(9-anthracenyl)-1,10-phenanthroline (L_{Anth2})¹⁰, 4,4'-dimethyl-2,2'-bipyrimidine (Me₂bipym)⁹ were prepared according to literature methods. Other chemicals were used as purchased.

Synthesis of [Cu(Me₂bipym)(L_{Anth2})]PF₆

2,9-bis(9-anthracenyl)-1,10-phenanthroline (L_{Anth2} , 49.1 mg, 92.2 µmol) and [Cu(CH₃CN)₄]PF₆ (34.6 mg, 94.8 µmol) were stirred for 40 min in dichloromethane (4 ml) under nitrogen atmosphere. 4,4'-dimethyl-2,2'-bipyrimidine (Me₂bipym, 20 mg, 58 µmol) was added to the resulted orange solution, and the solution immediately changed to deep red. After filtration, diethyl ether was added to the filtrate to precipitate **1**·**PF**₆ as a deep red solid. Yield: 17 mg (20 %).

¹**H** NMR (500 MHz, (CD₃)₂CO, 253 K) δ 9.31 (d, *J* = 8.1 Hz, phen, *ii*), 9.27 (d, *J* = 8.1 Hz, phen, *io*), 9.25 (d, *J* = 8.1 Hz, phen, *oo*), 8.68 (s, phen, *ii*), 8.66 (s, phen, *io*), 8.64 (s, phen, *oo*), 8.54 (d, *J* = 8.1 Hz, phen, *ii*), 8.46 (d, *J* = 8.1 Hz, phen, *io*), 8.44 (d, *J* = 8.1 Hz, phen, *oo*), 8.40 (d, *J* = 4.8 Hz, bpym, *ii*), 8.28 (d, *J* = 4.9 Hz, bpym, *io*), 8.04 (s, Anth, *io*), 8.03 (s, Anth, *oo*), 8.01 (s, Anth, *ii*), 7.63-7.60 (m), 7.40 (d, *J* = 8.7 Hz, Anth), 7.37 (d, *J* = 8.7 Hz, Anth), 7.32-7.29 (m), 7.25 (d, *J* = 5.3 Hz, bpym, *io*), 7.22-7.09 (m), 6.77 (d, *J* = 4.8 Hz, bpym, *ii*), 6.66 (d, *J* = 4.9 Hz, bpym, *io*), 6.54 (d, *J* = 5.3 Hz, bpym, *io*), 6.45 (d, *J* = 5.3 Hz, bpym, *oo*), 2.41 (s, Me, *o*), 2.37 (s, Me, *io*), 1.57 (s, Me, *io*), 1.50 (s, Me, *ii*).

ESI-TOF-MS *m*/*z* 781.2144 (calcd. for [M-PF₆]⁺, 781.2141)

	293 K	273 K	253 K	219 K
E_{oo} / V	0.265	0.22	0.185	0.14
E_{io} / V	0.48	0.449	0.425	0.375
E_{ii} / V	0.61	0.584	0.57	0.53
$K^{I}ii \rightarrow io$	2.6	2.5	2.2	2
$K^{I}io \rightarrow oo$	0.2	0.18	0.17	0.14
$K^{II}ii \rightarrow io$	4.5×10 ²	7.7×10 ²	1.3×10 ³	7.3×10 ³
$K^{II}io \rightarrow oo$	9.9×10 ²	3.1×10 ³	1.1×10^{4}	3.6×10 ⁴
$k^{\mathrm{I}}_{ii ightarrow io}$ / s ⁻¹	11	1.3	0.1	0
$k^{\mathrm{I}}_{io \rightarrow oo} / \mathrm{s}^{-1}$	8	2.7	0.5	0
$k^{\mathrm{I}}_{oo \rightarrow io} / \mathrm{s}^{-1}$	40	15	3	0
$k^{\mathrm{I}}_{io \rightarrow ii}$ / s ⁻¹	4	0.5	0.05	0
$k^{\mathrm{II}}_{ii \rightarrow io} / \mathrm{s}^{-1}$	3.2	1.5	6.4×10 ⁻¹	0
$k^{\mathrm{II}}{}_{io \rightarrow oo} / \mathrm{s}^{-1}$	5.0	3.1	1.1	0
$k^{\mathrm{II}}{}_{oo \rightarrow io} / \mathrm{s}^{-1}$	5.0×10-3	1.0×10 ⁻³	1.0×10 ⁻⁴	0
$k^{\mathrm{II}}_{io \rightarrow ii} / \mathrm{s}^{-1}$	7.0×10 ⁻³	2.0×10 ⁻³	5.0×10 ⁻⁴	0
α	0.5	0.5	0.3	0.5
α_{io}	0.5	0.5	0.5	0.35
α_{ii}	0.5	0.5	0.5	0.35
$R_{ m u}$	700	800	1000	1600
$C_{ m dl}$ / F	4.2×10 ⁻⁶	4.2×10 ⁻⁶	4.2×10 ⁻⁶	3.0×10 ⁻⁶
$D /{ m cm}^2~{ m s}^{-1}$	1.2×10 ⁻⁵	8.5×10 ⁻⁶	4.5×10 ⁻⁶	2.0×10 ⁻⁶

Table S1 Fitting parameters of the ring inversion processes for 1.PF₆ in 0.1 M ⁿBu₄NPF₆-acetone

	ii→io	io→oo	oo→io	io→ii
$\Delta H / kj \text{ mol}^{-1}$	2.0	2.4	-2.4	-2.0
$\Delta S / j \ K^{-1} \ mol^{-1}$	15	-5.4	5.4	-15
$\Delta G^{\circ}/\text{kj mol}^{-1}$	-2.4	4.0	-4.0	2.4
⊿H [≠] /kj mol⁻¹	68	41	38	65
$\Delta S^{\neq}/j \text{ K}^{-1} \text{ mol}^{-1}$	6.4	-88	-84	-11
⊿G [≠] /kj mol ⁻¹	66	67	63	68

Table S2 Thermodynamic and kinetic parameters of 1.PF₆ in 0.1 M "Bu₄NPF₆-acetone

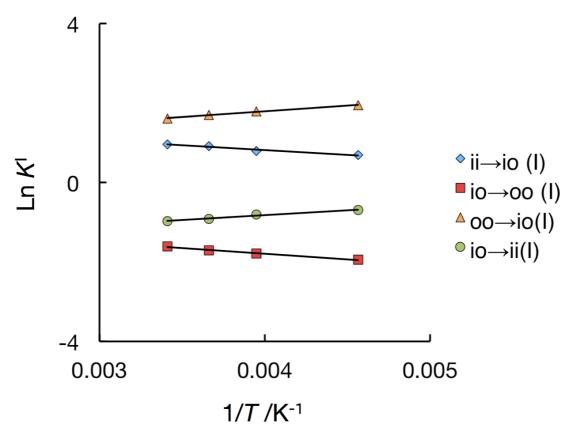
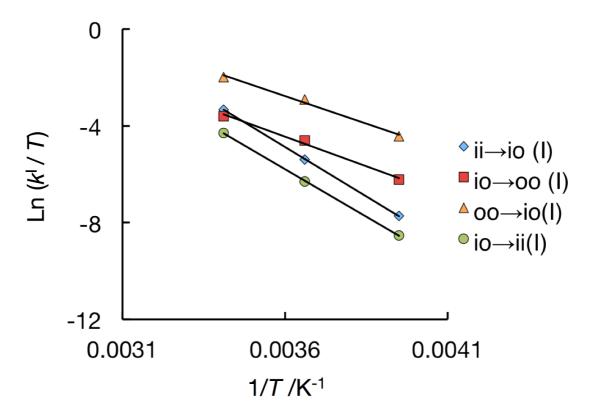
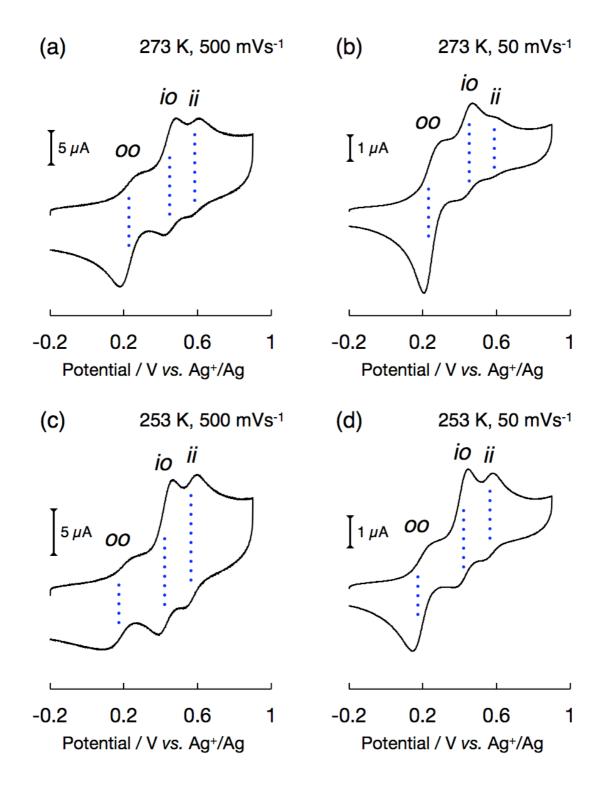
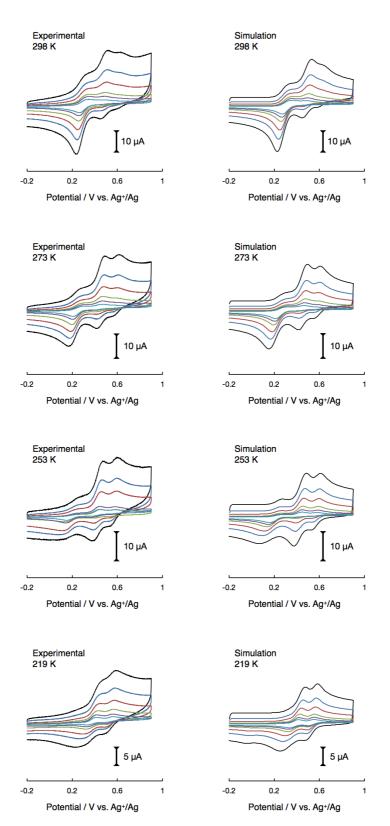
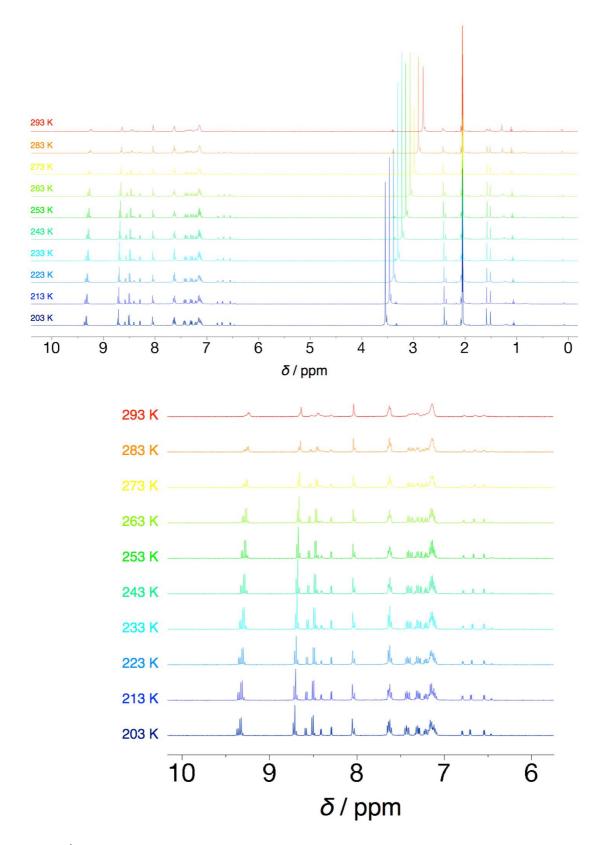


Fig. S1 van't Hoff plots of $1 \cdot PF_6$ obtained by simulative analysis on cyclic voltammograms.


Fig. S2 Eyring plots of 1.PF₆ obtained by simulative analysis on cyclic voltammograms.

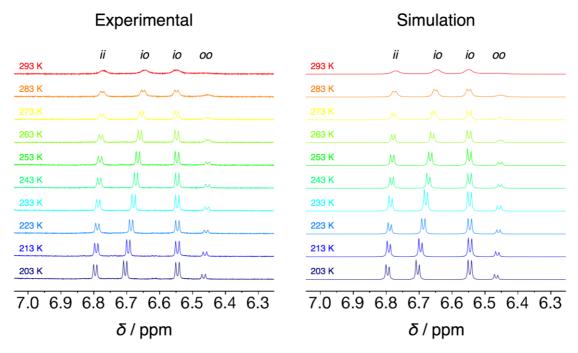

Fig. S3 Cyclic voltammograms of 1^+ (0.5 mM) in 0.1 M ${}^n\text{Bu}_4\text{NPF}_6\text{-acetone}$ at various temperatures and scan rates. (a) 273 K and 500 mVs⁻¹, (b) 273 K and 50 mVs⁻¹, (c) 253 K and 500 mVs⁻¹, and (d) 253 K and 50 mVs⁻¹. All voltammograms are for the first cycle.

Fig. S4 Experimental and simulated cyclic voltammograms of 1^+ (0.5 mM) in 0.1 M ^{*n*}Bu₄NPF₆acetone at various temperatures and scan rates (1000, 500, 250,100, 50, 25 mVs⁻¹). All voltammograms are for the first cycle.

Fig. S5 ¹H NMR spectra of $1 \cdot PF_6$ in acetone- d_6 at various temperatures.

Fig. S6 Experimental and simulated ¹H NMR spectra of $1 \cdot PF_6$ in acetone- d_6 at various temperatures.

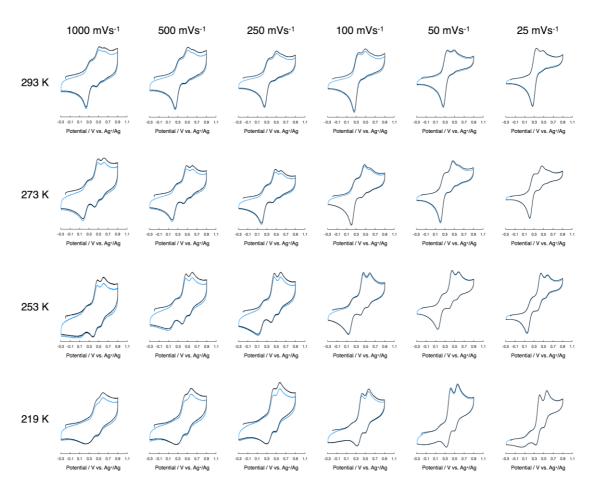
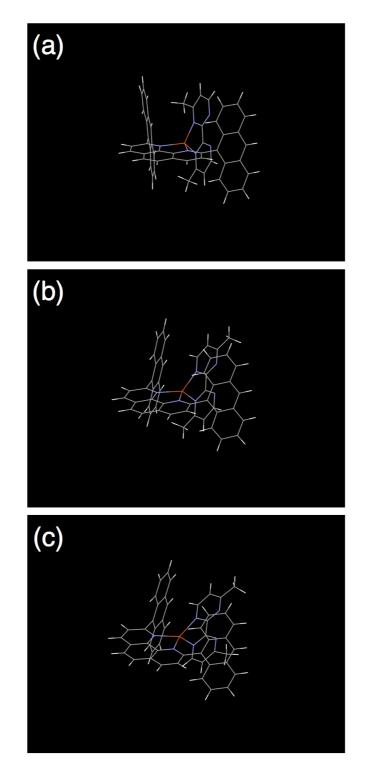



Fig. S7 Cyclic voltammograms of 1^+ (0.5 mM) in 0.1 M n Bu₄NPF₆-acetone at various temperatures and scan rates. Black and blue curves are for the 1st and 2nd potential cycles, respectively.

Fig. S8 Optimized structures (B3LYP/LANL2DZ for Cu, /6-31g(d) for the other atoms) of *ii*-isomer (a), *io*-isomer (b) and *oo*-isomer (c).

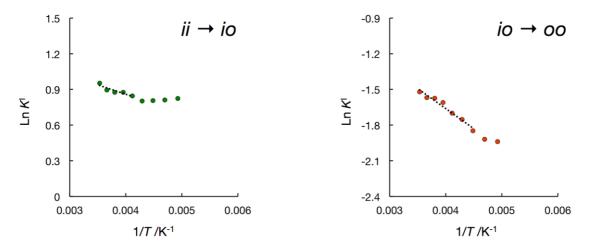


Fig. S9 van't Hoff plots obtained from the integrated values of the ¹H NMR signals in acetone- d_6 .