Solution and Solid-Phase Halogen and C-H Hydrogen Bonding to Perrhenate

Casey J. Massena, ${ }^{[+]}$Asia Marie S. Riel, ${ }^{[+]}$George F. Neuhaus, Daniel A. Decatoand Orion Berryman*
Table of Contents
Content Pg
General Synthetic Experimental S2
General Procedure for Methylation, Octylation, and Anion Metathesis S2-3
Synthesis and Characterization of:
1,3-bis(4-ethynyl-3-bromopyridinyl)benzene (1) S3-5
1,3-bis(4-ethynyl-3-iodopyridinyl)benzene (2) S5-7
1,3-bis(4-ethynyl-N-octyl-3-iodopyridinium)benzene ditriflate (3) S7-9
1,3-bis(4-ethynyl-N-octyl-3-iodopyridinium)benzene dichloride (4) S10-11
1 a S13-14
1b S14-15
1,3-bis(4-ethynylpyridinyl)benzene (5) S16
1,3-bis(4-ethynyl-N-octylpyridinium)benzene ditriflate (6) S16-18
1,3-bis(4-ethynyl-N-octylpyridinium)benzene dichloride (7) S19-20
2a S20-23
2b S23-25
NMR Titration Experiments:
${ }^{1} \mathrm{H}$. S26-50
${ }^{13} \mathrm{C}$ S50-51
Crystal Growth Conditions. S51
General X-ray Diffraction Experimental Procedure. S51-52
Crystal Structures:
Packing of $\mathbf{1 b}^{2+\bullet} \mathbf{2 R e O} 4^{-}$and $\mathbf{2 b}^{2+\bullet} \cdot \mathrm{RReO}_{4}^{-}$ S52-53
References. S53-54

General:

All materials were obtained from Sigma-Aldrich, Acros, TCI-America, and Strem Chemicals and used without further purification. Nuclear Magnetic Resonance ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Varian Direct Drive 500 MHz and Bruker Avance 400 MHz spectrometers. Chemical shifts (δ) expressed as ppm. For the ${ }^{19} \mathrm{~F}$ NMR spectra $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta-164.9 \mathrm{ppm})$ was used as an internal standard. Signal splitting patterns are indicated as s, singlet; d, doublet; t, triplet; m, multiplet; b, broad. Coupling constants (\mathcal{J}) are given in Hz . Melting points were determined with a Mel-temp. Compounds were analyzed via HPLC-ESI-MS to obtain accurate mass data. HPLC was performed with a reverse-phase HPLC column: an Agilent PLRP-S PSDVB column with 3.0 [MU]m particles and dimensions of 50 mm length and 1.0 mm diameter (P/N PL13121300) was used with an Agilent 1290 HPLC system. The column was maintained at $40^{\circ} \mathrm{C}$ with a flow rate of $0.6 \mathrm{~mL} / \mathrm{min}$. Chromatography was as follows: solvent consisted of methanol with $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid for channel "A". Channel "B" was a ($1: 1 \mathrm{v} / \mathrm{v}$) mixture of isopropanol and acetone. Following column equilibration at 20% B, the sample was injected via autosampler, and the column was flushed for 1.0 min to waste. From 1.0 min to the end of the run, the column eluent was directed to the MS source. From 1.0 min to 4.0 min , the gradient was linearly ramped from 20% to 95% B. From 4.8 to 5.0 min , the solvent mixture was held at 20% B. A Bruker micrOTOF mass spectrometer with ESI source was used: resolution was approximately 10,000 and accuracy 1 ppm . Source parameters were as follows: drying gas $7.0 \mathrm{~L} / \mathrm{min}$, drying gas heat at $180^{\circ} \mathrm{C}$, nebulizer 3 bar, capillary voltage 4500 V, capillary exit 100 V . Spectra were collected in negative or positive mode as appropriate from 50 to $1700 \mathrm{~m} / \mathrm{z}$ at a rate of 2 Hz . Theoretical spectra were generated in Bruker Data Analysis to compare against experimental spectra.

Synthesis:

General Procedure for Methylation. In an oven dried round bottom, 2 or 5 (1 equiv) was dissolved in dry DCM. In a separate round bottom, methyl triflate (4.1 equiv) was dissolved in dry DCM. Both round bottoms were sparged with dry N_{2} gas for 15 min . The methyl triflate solution was then added dropwise to the solution of $\mathbf{2}$ or 5 . The solution was stirred for 16 h under inert atmosphere. Removal of the DCM by roto-evaporation left a solid that was triturated with hexanes followed by filtration.

General Procedure for Octylation. In an oven dried round bottom, 2 or 5 (1 equiv) was dissolved in dry DCM. Octyl triflate (4.5 equiv, prepared according to literature procedure ${ }^{1}$) was dissolved in dry DCM. Both round bottoms were sparged with dry N_{2} gas for 15 min . The octyl triflate solution was then added dropwise to the solution of $\mathbf{2}$ or $\mathbf{5}$. The solution was stirred for 16 h under inert
atmosphere. Removal of the DCM by roto-evaporation left a solid/oil that was triturated with hexanes followed by filtration.

General Procedure for Anion Metathesis. In a one dram scintillation vial, $\mathbf{3}$ or $\mathbf{6}$ (1 equiv) and tetra- n-butylammonium chloride (2.2 equiv) were dissolved in DCM. Vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ afforded a precipitate that was isolated by filtration. To remove excess tetra-n-butylammonium chloride, the precipitate was washed with acetone which left a powder/oil.

1
1,3-bis(4-ethynyl-3-bromopyridinyl)benzene (1). To an oven dried 25 mL round bottom flask was added N, N-diisopropylamine ($2.46 \mathrm{~mL}, 14.1 \mathrm{mmol}$), 1,3diethynylbenzene ($0.693 \mathrm{~mL}, 5.22 \mathrm{mmol}$), and 15 mL of DMF. To another dry 25 mL round bottom flask was added 10 mL DMF. Both 25 mL round bottoms were sparged for 20 min with dry N_{2} gas. An oven dried Schlenk flask was charged with 3-bromo-4-iodopyridine ($4.00 \mathrm{~g}, 14.1 \mathrm{mmol}$), then vacuumed and backfilled with dry N_{2} gas (3 x). Bis(triphenylphosphine) palladium (II) dichloride (0.219 g , 0.313 mmol) was added, vacuumed and backfilled with dry $\mathrm{N}_{2}(3 \mathrm{x})$. Copper (I) iodide ($0.099 \mathrm{~g}, 0.522 \mathrm{mmol}$) was added, vacuumed and backfilled with dry N_{2} (3x). The acetylene solution was transferred by cannula to the Schlenk flask. Excess DMF was used to wash the acetylene round bottom, which was then transferred to the Schlenk flask. The flask was carefully vacuumed and backfilled with dry $\mathrm{N}_{2}(3 \mathrm{x})$. The orange solution stirred for 20 h and subsequent removal of DMF by roto-evaporation left an orange solid that was purified by column chromatography ($2: 1$ hexanes/EtOAc) to afford $1(2.00 \mathrm{~g}, 4.56 \mathrm{mmol}, 88 \%$) as a cream colored solid. Mp: 111-112 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} ; 5^{\circ} \mathrm{C}\right) \delta$ $8.84(\mathrm{~s}, 2 \mathrm{H}), 8.60(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ $-7.59(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} ; 25^{\circ} \mathrm{C}\right) \delta 152.76,149.47,135.78$, 134.10, 133.10, 130.69, 127.89, 123.56, 123.47, 97.52, 87.31. HRMS (CI pos) $\mathrm{m} / \mathrm{z}: 438.903\left(\mathrm{M}^{2+}+2,100 \%\right), 436.905\left(\mathrm{M}^{2+}+2,51.4\right), 440.901\left(\mathrm{M}^{2+}+2,48.6\right)$; $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}{ }^{2+}+2$ (438.93).

1,3-bis(4-ethynyl-3-iodopyridinyl)benzene (2). Adapted from literature procedure ${ }^{2}$, an oven dried round bottom (50 mL) was charged with $1(0.200 \mathrm{~g}$, 0.457 mmol) which was subsequently dissolved in 20 mL of THF, cooled to -67 ${ }^{\circ} \mathrm{C}$ and sparged with dry N_{2} gas for 20 min . N-butyllithium (2.3 M in hexanes, 0.50 $\mathrm{mL}, 1.15 \mathrm{mmol}$) was added dropwise to the light yellow solution of 1 . The deep green mixture was stirred for 30 min at $-67^{\circ} \mathrm{C}$ and was monitored by TLC. lodine ($0.571 \mathrm{~g}, 2.25 \mathrm{mmol}$) in 5 mL of THF was added dropwise keeping the temperature below $-65^{\circ} \mathrm{C}$. The red solution was allowed to gradually warm to room temperature and stirred for 18 h . The red solution was washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were combined and dried with MgSO_{4}. Removal of $\mathrm{Et}_{2} \mathrm{O}$ by roto-evaporation left an orange solid that was purified via column chromatography ($7: 3$ hexanes/EtOAc) to yield a beige solid ($0.250 \mathrm{~g}, 0.469 \mathrm{mmol}, 41 \%$). Mp: 147-149 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , (CD3)2CO; $25^{\circ} \mathrm{C}$) $\delta 9.03(\mathrm{~s}, 2 \mathrm{H}), 8.60(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} ; 25^{\circ} \mathrm{C}\right) \delta 158.00,149.74$, 137.24, 135.46, 133.80, 130.58, 127.32, 123.48, 99.73, 96.30, 90.79. HRMS (CI pos) $m / z: 532.901\left(\mathrm{M}^{2+}+2,100 \%\right), 533.904\left(\mathrm{M}^{2+}+2,22.4\right), 534.907\left(\mathrm{M}^{2+}+2,2.3\right)$; $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{2}{ }^{2+}+2$ (532.90).

3
1,3-bis(4-ethynyl-N-octyl-3-iodopyridinium)benzene ditriflate (3). 2 (0.189 g , 3.55 mmol) was reacted with octyl triflate ($0.616 \mathrm{~mL}, 3.94 \mathrm{mmol}$ of 1-octanol)) according to general procedure for octylation. The product was a beige solid ($0.318 \mathrm{~g}, 0.301 \mathrm{mmol}, 85 \%$). Mp: $113-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2} ; 25^{\circ} \mathrm{C}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H})$, 7.83 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.38(\mathrm{~b}$, $8 \mathrm{H}), 1.28(\mathrm{~b}, 16 \mathrm{H}), 0.88(\mathrm{~b}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2} ; 25^{\circ} \mathrm{C}\right) \delta 150.80$, 146.56, 143.96, 137.40, 135.91, 130.39, 130.38, 129.96, 121.79, 106.62, 100.54,
$90.21,62.91,32.21,32.02,29.52,29.45,26.61,23.15,14.39 .{ }^{19}$ F NMR (376.3 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) δ-76.89. HRMS (CI pos) m/z: 379.079 ($\mathrm{M}^{+2}, 100 \%$), $379.581\left(\mathrm{M}^{+2}, 39.7\right), 380.082\left(\mathrm{M}^{+2}, 7.6\right) ; \mathrm{C}_{38} \mathrm{H}_{44} \mathrm{I}_{2} \mathrm{~N}_{2}{ }^{2+}$ (379.08).

4
1,3-bis(4-ethynyl-N-octyl-3-iodopyridinium)benzene dichloride (4). 3 (0.156 $\mathrm{g}, 0.147 \mathrm{mmol}$) and tetra- n-butylammonium chloride ($0.0975 \mathrm{~g}, 0.351 \mathrm{mmol}$) were reacted according to the general procedure for anion metathesis. The product was isolated as a yellow powder ($0.060 \mathrm{~g}, 0.0791 \mathrm{mmol}, 55 \%)$. Mp: 182$184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta 9.07(\mathrm{~s}, 2 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, 2H), $8.24(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=15.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{~b}, 8 \mathrm{H}), 1.29(\mathrm{~b}, 16 \mathrm{H}), 0.89(\mathrm{~b}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD ${ }_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta 151.38,145.86,143.33,138.32,135.67$, $131.19,129.40,122.58,108.23,104.77,90.88,62.34,32.38,31.70,29.66$, 29.52, 26.53, 23.29, 14.33.

1a
1,3-bis(4-ethynyl-N-octyl-3-iodopyridinium)benzene bis(tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (1a). Adapted from literature procedure ${ }^{3}$, a 25 mL round bottom flask was charged with $4(0.050 \mathrm{~g}, 0.0603 \mathrm{mmol})$ which was subsequently suspended in 8 mL DCM. $\mathrm{Na}^{+}\left[\mathrm{BAr}_{4}\right]^{-}(0.107 \mathrm{~g}, 0.121 \mathrm{mmol})$, prepared according to literature procedure ${ }^{4}$, was added to the solution of 4 and stirred for 15 min at rt during which $\mathrm{Na}^{+} \mathrm{Cl}^{-}$precipitated from solution. The mixture was filtered through Celite and the filtrate concentrated under reduced pressure. Purification via HPLC afforded a dark yellow oil ($0.0223 \mathrm{~g}, 0.0089 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}\right) \delta 9.08(\mathrm{~s}, 2 \mathrm{H}), 8.62(\mathrm{~d}, ~ J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.06$ (s, 1H), $8.00(\mathrm{~d}, ~ J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~b}, 17 \mathrm{H}), 7.66$ (b, $8 \mathrm{H}), 4.42(\mathrm{t}, J=15.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{~b}, 8 \mathrm{H}), 1.29(\mathrm{~b}, 16 \mathrm{H}), 0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD 3 CN; $25^{\circ} \mathrm{C}$) $\delta 162.56$ ($\mathrm{q}, ~ J=50.3 \mathrm{~Hz}$), 151.85, 146.45, 144.05, 136.81, 136.11, 135.64, 131.17, 130.16, 129.80, 129.89 (qq, J = 34.2 Hz), 125.51 (q, $J=271.6 \mathrm{~Hz}$), 122.29, 105.56, 100.83, 90.08, 62.64, 32.40, 31.73, 29.67, 26.53, 23.31, 14.32. ${ }^{19} \mathrm{~F}$ NMR ($376.3 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta-63.67$. HRMS (Cl pos) m / z : $379.075\left(\mathrm{M}^{+2}, 100 \%\right), 379.581\left(\mathrm{M}^{+2}, 39.7\right), 380.082\left(\mathrm{M}^{+2}, 7.6\right)$; $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{l}_{2} \mathrm{~N}_{2}{ }^{2+}(379.08)$.

S12

${ }^{19} \mathrm{~F}$

1b
1,3-bis(4-ethynyl-N-methyl-3-iodopyridinium)benzene bis(tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (1b). $2(0.06 \mathrm{~g}, 0.072 \mathrm{mmol})$ and $\mathrm{Na}^{+}\left[\mathrm{BAr}_{4}\right]^{-}$ $(0.165 \mathrm{~g}, 0.181 \mathrm{mmol})$ were dissolved in 5 mL of DCM. The reaction was stirred for 30 min . A mixture of toluene and hexane ($10 \mathrm{~mL}, 2: 1 \mathrm{v} / \mathrm{v}$) precipitated $\mathrm{Na}^{+}[\mathrm{OTf}]^{-}$and was filtered off. Filtrate was concentrated under reduced pressure and purified via HPLC to afford an off white solid ($0.105 \mathrm{~g}, 0.0459 \mathrm{mmol}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}\right) \delta 9.05(\mathrm{~s}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.06$ (s, 1H), 7.99 (d, J = $6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.92 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (b, 17H), 7.66 (b, 8 H), 4.22 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD3 $\mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta 162.58$ (q, J=49.3 Hz), $152.88,146.23,144.95,136.76,136.05,135.63,131.15,129.88$ (qq, $J=26.2$ $\mathrm{Hz}), 122.26,105.50,100.16,89.97,48.83 .{ }^{19} \mathrm{~F}$ NMR ($376.3 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) δ-60.82. HRMS (CI pos) m/z: $280.970\left(\mathrm{M}^{+2}, 100 \%\right), 281.471\left(\mathrm{M}^{+2}, 24.5\right)$, $281.973\left(\mathrm{M}^{+2}, 2.7\right) ; \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{2}{ }^{2+}$ (280.97).

S15

1,3-bis(4-ethynylpyridinyl)benzene (5) was prepared according to literature procedure ${ }^{5}$ affording a white solid ($0.124 \mathrm{~g}, 0.597 \mathrm{mmol}, 22 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} ; 25^{\circ} \mathrm{C}\right) \delta 8.63(\mathrm{~b}, 4 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 4 \mathrm{H})$.

6

1,3-bis(4-ethynyl-N-octylpyridinium)benzene ditriflate (6). 5 ($0.124 \mathrm{~g}, 0.597$ mmol) was reacted with octyl triflate ($0.631 \mathrm{~mL}, 3.99 \mathrm{mmol}$ of 1 -octanol))
according to the general procedure for octylation. The product was isolated as a sticky light brown solid ($0.349 \mathrm{~g}, 0.434 \mathrm{mmol}, 97.7 \%$). Mp: 96-98 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta 8.68$ (d, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}$), 8.06 (d, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}$), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, \mathrm{J}=15.2$ $\mathrm{Hz}, 4 \mathrm{H}$), $1.35(\mathrm{~b}, 8 \mathrm{H}), 1.29(\mathrm{~b}, 16 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$; 25° C) $\delta 145.39,140.77,136.72,135.67,130.92,130.82,122.38,102.08,86.58$, $62.70,32.39,31.78,29.67,29.55,26.54,23.30,14.33 .{ }^{19}$ F NMR (376.3 MHz , $\mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta-76.85$. HRMS (CI pos) m/z: $253.183\left(\mathrm{M}^{+2}, 100 \%\right), 253.683\left(\mathrm{M}^{+2}\right.$, 39.5), $254.186\left(\mathrm{M}^{+2}, 7.7\right) ; \mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{2}{ }^{2+}$ (253.18).

7
1,3-bis(4-ethynyl-N-octylpyridinium)benzene dichloride (7). 6 (0.010 g , 0.0124 mmol) and tetra- n-butylammonium chloride ($0.0093 \mathrm{~g}, 0.0335 \mathrm{mmol}$) were reacted according to the general procedure for anion metathesis. The product was isolated as a golden yellow oil ($0.0047 \mathrm{~g}, 0.00927 \mathrm{mmol}, 74.7 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}\right) \delta 8.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 4 H), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=$ $14.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.34$ (b, 8H), 1.28 (b, 16H), 0.89 (b, 6H). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta 145.70,140.57,136.94,135.62,130.90,130.75,122.41$, 101.86, 86.64, 62.41, 32.41, 31.97, 29.71, 29.60, 26.56, 23.30, 14.34.

26.54, 23.30, 14.31. ${ }^{19}$ F NMR ($376.3 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$; $25^{\circ} \mathrm{C}$) δ-63.67. HRMS (CI pos) $m / z: 253.183\left(\mathrm{M}^{+2}, 100 \%\right)$, $253.684\left(\mathrm{M}^{+2}, 39.5\right)$, $254.186\left(\mathrm{M}^{+2}, 7.7\right)$; $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{2}{ }^{2+}$ (253.18).

2b
1,3-bis(4-ethynyl-N-methylpyridinium)benzene ditriflate (2b). 5 (0.020 g , $0.096 \mathrm{mmol})$ and methyl triflate ($0.043 \mathrm{~mL}, 0.394 \mathrm{mmol}$) were reacted according to the general procedure for methylation. The product was isolated as a white solid ($0.033 \mathrm{~g}, 0.054 \mathrm{mmol}, 56 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta 8.62$ (d, J $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{t}, \mathrm{J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}\right) \delta$ 146.28, 140.50, 136.88, 135.59, 130.88, 130.44, 123.66, 122.34, 120.48, 101.92, 86.46, 49.14. ${ }^{19} \mathrm{~F}$ NMR ($376.3 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} ; 25^{\circ} \mathrm{C}$) $\delta-76.84$. HRMS (CI pos) m / z : $155.071\left(\mathrm{M}^{+2}, 100 \%\right)$, $155.573\left(\mathrm{M}^{+2}, 24\right), 156.079\left(\mathrm{M}^{+2}, 2.9\right) ; \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+}$ (155.07).

NMR Titrations

All experiments were performed on a Varian Drive Direct 500 MHz NMR Spectrometer. $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ was stirred in Drierite $\left(\mathrm{CaSO}_{4}\right)$ under N_{2} for 2 h , then used immediately after distillation. CDCl_{3} was eluted through a column of activated alumina, and dried over 3 Å molecular sieves. TBA ${ }^{+} \mathrm{ReO}_{4}^{-}$was dried under vacuum and stored in a desiccator.

${ }^{1} \mathrm{H}$ Titrations

General:

Stock solutions of $\mathbf{1 a}(1.561 \pm 0.012 \mathrm{mM})$ and $\mathbf{2 a}(1.551 \pm 0.013 \mathrm{mM})$ were prepared in 3.840 mL of $\mathrm{CDCl}_{3} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(3: 2 \mathrm{v} / \mathrm{v})$. 0.500 mL aliquots from each stock solution were syringed into three separate NMR tubes with screw caps and septa. The stock solution of 1a was then used to make three guest solutions corresponding to experiment number (13.90 ± 0.30, $13.62 \pm 0.30,13.62 \pm 0.30 \mathrm{mM}$, respectively). Likewise, the stock solution of $\mathbf{2 a}$ was used to make three guest solutions (all $13.35 \pm 0.30 \mathrm{mM}$). After obtaining free-host spectra of $\mathbf{1 a}$ and $\mathbf{2 a}$, aliquots of corresponding guest solution (containing $\mathbf{1 a}$ or $\mathbf{2 a}$, and $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$at specified concentrations) were added to their respective NMR tubes. Spectra were obtained after each addition (20x). A constant host concentration was maintained, while $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$concentrations gradually increased throughout the titration (see data below). Intuitions of stoichiometric displacement led to the stepwise anion exchange model:

$$
\begin{gather*}
\mathrm{H}+\mathrm{G} \rightleftharpoons \mathrm{HG}, \mathrm{~K}_{1}=\frac{[\mathrm{HG}]}{[\mathrm{H}][\mathrm{G}]} \tag{1}\\
\mathrm{HG}+\mathrm{G} \rightleftharpoons \mathrm{HG}_{2}, \mathrm{~K}_{2}=\frac{[\mathrm{HG} 2]}{[\mathrm{HG}][\mathrm{G}]} \tag{2}
\end{gather*}
$$

A simple 1:1 model, dimerization, and higher order binding were ruled out due to the emergence of an obvious pattern in residuals, unrealistic assigned shifts, poor convergence, and/or larger standard deviations. HypNMR 2008^{6} was used to refine the isothermal fits of multiple signals (1a: Ha, Hb, Hc, and Hd; 2a: Ha / b, Hc , and Hd) simultaneously. For both $\mathbf{1 a}$ and $\mathbf{2 a}$, hydrogen He and the sole phenyl core triplet were not followed due to limited shifting and/or residual solvent peak $\left(\mathrm{CHCl}_{3}\right)$ obstruction.

$$
\begin{aligned}
& \text { 1a }: R^{1}=I, R^{2}=C_{8} H_{17}, A=\left[B A r^{F}\right]^{-} \\
& \text {2a }: R^{1}=H, R^{2}=C_{8} H_{17}, A=\left[B A r_{4}\right]^{-}
\end{aligned}
$$

1a and $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$(Experiment 1)

1a (Exp.1)				
Species	Log beta	$\mathrm{ReO}_{4}{ }^{-}$	$\mathbf{1 a}$	
1	3.9732	1	1	refine
2	6.2728	2	1	refine

Species concentrations $/ \mathrm{mol} \mathrm{dm}^{-3}$

Point	$\mathrm{T}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{T}(\mathbf{1 a})$	$\mathrm{F}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{F}(\mathbf{1 a})$	species 1	species 2
1	$0.00 \mathrm{E}+00$	$1.56 \mathrm{E}-03$	$4.77 \mathrm{E}-91$	$1.56 \mathrm{E}-03$	$7.00 \mathrm{E}-90$	$6.65 \mathrm{E}-18$
2	$5.35 \mathrm{E}-04$	$1.56 \mathrm{E}-03$	$4.72 \mathrm{E}-05$	$1.08 \mathrm{E}-03$	$4.79 \mathrm{E}-04$	$4.50 \mathrm{E}-06$
3	$1.03 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.32 \mathrm{E}-04$	$6.86 \mathrm{E}-04$	$8.53 \mathrm{E}-04$	$2.25 \mathrm{E}-05$
4	$1.49 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.80 \mathrm{E}-04$	$4.13 \mathrm{E}-04$	$1.09 \mathrm{E}-03$	$6.08 \mathrm{E}-05$
5	$1.92 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.95 \mathrm{E}-04$	$2.56 \mathrm{E}-04$	$1.19 \mathrm{E}-03$	$1.17 \mathrm{E}-04$
6	$2.32 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$7.48 \mathrm{E}-04$	$1.72 \mathrm{E}-04$	$1.21 \mathrm{E}-03$	$1.80 \mathrm{E}-04$
7	$2.69 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.01 \mathrm{E}-03$	$1.25 \mathrm{E}-04$	$1.19 \mathrm{E}-03$	$2.41 \mathrm{E}-04$
8	$3.04 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.28 \mathrm{E}-03$	$9.70 \mathrm{E}-05$	$1.17 \mathrm{E}-03$	$2.98 \mathrm{E}-04$
9	$3.37 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.54 \mathrm{E}-03$	$7.84 \mathrm{E}-05$	$1.13 \mathrm{E}-03$	$3.48 \mathrm{E}-04$
10	$3.68 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.79 \mathrm{E}-03$	$6.55 \mathrm{E}-05$	$1.10 \mathrm{E}-03$	$3.93 \mathrm{E}-04$
11	$4.25 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.27 \mathrm{E}-03$	$4.89 \mathrm{E}-05$	$1.04 \mathrm{E}-03$	$4.70 \mathrm{E}-04$
12	$4.76 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.70 \mathrm{E}-03$	$3.90 \mathrm{E}-05$	$9.90 \mathrm{E}-04$	$5.33 \mathrm{E}-04$
13	$5.21 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.10 \mathrm{E}-03$	$3.24 \mathrm{E}-05$	$9.45 \mathrm{E}-04$	$5.84 \mathrm{E}-04$
14	$5.63 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.47 \mathrm{E}-03$	$2.78 \mathrm{E}-05$	$9.07 \mathrm{E}-04$	$6.27 \mathrm{E}-04$
15	$6.00 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.80 \mathrm{E}-03$	$2.44 \mathrm{E}-05$	$8.74 \mathrm{E}-04$	$6.63 \mathrm{E}-04$
16	$6.35 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.11 \mathrm{E}-03$	$2.19 \mathrm{E}-05$	$8.46 \mathrm{E}-04$	$6.94 \mathrm{E}-04$
17	$6.66 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.40 \mathrm{E}-03$	$1.99 \mathrm{E}-05$	$8.21 \mathrm{E}-04$	$7.20 \mathrm{E}-04$
18	$6.95 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.66 \mathrm{E}-03$	$1.82 \mathrm{E}-05$	$8.00 \mathrm{E}-04$	$7.44 \mathrm{E}-04$
19	$7.22 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.91 \mathrm{E}-03$	$1.69 \mathrm{E}-05$	$7.81 \mathrm{E}-04$	$7.64 \mathrm{E}-04$
20	$7.47 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$5.14 \mathrm{E}-03$	$1.58 \mathrm{E}-05$	$7.64 \mathrm{E}-04$	$7.82 \mathrm{E}-04$

Measured chemical shifts

Point	Ha	Hb	Hc	Hd
1	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
2	$9.64 \mathrm{E}+00$	$9.20 \mathrm{E}+00$	$8.24 \mathrm{E}+00$	$8.09 \mathrm{E}+00$
3	$9.62 \mathrm{E}+00$	$9.19 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.13 \mathrm{E}+00$
4	$9.60 \mathrm{E}+00$	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.16 \mathrm{E}+00$
5	$9.60 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.17 \mathrm{E}+00$
6	$9.59 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
7	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
8	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
9	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
10	$9.58 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

11	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
12	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
13	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
14	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
15	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
16	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
17	$9.57 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
18	$9.57 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
19	$9.56 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
20	$9.56 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

Calculated chemical shifts

Point	Ha	Hb	Hc	Hd
1	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
2	$9.64 \mathrm{E}+00$	$9.21 \mathrm{E}+00$	$8.24 \mathrm{E}+00$	$8.09 \mathrm{E}+00$
3	$9.62 \mathrm{E}+00$	$9.19 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.13 \mathrm{E}+00$
4	$9.60 \mathrm{E}+00$	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.16 \mathrm{E}+00$
5	$9.59 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.17 \mathrm{E}+00$
6	$9.59 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
7	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
8	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
9	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
10	$9.58 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
11	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
12	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
13	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
14	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
15	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
16	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
17	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
18	$9.57 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
19	$9.56 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
20	$9.56 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

Chemical shifts for each nucleus

species	Ha	Hb	Hc	Hd
$\mathbf{1 a}$	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}^{-}\right)(\mathbf{1 a})$	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.20 \mathrm{E}+00$
$\left(\mathrm{ReO}^{-}\right)_{2}(\mathbf{1 a})$	$9.54 \mathrm{E}+00$	$9.13 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.18 \mathrm{E}+00$

Converged in 6 iterations with sigma $=1.050141$

	standard		
	value	deviation	Comments
1 log beta(($\left.\left.\mathrm{ReO}_{4}^{-}\right)(1 a)\right)$	3.9732	0.066	$3.97(7)$
2 log $\operatorname{beta}\left(\left(\mathrm{ReO}_{4}^{-}\right) 2(\mathbf{1 a})\right)$	6.2727	0.1884	$6.3(2)$

Correlation coefficients between stability constants. Numbering as above

Residuals scaled to measurement precision

1a and $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$(Experiment 2)

1a (Exp.2)				
Species	Log beta	$\mathrm{ReO}_{4}{ }^{-}$	1a	
1	3.9054	1	1	refine
2	6.1335	2	1	refine

Species concentrations $/ \mathrm{mol} \mathrm{dm}^{-3}$

Point	$\mathrm{T}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{T}(\mathbf{1 a})$	$\mathrm{F}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{F}(1 \mathrm{a})$	species 1	species 2
1	$0.00 \mathrm{E}+00$	$1.56 \mathrm{E}-03$	$5.12 \mathrm{E}-91$	$1.56 \mathrm{E}-03$	$6.43 \mathrm{E}-90$	$5.57 \mathrm{E}-178$
2	$5.24 \mathrm{E}-04$	$1.56 \mathrm{E}-03$	$5.26 \mathrm{E}-05$	$1.09 \mathrm{E}-03$	$4.63 \mathrm{E}-04$	$4.12 \mathrm{E}-06$
3	$1.01 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.43 \mathrm{E}-04$	$7.16 \mathrm{E}-04$	$8.26 \mathrm{E}-04$	$2.00 \mathrm{E}-05$
4	$1.46 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.94 \mathrm{E}-04$	$4.48 \mathrm{E}-04$	$1.06 \mathrm{E}-03$	$5.27 \mathrm{E}-05$
5	$1.88 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$5.06 \mathrm{E}-04$	$2.88 \mathrm{E}-04$	$1.17 \mathrm{E}-03$	$1.00 \mathrm{E}-04$
6	$2.27 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$7.54 \mathrm{E}-04$	$1.99 \mathrm{E}-04$	$1.21 \mathrm{E}-03$	$1.54 \mathrm{E}-04$
7	$2.64 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.02 \mathrm{E}-03$	$1.48 \mathrm{E}-04$	$1.21 \mathrm{E}-03$	$2.07 \mathrm{E}-04$
8	$2.98 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.28 \mathrm{E}-03$	$1.16 \mathrm{E}-04$	$1.19 \mathrm{E}-03$	$2.57 \mathrm{E}-04$
9	$3.30 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.53 \mathrm{E}-03$	$9.44 \mathrm{E}-05$	$1.17 \mathrm{E}-03$	$3.02 \mathrm{E}-04$
10	$3.61 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.78 \mathrm{E}-03$	$7.95 \mathrm{E}-05$	$1.14 \mathrm{E}-03$	$3.43 \mathrm{E}-04$
11	$4.16 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.25 \mathrm{E}-03$	$6.02 \mathrm{E}-05$	$1.09 \mathrm{E}-03$	$4.13 \mathrm{E}-04$
12	$4.66 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.68 \mathrm{E}-03$	$4.84 \mathrm{E}-05$	$1.04 \mathrm{E}-03$	$4.71 \mathrm{E}-04$
13	$5.11 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.07 \mathrm{E}-03$	$4.06 \mathrm{E}-05$	$1.00 \mathrm{E}-03$	$5.20 \mathrm{E}-04$
14	$5.51 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.43 \mathrm{E}-03$	$3.50 \mathrm{E}-05$	$9.66 \mathrm{E}-04$	$5.60 \mathrm{E}-04$
15	$5.88 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.76 \mathrm{E}-03$	$3.10 \mathrm{E}-05$	$9.36 \mathrm{E}-04$	$5.95 \mathrm{E}-04$
16	$6.22 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.06 \mathrm{E}-03$	$2.78 \mathrm{E}-05$	$9.09 \mathrm{E}-04$	$6.24 \mathrm{E}-04$
17	$6.53 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.34 \mathrm{E}-03$	$2.54 \mathrm{E}-05$	$8.86 \mathrm{E}-04$	$6.50 \mathrm{E}-04$
18	$6.81 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.60 \mathrm{E}-03$	$2.34 \mathrm{E}-05$	$8.65 \mathrm{E}-04$	$6.73 \mathrm{E}-04$
19	$7.07 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.84 \mathrm{E}-03$	$2.17 \mathrm{E}-05$	$8.47 \mathrm{E}-04$	$6.93 \mathrm{E}-04$
20	$7.32 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$5.06 \mathrm{E}-03$	$2.04 \mathrm{E}-05$	$8.30 \mathrm{E}-04$	$7.11 \mathrm{E}-04$

Measured chemical shifts

Point	Ha	Hb	Hc	Hd
1	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
2	$9.64 \mathrm{E}+00$	$9.21 \mathrm{E}+00$	$8.24 \mathrm{E}+00$	$8.09 \mathrm{E}+00$
3	$9.62 \mathrm{E}+00$	$9.19 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.13 \mathrm{E}+00$
4	$9.61 \mathrm{E}+00$	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.16 \mathrm{E}+00$
5	$9.60 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.17 \mathrm{E}+00$
6	$9.59 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
7	$9.59 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
8	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
9	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
10	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
11	$9.58 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

12	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
13	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
14	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
15	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
16	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
17	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
18	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
19	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
20	$9.57 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

Calculated chemical shifts				
Point	Ha	Hb	Hc	Hd
1	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
2	$9.64 \mathrm{E}+00$	$9.21 \mathrm{E}+00$	$8.24 \mathrm{E}+00$	$8.09 \mathrm{E}+00$
3	$9.62 \mathrm{E}+00$	$9.19 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.13 \mathrm{E}+00$
4	$9.61 \mathrm{E}+00$	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.15 \mathrm{E}+00$
5	$9.60 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.17 \mathrm{E}+00$
6	$9.59 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
7	$9.59 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
8	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
9	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
10	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
11	$9.58 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
12	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
13	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
14	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
15	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
16	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
17	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
18	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
19	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
20	$9.56 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

Chemical shifts for each nucleus

species	Ha	Hb	Hc	Hd
$\mathbf{1 a}$	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}-\right)(\mathbf{1 a})$	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.20 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}\right)_{2}(\mathbf{1 a})$	$9.54 \mathrm{E}+00$	$9.12 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.18 \mathrm{E}+00$

Converged in 8 iterations with sigma $=0.900117$

		standard	
	value	deviation	Comments
$1 \mathrm{log} \operatorname{beta}\left(\left(\mathrm{ReO}_{4}{ }^{-}\right)(\mathbf{1 a)})\right.$	3.9054	0.0569	3.91(6)
$2 \mathrm{log} \operatorname{beta}\left(\left(\mathrm{ReO}_{4}\right)_{2}(\mathbf{1 a)})\right.$	6.1335	0.1764	$6.1(2)$

Correlation coefficients between stability constants. Numbering as above

```
20.7997
1
```


1a(2) - Hb

Residuals scaled to measurement precision

1a and TBA ${ }^{+} \mathrm{ReO}_{4}^{-}$(Experiment 3)

$\mathbf{1 a}$ (Exp.3)				
Species	Log beta	$\mathrm{ReO}_{4}{ }^{-}$	$\mathbf{1 a}$	
1	3.9794	1	1	refine
2	6.1451	2	1	refine

Species concentrations/mol dm ${ }^{-3}$

Point	$\mathrm{T}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{T}(\mathbf{1 a})$	$\mathrm{F}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{F}(\mathbf{1 a})$	species 1	species 2
1	$0.00 \mathrm{E}+00$	$1.56 \mathrm{E}-03$	$4.74 \mathrm{E}-91$	$1.56 \mathrm{E}-03$	$7.05 \mathrm{E}-90$	$4.89 \mathrm{E}-178$
2	$5.24 \mathrm{E}-04$	$1.56 \mathrm{E}-03$	$4.56 \mathrm{E}-05$	$1.09 \mathrm{E}-03$	$4.72 \mathrm{E}-04$	$3.15 \mathrm{E}-06$
3	$1.01 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.28 \mathrm{E}-04$	$6.96 \mathrm{E}-04$	$8.49 \mathrm{E}-04$	$1.59 \mathrm{E}-05$
4	$1.46 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.74 \mathrm{E}-04$	$4.20 \mathrm{E}-04$	$1.10 \mathrm{E}-03$	$4.41 \mathrm{E}-05$
5	$1.88 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.90 \mathrm{E}-04$	$2.60 \mathrm{E}-04$	$1.21 \mathrm{E}-03$	$8.72 \mathrm{E}-05$
6	$2.27 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$7.48 \mathrm{E}-04$	$1.75 \mathrm{E}-04$	$1.25 \mathrm{E}-03$	$1.37 \mathrm{E}-04$
7	$2.64 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.02 \mathrm{E}-03$	$1.28 \mathrm{E}-04$	$1.25 \mathrm{E}-03$	$1.86 \mathrm{E}-04$
8	$2.98 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.29 \mathrm{E}-03$	$1.00 \mathrm{E}-04$	$1.23 \mathrm{E}-03$	$2.32 \mathrm{E}-04$
9	$3.30 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$8.16 \mathrm{E}-05$	$1.21 \mathrm{E}-03$	$2.74 \mathrm{E}-04$
10	$3.61 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$1.80 \mathrm{E}-03$	$6.87 \mathrm{E}-05$	$1.18 \mathrm{E}-03$	$3.12 \mathrm{E}-04$
11	$4.16 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.28 \mathrm{E}-03$	$5.21 \mathrm{E}-05$	$1.13 \mathrm{E}-03$	$3.77 \mathrm{E}-04$
12	$4.66 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$2.71 \mathrm{E}-03$	$4.21 \mathrm{E}-05$	$1.09 \mathrm{E}-03$	$4.32 \mathrm{E}-04$
13	$5.11 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.11 \mathrm{E}-03$	$3.54 \mathrm{E}-05$	$1.05 \mathrm{E}-03$	$4.77 \mathrm{E}-04$
14	$5.51 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.47 \mathrm{E}-03$	$3.07 \mathrm{E}-05$	$1.02 \mathrm{E}-03$	$5.16 \mathrm{E}-04$
15	$5.88 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$3.80 \mathrm{E}-03$	$2.72 \mathrm{E}-05$	$9.86 \mathrm{E}-04$	$5.49 \mathrm{E}-04$
16	$6.22 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.11 \mathrm{E}-03$	$2.45 \mathrm{E}-05$	$9.60 \mathrm{E}-04$	$5.77 \mathrm{E}-04$
17	$6.53 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.39 \mathrm{E}-03$	$2.24 \mathrm{E}-05$	$9.37 \mathrm{E}-04$	$6.02 \mathrm{E}-04$
18	$6.81 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.65 \mathrm{E}-03$	$2.07 \mathrm{E}-05$	$9.17 \mathrm{E}-04$	$6.24 \mathrm{E}-04$
19	$7.07 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$4.89 \mathrm{E}-03$	$1.93 \mathrm{E}-05$	$8.99 \mathrm{E}-04$	$6.43 \mathrm{E}-04$
20	$7.32 \mathrm{E}-03$	$1.56 \mathrm{E}-03$	$5.11 \mathrm{E}-03$	$1.81 \mathrm{E}-05$	$8.83 \mathrm{E}-04$	$6.61 \mathrm{E}-04$

Measured chemical shifts

Point	Ha	Hb	Hc	Hd
1	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
2	$9.64 \mathrm{E}+00$	$9.20 \mathrm{E}+00$	$8.24 \mathrm{E}+00$	$8.09 \mathrm{E}+00$
3	$9.62 \mathrm{E}+00$	$9.19 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.13 \mathrm{E}+00$
4	$9.61 \mathrm{E}+00$	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.16 \mathrm{E}+00$
5	$9.60 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.17 \mathrm{E}+00$
6	$9.59 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
7	$9.59 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
8	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
9	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
10	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
11	$9.58 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

12	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
13	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
14	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
15	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
16	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
17	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
18	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
19	$9.57 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
20	$9.56 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

Calculated chemical shifts

Point	Ha	Hb	Hc	Hd
1	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
2	$9.64 \mathrm{E}+00$	$9.21 \mathrm{E}+00$	$8.24 \mathrm{E}+00$	$8.09 \mathrm{E}+00$
3	$9.62 \mathrm{E}+00$	$9.19 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.13 \mathrm{E}+00$
4	$9.61 \mathrm{E}+00$	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.16 \mathrm{E}+00$
5	$9.60 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.17 \mathrm{E}+00$
6	$9.59 \mathrm{E}+00$	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
7	$9.59 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.18 \mathrm{E}+00$
8	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
9	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
10	$9.58 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
11	$9.58 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
12	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
13	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
14	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
15	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
16	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
17	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
18	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
19	$9.57 \mathrm{E}+00$	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$
20	$9.56 \mathrm{E}+00$	$9.14 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.19 \mathrm{E}+00$

Chemical shifts for each nucleus

species	Ha	Hb	Hc	Hd
$1 \mathbf{a}$	$9.66 \mathrm{E}+00$	$9.23 \mathrm{E}+00$	$8.23 \mathrm{E}+00$	$8.04 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}-\right)(\mathbf{1 a})$	$9.59 \mathrm{E}+00$	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.20 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}^{-}\right) 2(\mathbf{1 a})$	$9.53 \mathrm{E}+00$	$9.12 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.18 \mathrm{E}+00$

Converged in 7 iterations with sigma $=0.986089$

	standard		
	value	deviation	Comments
1 log beta(($\left.\left.\operatorname{ReO}^{4-}\right)(1 a)\right)$	3.9794	0.0607	$3.98(6)$
2 log beta(($\left.\left.\operatorname{ReO}^{4-}\right) 2(1 a)\right)$	6.1451	0.1901	$6.1(2)$

Correlation coefficients between stability constants. Numbering as above
20.7796

1

2a and $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$(Experiment 1)

2a (Exp.1)				
Species	Log beta	$\mathrm{ReO}_{4}{ }^{-}$	2a	
1	3.8876	1	1	refine
2	6.0026	2	1	refine

Species concentrations $/ \mathrm{mol} \mathrm{dm}^{-3}$

Point	$\mathrm{T}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{T}(2 a)$	$\mathrm{F}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{F}(2 a)$	species 1	species 2
1	$0.00 \mathrm{E}+00$	$1.55 \mathrm{E}-03$	$5.21 \mathrm{E}-91$	$1.55 \mathrm{E}-03$	$6.24 \mathrm{E}-90$	$4.24 \mathrm{E}-178$
2	$5.13 \mathrm{E}-04$	$1.55 \mathrm{E}-03$	$5.36 \mathrm{E}-05$	$1.09 \mathrm{E}-03$	$4.53 \mathrm{E}-04$	$3.17 \mathrm{E}-06$
3	$9.89 \mathrm{E}-04$	$1.55 \mathrm{E}-03$	$1.45 \mathrm{E}-04$	$7.24 \mathrm{E}-04$	$8.12 \mathrm{E}-04$	$1.54 \mathrm{E}-05$
4	$1.43 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$2.97 \mathrm{E}-04$	$4.59 \mathrm{E}-04$	$1.05 \mathrm{E}-03$	$4.07 \mathrm{E}-05$
5	$1.84 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$5.10 \mathrm{E}-04$	$2.98 \mathrm{E}-04$	$1.17 \mathrm{E}-03$	$7.81 \mathrm{E}-05$
6	$2.22 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$7.60 \mathrm{E}-04$	$2.08 \mathrm{E}-04$	$1.22 \mathrm{E}-03$	$1.21 \mathrm{E}-04$
7	$2.58 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.02 \mathrm{E}-03$	$1.56 \mathrm{E}-04$	$1.23 \mathrm{E}-03$	$1.64 \mathrm{E}-04$
8	$2.92 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.29 \mathrm{E}-03$	$1.23 \mathrm{E}-04$	$1.22 \mathrm{E}-03$	$2.05 \mathrm{E}-04$
9	$3.24 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.54 \mathrm{E}-03$	$1.01 \mathrm{E}-04$	$1.21 \mathrm{E}-03$	$2.43 \mathrm{E}-04$
10	$3.53 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.79 \mathrm{E}-03$	$8.60 \mathrm{E}-05$	$1.19 \mathrm{E}-03$	$2.77 \mathrm{E}-04$
11	$4.08 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$2.26 \mathrm{E}-03$	$6.59 \mathrm{E}-05$	$1.15 \mathrm{E}-03$	$3.37 \mathrm{E}-04$
12	$4.57 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$2.68 \mathrm{E}-03$	$5.36 \mathrm{E}-05$	$1.11 \mathrm{E}-03$	$3.88 \mathrm{E}-04$
13	$5.00 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.07 \mathrm{E}-03$	$4.54 \mathrm{E}-05$	$1.08 \mathrm{E}-03$	$4.30 \mathrm{E}-04$
14	$5.40 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.42 \mathrm{E}-03$	$3.96 \mathrm{E}-05$	$1.05 \mathrm{E}-03$	$4.66 \mathrm{E}-04$
15	$5.76 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.75 \mathrm{E}-03$	$3.52 \mathrm{E}-05$	$1.02 \mathrm{E}-03$	$4.98 \mathrm{E}-04$
16	$6.09 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.05 \mathrm{E}-03$	$3.18 \mathrm{E}-05$	$9.95 \mathrm{E}-04$	$5.25 \mathrm{E}-04$
17	$6.40 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.32 \mathrm{E}-03$	$2.92 \mathrm{E}-05$	$9.74 \mathrm{E}-04$	$5.49 \mathrm{E}-04$
18	$6.67 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.58 \mathrm{E}-03$	$2.70 \mathrm{E}-05$	$9.55 \mathrm{E}-04$	$5.70 \mathrm{E}-04$
19	$6.93 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.82 \mathrm{E}-03$	$2.52 \mathrm{E}-05$	$9.38 \mathrm{E}-04$	$5.88 \mathrm{E}-04$
20	$7.17 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$5.03 \mathrm{E}-03$	$2.37 \mathrm{E}-05$	$9.23 \mathrm{E}-04$	$6.05 \mathrm{E}-04$

Measured chemical shifts Point	Ha / b	Hc	Hd
1	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
2	$9.20 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.98 \mathrm{E}+00$
3	$9.19 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.01 \mathrm{E}+00$
4	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.03 \mathrm{E}+00$
5	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
6	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
7	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
8	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
9	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
10	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
11	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

12	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
13	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
14	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
15	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
16	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
17	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
18	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
19	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
20	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

Calculated chemical shifts

Point	Ha / b	Hc	Hd
1	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
2	$9.20 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.97 \mathrm{E}+00$
3	$9.19 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.01 \mathrm{E}+00$
4	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.03 \mathrm{E}+00$
5	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
6	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
7	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
7	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
8	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
9	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
10	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
11	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
12	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
13	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
14	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
15	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
16	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
17	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
18	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
19	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
20			

Chemical shifts for each nucleus

species	Ha / b	Hc	Hd
2a	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
$\left(\mathrm{ReO}^{4}\right)(\mathbf{2 a})$	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.08 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}-\right) 2(\mathbf{2 a})$	$9.12 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.06 \mathrm{E}+00$

Converged in 1 iterations with sigma $=0.749908$

		standard deviation	
	vamments		
1 log beta(($\left.\left.\mathrm{ReO}_{4}^{-}-\right)(\mathbf{2 a})\right)$	3.8876	0.0582	$3.89(6)$
2 log beta(($\left.\left.\mathrm{ReO}_{4}-\right)(\mathbf{2 a})\right)$	6.0026	0.2519	$6.0(3)$

Correlation coefficients between stability constants. Numbering as above
20.7668

1

Residuals scaled to measurement precision

2a and $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$(Experiment 2)

2a (Exp.2)				
Species	Log beta	$\mathrm{ReO}_{4}{ }^{-}$	2a	
1	3.854	1	1	refine
2	6.0594	2	1	refine

Species concentrations/mol dm-3

Point	$\mathrm{T}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{T}(2 \mathbf{a})$	$\mathrm{F}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{F}(2 a)$	species 1	species 2
1	$0.00 \mathrm{E}+00$	$1.55 \mathrm{E}-03$	$5.45 \mathrm{E}-91$	$1.55 \mathrm{E}-03$	$6.04 \mathrm{E}-90$	$5.28 \mathrm{E}-178$
2	$5.13 \mathrm{E}-04$	$1.55 \mathrm{E}-03$	$5.70 \mathrm{E}-05$	$1.10 \mathrm{E}-03$	$4.48 \mathrm{E}-04$	$4.10 \mathrm{E}-06$
3	$9.89 \mathrm{E}-04$	$1.55 \mathrm{E}-03$	$1.52 \mathrm{E}-04$	$7.34 \mathrm{E}-04$	$7.98 \mathrm{E}-04$	$1.95 \mathrm{E}-05$
4	$1.43 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.03 \mathrm{E}-04$	$4.74 \mathrm{E}-04$	$1.03 \mathrm{E}-03$	$4.99 \mathrm{E}-05$
5	$1.84 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$5.10 \mathrm{E}-04$	$3.14 \mathrm{E}-04$	$1.14 \mathrm{E}-03$	$9.36 \mathrm{E}-05$
6	$2.22 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$7.51 \mathrm{E}-04$	$2.21 \mathrm{E}-04$	$1.19 \mathrm{E}-03$	$1.43 \mathrm{E}-04$
7	$2.58 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.01 \mathrm{E}-03$	$1.66 \mathrm{E}-04$	$1.19 \mathrm{E}-03$	$1.92 \mathrm{E}-04$
8	$2.92 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.26 \mathrm{E}-03$	$1.31 \mathrm{E}-04$	$1.18 \mathrm{E}-03$	$2.39 \mathrm{E}-04$
9	$3.24 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.51 \mathrm{E}-03$	$1.08 \mathrm{E}-04$	$1.16 \mathrm{E}-03$	$2.82 \mathrm{E}-04$
10	$3.53 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.75 \mathrm{E}-03$	$9.11 \mathrm{E}-05$	$1.14 \mathrm{E}-03$	$3.20 \mathrm{E}-04$
11	$4.08 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$2.21 \mathrm{E}-03$	$6.94 \mathrm{E}-05$	$1.09 \mathrm{E}-03$	$3.88 \mathrm{E}-04$
12	$4.57 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$2.63 \mathrm{E}-03$	$5.60 \mathrm{E}-05$	$1.05 \mathrm{E}-03$	$4.43 \mathrm{E}-04$
13	$5.00 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.01 \mathrm{E}-03$	$4.72 \mathrm{E}-05$	$1.01 \mathrm{E}-03$	$4.90 \mathrm{E}-04$
14	$5.40 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.36 \mathrm{E}-03$	$4.08 \mathrm{E}-05$	$9.81 \mathrm{E}-04$	$5.29 \mathrm{E}-04$
15	$5.76 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.68 \mathrm{E}-03$	$3.62 \mathrm{E}-05$	$9.52 \mathrm{E}-04$	$5.63 \mathrm{E}-04$
16	$6.09 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.98 \mathrm{E}-03$	$3.26 \mathrm{E}-05$	$9.27 \mathrm{E}-04$	$5.92 \mathrm{E}-04$
17	$6.40 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.26 \mathrm{E}-03$	$2.97 \mathrm{E}-05$	$9.04 \mathrm{E}-04$	$6.18 \mathrm{E}-04$
18	$6.67 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.51 \mathrm{E}-03$	$2.74 \mathrm{E}-05$	$8.84 \mathrm{E}-04$	$6.40 \mathrm{E}-04$
19	$6.93 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.74 \mathrm{E}-03$	$2.56 \mathrm{E}-05$	$8.66 \mathrm{E}-04$	$6.60 \mathrm{E}-04$
20	$7.17 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.96 \mathrm{E}-03$	$2.40 \mathrm{E}-05$	$8.50 \mathrm{E}-04$	$6.77 \mathrm{E}-04$

Measured chemical shifts

Point	Ha / b	Hc	Hd
1	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
2	$9.20 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.98 \mathrm{E}+00$
3	$9.19 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.01 \mathrm{E}+00$
4	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.03 \mathrm{E}+00$
5	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
6	$9.17 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
7	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
8	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
9	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
10	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
11	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

12	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
13	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
14	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
15	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
16	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
17	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
18	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
19	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
20	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

Calculated chemical shifts			
Point	Ha/b	Hc	Hd
1	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
2	$9.20 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.97 \mathrm{E}+00$
3	$9.19 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.01 \mathrm{E}+00$
4	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.03 \mathrm{E}+00$
5	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
6	$9.17 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
7	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
8	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
9	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
10	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
11	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
12	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
13	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
14	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
15	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
16	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
17	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
18	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
19	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
20	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

Chemical shifts for each nucleus

species	Ha / b	Hc	Hd
2a	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
$\left(\mathrm{ReO}^{-}\right)(\mathbf{2 a})$	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.08 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}-\right) 2(\mathbf{2 a})$	$9.13 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.06 \mathrm{E}+00$

Converged in 11 iterations with sigma $=0.852949$

		standard	
	value	deviation	Comments
$1 \mathrm{log} \operatorname{beta}\left(\left(\mathrm{ReO}_{4}{ }^{-}\right)(2 \mathrm{a})\right.$)	3.854	0.0667	3.85(7)
$2 \mathrm{log} \operatorname{beta}\left(\left(\mathrm{ReO}_{4}\right)_{2} \mathbf{2}^{(2 a)}\right)$	6.0594	0.2604	6.1 (3)

Correlation coefficients between stability constants. Numbering as above

```
20.7736
        1
```


Residuals scaled to measurement precision

Residuals scaled to measurement precision

2a and $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$(Experiment 3)
2a (Exp. 3)

Species	Log beta	$\mathrm{ReO}_{4}{ }^{-}$	2a	
1	3.8638	1	1	refine
2	6.0193	2	1	refine

Species concentrations $/ \mathrm{mol} \mathrm{dm}^{-3}$

Point	$\mathrm{T}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{T}(2 \mathbf{a})$	$\mathrm{F}\left(\mathrm{ReO}_{4}-\right)$	$\mathrm{F}(2 a)$	species 1	species 2
1	$0.00 \mathrm{E}+00$	$1.55 \mathrm{E}-03$	$5.37 \mathrm{E}-01$	$1.55 \mathrm{E}-03$	$6.09 \mathrm{E}-00$	$4.68 \mathrm{E}-178$
2	$5.13 \mathrm{E}-04$	$1.55 \mathrm{E}-03$	$5.61 \mathrm{E}-05$	$1.10 \mathrm{E}-03$	$4.50 \mathrm{E}-04$	$3.61 \mathrm{E}-06$
3	$9.89 \mathrm{E}-04$	$1.55 \mathrm{E}-03$	$1.50 \mathrm{E}-04$	$7.31 \mathrm{E}-04$	$8.04 \mathrm{E}-04$	$1.73 \mathrm{E}-05$
4	$1.43 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.03 \mathrm{E}-04$	$4.69 \mathrm{E}-04$	$1.04 \mathrm{E}-03$	$4.49 \mathrm{E}-05$
5	$1.84 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$5.13 \mathrm{E}-04$	$3.09 \mathrm{E}-04$	$1.16 \mathrm{E}-03$	$8.50 \mathrm{E}-05$
6	$2.22 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$7.59 \mathrm{E}-04$	$2.17 \mathrm{E}-04$	$1.20 \mathrm{E}-03$	$1.31 \mathrm{E}-04$
7	$2.58 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.02 \mathrm{E}-03$	$1.63 \mathrm{E}-04$	$1.21 \mathrm{E}-03$	$1.77 \mathrm{E}-04$
7	$2.92 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.28 \mathrm{E}-03$	$1.29 \mathrm{E}-04$	$1.20 \mathrm{E}-03$	$2.20 \mathrm{E}-04$
8	$3.24 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.53 \mathrm{E}-03$	$1.06 \mathrm{E}-04$	$1.19 \mathrm{E}-03$	$2.60 \mathrm{E}-04$
9	$3.53 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$1.78 \mathrm{E}-03$	$8.98 \mathrm{E}-05$	$1.17 \mathrm{E}-03$	$2.96 \mathrm{E}-04$
10	$4.08 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$2.24 \mathrm{E}-03$	$6.87 \mathrm{E}-05$	$1.12 \mathrm{E}-03$	$3.59 \mathrm{E}-04$
11	$4.57 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$2.66 \mathrm{E}-03$	$5.58 \mathrm{E}-05$	$1.08 \mathrm{E}-03$	$4.12 \mathrm{E}-04$
12	$5.00 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.04 \mathrm{E}-03$	$4.71 \mathrm{E}-05$	$1.05 \mathrm{E}-03$	$4.56 \mathrm{E}-04$
13	$5.40 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.40 \mathrm{E}-03$	$4.09 \mathrm{E}-05$	$1.02 \mathrm{E}-03$	$4.94 \mathrm{E}-04$
14	$5.76 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$3.72 \mathrm{E}-03$	$3.63 \mathrm{E}-05$	$9.89 \mathrm{E}-04$	$5.26 \mathrm{E}-04$
15	$6.09 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.02 \mathrm{E}-03$	$3.28 \mathrm{E}-05$	$9.64 \mathrm{E}-04$	$5.54 \mathrm{E}-04$
16	$6.40 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.29 \mathrm{E}-03$	$3.00 \mathrm{E}-05$	$9.42 \mathrm{E}-04$	$5.79 \mathrm{E}-04$
17	$6.67 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.55 \mathrm{E}-03$	$2.78 \mathrm{E}-05$	$9.23 \mathrm{E}-04$	$6.01 \mathrm{E}-04$
18	$6.93 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$4.78 \mathrm{E}-03$	$2.59 \mathrm{E}-05$	$9.06 \mathrm{E}-04$	$6.20 \mathrm{E}-04$
19	$7.17 \mathrm{E}-03$	$1.55 \mathrm{E}-03$	$5.00 \mathrm{E}-03$	$2.43 \mathrm{E}-05$	$8.90 \mathrm{E}-04$	$6.37 \mathrm{E}-04$

Measured chemical shifts Point			
Ha / b	Hc	Hd	
1	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
2	$9.20 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.98 \mathrm{E}+00$
3	$9.19 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.01 \mathrm{E}+00$
4	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.03 \mathrm{E}+00$
5	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
6	$9.17 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
7	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
8	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
9	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
10	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
11	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

12	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
13	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
14	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
15	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
16	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
17	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
18	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
19	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
20	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

Calculated chemical shifts

Point	Ha / b	Hc	Hd
1	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
2	$9.20 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.97 \mathrm{E}+00$
3	$9.19 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.01 \mathrm{E}+00$
4	$9.18 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.03 \mathrm{E}+00$
5	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.05 \mathrm{E}+00$
6	$9.17 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
7	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
8	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
9	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.06 \mathrm{E}+00$
10	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
11	$9.16 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
12	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
13	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
14	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
15	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
16	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
17	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
18	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
19	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$
20	$9.15 \mathrm{E}+00$	$8.26 \mathrm{E}+00$	$8.07 \mathrm{E}+00$

Chemical shifts for each nucleus

species	Ha / b	Hc	Hd
2a	$9.22 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$7.93 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}^{-}\right)(\mathbf{2 a})$	$9.16 \mathrm{E}+00$	$8.27 \mathrm{E}+00$	$8.08 \mathrm{E}+00$
$\left(\mathrm{ReO}_{4}^{-}\right){ }_{2}(\mathbf{2 a})$	$9.12 \mathrm{E}+00$	$8.25 \mathrm{E}+00$	$8.06 \mathrm{E}+00$

Converged in 11 iterations with sigma $=0.815066$

	standard		
	value	deviation	Comments 1 log beta(($\left.\left.\mathrm{ReO}_{4}-\right)(\mathbf{2 a})\right)$ 2 log $\operatorname{beta}\left(\left(\mathrm{ReO}_{4}-\right)(2(2 a))\right.$
3.8638	0.0632	$3.86(6)$	
6.0193	0.2612	$6.0(3)$	

Correlation coefficients between stability constants. Numbering as above

20.7716 1

$$
\begin{aligned}
& \text { Residuals scaled to measurement precision }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ Titrations

A solution of $\mathbf{1 a}(4.892 \pm 0.092 \mathrm{mM})$ was dissolved in $\mathrm{CDCl}_{3} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(3: 2 \mathrm{v} / \mathrm{v}) .{ }^{13} \mathrm{C}$ spectra were obtained prior to and directly after addition of $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$, which resulted in a guest concentration of $8.76 \pm 0.12 \mathrm{mM}$.

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 a}$ (bottom) and $\mathbf{1 a}^{2+\bullet} \mathbf{2 R e O}_{4}^{-}$(top) upon titrating $\mathrm{TBA}^{+} \mathrm{ReO}_{4}^{-}$(1.79 equiv, top).

Crystal Growth Conditions

Receptors ($\mathbf{1 b}$ and $\mathbf{2 b}, 0.001 \mathrm{~g}$) were dissolved in 1 mL of MeOH in a $10 \times 75 \mathrm{~mm}$ test tube. $\mathrm{TBA}^{+} \mathrm{ReO}_{4}{ }^{-}(0.0005 \mathrm{~g})$ was added to the test tube. For 1b, DMF (0.5 mL) was added for solubility. The test tube was placed in a scintillation vial filled with $\mathrm{Et}_{2} \mathrm{O}$. After 2 days undisturbed, yellow ($\mathbf{1 b}^{2+\bullet} \mathbf{2 R e O} 4^{-}$) or colorless ($\left.\mathbf{2 b}^{2+} \cdot \mathbf{2 R e O} 4^{-}\right)$single crystals were harvested for diffraction studies. Refer to .cif files for exact structural details.

General X-ray Diffraction Experimental Procedure

X-ray diffraction data for $\mathbf{1 b}$ was collected at 150 K and $\mathbf{2 b}$ at 100K. Data were collected on a Bruker D8 Venture using MoK α-radiation ($\lambda=0.71073 \AA$ Å). Data have been corrected for absorption using the SADABS ${ }^{7}$ area detector absorption correction program. Using Olex2 ${ }^{8}$, the structure was solved with the SheIXT structure solution program using Direct Methods and refined with the SheIXL refinement package using least squares minimization. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were refined in calculated positions in a ridged group model with isotropic thermal parameters $U(H)=1.2 \mathrm{Ueq}(\mathrm{C})$ for all $\mathrm{C}(\mathrm{H})$ groups and $\mathrm{U}(\mathrm{H})=1.5 \mathrm{Ueq}$
(C) for all $\mathrm{C}(\mathrm{H}, \mathrm{H}, \mathrm{H})$ groups. Calculations and refinement of structures were carried out using APEX2 ${ }^{9}$, SHELXTL ${ }^{10}$, and Olex2 software.

After refinement both $\mathbf{1 b}$ and $\mathbf{2 b}$ continued to display a number of residual Q peaks greater than $1.0 \mathrm{e}^{-3}$. All of which were observed less than $1 \AA$ from the large atoms (l or Re) regardless of the absorption correction applied. These Q peaks should be regarded as artifacts from these heavy atoms.

Crystal Structures

$$
\mathbf{1 b}^{2+} \cdot \mathbf{2 R e O}_{4}^{-}
$$

References:

1. Quagliotto, P.; Viscardt, G.; Barolo, C.; Barni, E.; Bellinvia, S.; Fisicaro, E.; Compari, C. J. Org. Chem. 2003, 68, 7651-7660.
2. Ladouceur, S.; Fortin, D.; Zysman-Colman, E. Inorg. Chem. 2010, 49, 56255641.
3. Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 29, 9228-9229.
4. Reger, D. L.; Wright, T. D.; Little, C. A.; Lamba, J. J. S.; Smith, M. D. Inorg. Chem. 2001, 40, 3810-3814.
5. Kaae, B. H.; Harpsoe, K.; Kvist, T.; Mathiesen, J. M.; Molck, C.; Gloriam D.;

Jimenez, H. N.; Uberti, M. A.; Nielsen, S. M.; Nielsen, B.; Brauner-Osborne, H.;
Sauerberg, P.; Clausen, R. P.; Madsen, U. ChemMedChem 2012, 7, 440-451.
6. C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi, A. Vacca, Analytical Biochemistry 1995, 231, 374-382.
7. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program. 2009. J. Appl. Cryst., 42, 339-341.
8. G. M. Sheldrick, SADABS: Area Detector Absorption Correction; University of Göttingen: Göttingen, Germany, 2001.
9. Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
10. Sheldrick, G. M. A short history of SHELX (2008). Acta Cryst. A64, 112-122.

