Electronic Supporting information

Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry

Manuel Cano and Guillermo de la Cueva-Méndez*

Synthetic Biology and Smart Therapeutic Systems Laboratory, Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Severo Ochoa 35, 29590 Campanillas, Málaga, Spain.

1. Reagents and instrumentation

1.1. Reagents

With the exception of oleic acid (>90%) and N,N-dimethylformamide (DMF), which were obtained from Alfa-Aesar, all reagents were purchased from Sigma-Aldrich. All chemicals were used as received without any further purification. All aqueous solutions were prepared using ultrapure water from a Milli-Q system (Millipore, resistivity 18.2 M Ω m at 25°C).

1.2. Instrumentation

Fourier-transform infrared (FT-IR) spectroscopy was carried out in a JASCO FT/IR-4100 spectrometer. Zeta-potential was measured using a Malvern Zetasizer Nano-ZS90. Scanning electron microscopy (SEM) was performed using a FEI Quanta 250 FEG microscope. Transmission electron microscopy (TEM) was carried out using a FEI Tecnai G2 20 TWIN TEM microscope, operated at an accelerating voltage of 100 kV. Samples were prepared on 200 mesh copper grids with a carbon sputter coated Formvar substrate. X-ray energy dispersion (EDX) spectroscopy was conducted with an EDAX DPP-II analyzer installed on TEM. Thermogravimetric analysis (TGA) was carried out using a TA Instruments METTLER TOLEDO (TGA/DSC1 model). All samples were conditioned using a N₂ flow of 50 ml/min at 30 °C for 15 min before measurement, and then heated from 30 to 1000 °C at 10°C/min under an air atmosphere of 50 mL/min. X-Ray Diffraction (XRD) was performed using a PANalytical X'Pert PRO MPD diffractometer with Cu k α_1 radiation ($\lambda = 1.540598$ Å). XRD patterns were assigned using the JCPDS database. Magnetization measurements were obtained in an EV9 Vibrating Sample Magnetometer (MicroSense). Samples were measured at 2 T under nitrogen atmosphere at both 300 K and 77 K.

2. Experimental methods.

Synthesis of monodisperse SPION-OA.

10 nm diameter monodisperse SPION-OA nanoparticles were prepared as described in *Park et al.*¹ The iron(III) oleate complex precursor required for this was characterized

by FT-IR, which revealed its characteristic C=O stretching peak at 1717 cm⁻¹ (Fig. S1a), and also by TGA (Fig. S1b).

To produce SPION-OA the iron(III)–oleate precursor was decomposed at high temperature in octadecene.¹ SPION-OA displayed characteristics FT-IR spectra (Fig. S2a) and X-ray diffraction (XRD) pattern (Fig. S2b). The reflection 20 peaks obtained by XRD coincided with the JCPDS database for inverse spinel magnetite (JCPDS file 19629; Joint Committee on Powder Diffraction: Swarthmore, PA), and also indicated that our material was crystalline. Confirming the latter, we verified the superparamagnetic character of these particles (Fig. S3a). We also carried out TGA analyses of our SPION-OA preparations (Fig. S3b), which showed a total weight loss of 83.4 % and provided an explanation for the apparently low saturation magnetization values observed in Fig. S3a.

Synthesis of SPION-APTES.

SPION-APTES were prepared following the silane ligand exchange method described by De Palma et al.² These particles were analyzed by FT-IR, which revealed the characteristic bands for the Si-O-Si vibrations in the silane layer (1000-1150 cm⁻¹) and the two N-H bendings at 1631 and 1550 cm⁻¹, typical of amine groups (Fig. S4, black line).

Synthesis of SPION-APTES/SA.

The SPION-APTES/SA nanoparticles were prepared according the procedure described in *An et al*³, with modifications. Briefly, 40 mg of SPION–APTES were dissolved in 20 mL DMF, and mixed with 20 ml of 0.2 M succinic anhydride, also in DMF. This mixture was stirred for 2h at room temperature to produce SPION-APTES/SA particles, which were subsequently purified by centrifugation and resuspension in DMF. The FT-IR spectrum of these particles displayed two vibrations at 1555 and 1410 cm⁻¹, assigned to the asymmetric and symmetric COO⁻ stretchings, respectively, which were not observed in their SPION-APTES precursor (Fig. S4, red line).

Ninhydrin method.

The reduction (yet availability) of amine groups on the surface of SPION-APTES produced as described above was confirmed by a colorimetric reaction using ninhydrin.⁴ Briefly, 1 mL of SPION-APTES or SPION-APTES/SA in water (at a concentration of 2.5 μ g/mL) were mixed with 1 mL of ninhydrin solution⁴ in glass tubes, heated until boiling, and then chilled on ice. 5 mL of 50% ethanol were added to each tube and mixed thoroughly, and the absorbance of the resulting mixture at 570 nm was determined using a spectrophotometer.

Synthesis of silica NPs.

Silica NPs were produced using a modified Stöber method described in *English et at.*⁵ The resulting particles were analysed by XRD, which revealed the characteristic 20

reflection peak of amorphous silica (Figure S5a). Further analysis of these particles by FT-IR revealed the absorption peak at 1064 cm⁻¹, corresponding to the Si-O-Si asymmetric stretching vibration, and the peaks (950 cm⁻¹ and 800 cm⁻¹) ascribed to the asymmetric bending and stretching vibration of Si-OH (Figure S5b).

Synthesis of epoxy-silane modified silica NPs.

Silica NPs (0.5 g) were suspended in toluene (100 mL) by sonication for 15 min. 5 mL of 3-(3-Glycidyloxypropyl)trimethoxysilane (GPES) were slowly added to the suspension of NPs and the mixture was heated to 90 °C for 48 h under an inert gas saturated atmosphere, and then cooled down to room temperature. The resulting epoxy-silane coated silica NPs were collected by centrifugation (9780 xg; 10 min at 4 °C) and resuspended in toluene, and subsequently purified through several cycles of centrifugation and re-dispersion in absolute ethanol.

Further characterization of raspberry-like nanocomposites.

Additional TEM images of the superparamagnetic nanocomposites are showed in Figure S6. The zeta-potential analysis reveals a surface charge change from +41 mV of epoxylated silica NPs to -32 mV of the nanocomposites (Fig. S7a). The FT-IR shows that after the SPION coating new bands appeared in low frequency region (~600 cm⁻¹) characteristic of the Fe-O skeleton, the N-H bendings (~1600 cm⁻¹) of amine and the COO⁻ stretchings (1400-1500 cm⁻¹) of carboxylic acid groups (Fig. S7b). Fig. S8 shows an energy dispersion X-ray analysis (EDX) performed in situ during TEM image capture of empty copper grids (blank control), a SPION-APTES/SA, an epoxylated silica particles and a raspberry-like nanocomposite. The appearance of the chemical signal of Fe in the EDX spectra for the hybrid material confirms the presence of SPION shell.

Fig. S1: FT-IR spectrum (a) and TGA curve (b) of iron (III) oleate complex.

Fig. S2: FT-IR spectrum (a) and XRD plot (b) of SPION-OA.

Fig. S3: Magnetization (a) and TGA (b) plots of SPION-OA.

Fig. S4: FT-IR spectrum of SPION-APTES (black line) and SPION-APTES/SA (red line).

Fig. S5: DRX plot (a) and FT-IR spectrum (b) of bare silica NPs.

Fig. S6: Additional TEM images of the superparamagnetic nanocomposites.

Fig. S7: Zeta-potential values (a) and FT-IR spectrum (b) of bare silica (black line), epoxy-modified silica (blue line) and superparamagnetic composite (red line) particles.

Fig. S8: EDX spectra with inset TEM image of an empty copper grid (a), a SPION-APTES/SA (b), an epoxy-modified silica (c) and a superparamagnetic nanocomposite (d).

References

- 1- J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, *Nat. Mater.* 2004, **3**, 891-895.
- 2- R. De Palma, S. Peeters, M.J. Van Bael, H. Van den Rul, K. Bonroy, W. Laureyn, J. Mullens, G. Borghs, G. Maes, *Chem. Mater.* 2007, **19**,1821-1831.
- 3- Y. An, M. Chen, Q. Xue, W. Liu, *Journal of Colloid and Interface Science* 2007, **311**, 507-513.
- 4- S.-W. Sun, Y.-C. Lin, Y.-M. Weng, and M.-J. Chen, *Journal of Food Composition and Analysis* 2006, **19**, 112-117.
- 5- M.D. English, E.R. Waclawik, J. Nanopart. Res. 2012, 14, 650.