Rhodium(III)-Catalyzed C7-Position C-H Alkenylation and

Alkynylation of Indolines

Xiao-Fei Yang, Xu-Hong Hu, Chao Feng, and Teck-Peng Loh

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 <u>teckpeng@ntu.edu.sg</u>

Supporting Information

Table of Contents	Page No.
General Information	S-2
Experimental Section	S-3
Substrate synthesis	S-3
Rh(III) catalyzed C-H alkenylation of indoline	S-3
Rh(III) catalyzed C-H alkynylation of indoline	S- 4
H/D exchange experiment	S-4
Preparation of rhodacycle complex 1	S-5
Optimization of reaction condition	S-6
¹ H and ¹³ C NMR Spectra of Products	S-8
X-ray Data	S-79

General information

[RhCp*Cl₂]₂, Cu(OAc)₂, Cu(OTf)₂ and solvents were purchased from commercial suppliers and used as received unless otherwise noted. All reactions were carried out using 8mL sample vial or standard Schlenk technic. Reactions were monitored through thin layer chromatography [Merck 60 F254 precoated silica gel plate (0.2 mm thickness)]. Subsequent to elution, spots were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible using basic solution of potassium permanganate. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. HRMS spectra were recorded on a Waters Q-Tof Permier Spectrometer. ¹H NMR and ¹³C NMR spectra were recorded using Bruker Avance 400 MHz spectrometers. Chemical shifts for ¹H NMR and ¹³C NMR spectra were recorded using Bruker Avance 400 MHz spectrometers. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of SiMe₄ (δ 0.00, singlet). Multiplicities were given as: s (singlet); brs (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublet); td (triplet of doublet); m (multiplets); ddt (doublet of doublet of triplet) and etc. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.00, triplet).

Experimental section

Substrate synthesis

1 were synthesized using reported method.^[1] Alkynyliodonium reagent was synthesized following the reported method.^[2]

Rh(III) catalyzed C-H alkenylation of indoline

General reaction procedure A

Synthetic procedure: The indoline **1** (0.14 mmol, 1 equiv.), styrene (0.70 mmol, 5.0 equiv.), $[RhCp*Cl_2]_2$ (0.006 mmol, 4.5 mol%), $Cu(OAc)_2$ (0.28 mmol, 2.0 equiv.) and DCE (1.0 mL) were placed in a 4 mL glass vial under N₂. After stirring at 100 °C for 12 hours. Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **3**.

General reaction procedure B

Synthetic procedure: The indoline **1** (0.14 mmol, 1 equiv.), 6-chlorohex-1-ene (0.70 mmol, 5.0 equiv.), $[RhCp*Cl_2]_2$ (0.014 mmol, 10 mol%), $Cu(OAc)_2$ (0.28 mmol, 2.0 equiv.) and DCE (1.0 mL) were placed in a 4 mL glass vial under N₂. After stirring at 100 °C for 24 hours. Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **3m**.

Rh(III) catalyzed C-H alkynylation of indoline

General reaction procedure C

Synthetic procedure: The indoline **1** (0.14 mmol, 1 equiv.), alkynyliodonium reagent (0.18 mmol, 1.1 equiv.), $[RhCp*Cl_2]_2$ (0.0056 mmol, 4 mol%), $Cu(OTf)_2$ (0.016 mmol, 12 mol%) and DCE (1.0 mL) were placed in a 4 mL glass vial under N₂. After stirring at 50 °C for 12 hours, saturated NaHCO₃

solution (2 mL) was added and the resulting mixture was extracted with dichloromethane (2x5 mL). Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **6a**.

General reaction procedure D

Synthetic procedure: The indoline **1** (0.14 mmol, 1 equiv.), alkynyliodonium reagent (0.36 mmol, 2.5 equiv.), $[RhCp*Cl_2]_2$ (0.0056 mmol, 4 mol%), $Cu(OTf)_2$ (0.028 mmol, 20 mol%) and DCE (1.0 mL) were placed in a 4 mL glass vial under N₂. After stirring at 50 °C for 12 hours, saturated NaHCO₃ solution (2 mL) was added and the resulting mixture was extracted with dichloromethane (2x5 mL). Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **6**.

General reaction procedure E

Synthetic procedure: The indoline **1** (0.14 mmol, 1 equiv.), alkynyliodonium reagent (0.36 mmol, 2.5 equiv.), $[RhCp*Cl_2]_2$ (0.0056 mmol, 4 mol%), $Cu(OTf)_2$ (0.028 mmol, 20 mol%) and DCE (1.0 mL) were placed in a 4 mL glass vial under N₂. After stirring at room temperature for 3 hours, saturated NaHCO₃ solution (2 mL) was added and the resulting mixture was extracted with dichloromethane (2x5 mL). Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **6n**.

H/D exchange experiment

Synthetic procedure: The indoline **1** (0.14 mmol, 1 equiv.), $[RhCp*Cl_2]_2$ (0.006 mmol, 4.5 mol%), $Cu(OAc)_2$ (0.28 mmol, 2.0 equiv.) and DCE/CD₃OD 1 mL (v:v = 6:1) were placed in a 4 mL glass vial under N₂. After stirring at 100 °C for 12 hours. Removal of the solvent in vacuo and purified by column chromatography.

Preparation of rhodacycle complex 1

Preparation of a rhodacycle complex 1 was carried out according to the reported Jones' procedure: A solution of indoline **1** (0.14 mmol), $[RhCp*Cl_2]_2$ (0.063 mmol) and NaOAc (0.39 mmol) in CH₂Cl₂ (3 mL) was stirred at room temperature under N₂ atmosphere for 24 h. The crude mixture was filtered through a pad of celite washing with CH₂Cl₂ (5 mL x 2) and concentrated under reduced pressure. After recrystallization from CH₂Cl₂/hexane, rhodacycle complex 1 was obtained as a red crystal (41.3 mg, 63%).

Optimaization of reaction condition

Table S1

			Cat., oxidant solvent, 100 °C		
	Entry	Cat.	Oxidant	Solvent	$\operatorname{Yield}^{b}(\%)$
_	1	[RhCp*Cl ₂] ₂	AgOAc	DCE	48
	2	[RhCp*Cl ₂] ₂	BQ	DCE	N.R.
	3	[RhCp*Cl ₂] ₂	Ag ₂ CO ₃	DCE	N.R.
	4	[RhCp*Cl ₂] ₂	Ag ₂ O	DCE	trace
	5	[RhCp*Cl ₂] ₂	Cu(OAc) ₂	DCE	83
	6	[RhCp*Cl ₂] ₂	Cu(OAc) ₂	Toluene	47
	7	[RhCp*Cl ₂] ₂	Cu(OAc) ₂	THF	58
	8	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OAc) ₂	DCE	N.R.
	9	Pd(OAc) ₂	BQ	DCE	N.R.
	10	-	$Cu(OAc)_2$	DCE	N.R.

"The reactions were carried out at 100 °C using 1a (0.14 mmol), 2a (0.7 mmol), oxidant (0.28 mmol), catalyst (0.006 mmol) in solvent (1 mL) for 12 h. ^bIsolated yields.

Table S2

entry	cat.	additives	Temp (°C)	yield ^{b} (%)
1	[RhCp*Cl ₂] ₂	Cu(OAc) ₂	50	24
2	$[RhCp*Cl_2]_2$	Cu(OTf) ₂	50	77
3	$[RhCp*Cl_2]_2$	Cu(OTf) ₂	r.t.	33
4	$[RhCp*Cl_2]_2$	Zn(OTf) ₂	50	74
5	[RhCp*Cl ₂] ₂	$AgSbF_6$	50	46
6	[RhCp*Cl ₂] ₂	AgNTf ₂	50	52
7	$[RhCp*Cl_2]_2$	-	50	N.R.
8	-	Cu(OTf) ₂	50	N.R.
9	[RhCp*(CH ₃ CN) ₃] (SbF ₆) ₂	Cu(OTf) ₂	50	71
10	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OTf) ₂	50	N.R.
11	Pd(OAc) ₂	Cu(OTf) ₂	50	-

[a] Unless otherwise noted, the reactions were carried out at 50 °C using 1 (0.14 mmol), alknye (0.18 mmol), additives (0.16 mmol), catalyst (0.0056 mmol) in solvent (1 mL) for 12 h. [b] Isolated yields.

¹H and ¹³C NMR Spectra of Products

(E)-1-(pyridin-2-yl)-7-styrylindoline (3a)

Following the general reaction procedure A, **3a** was obtained as a yellow solid (34.6 mg, 0.116 mmol, Yield: 83%); m.p. = 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.29 (m, 1H), 7.47 (d, *J* = 7.9 Hz, 1H), 7.41 – 7.31 (m, 1H), 7.28 – 7.14 (m, 6H), 7.02 (d, *J* = 7.9 Hz, 1H), 6.97 (d, *J* = 16.4 Hz, 1H), 6.83 – 6.70 (m, 3H), 4.40 (t, *J* = 7.9 Hz, 2H), 3.08 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.99, 147.93, 143.17, 137.63, 136.80 × 2, 135.39, 128.55 × 2, 127.83, 127.38, 126.38 × 2, 125.04, 125.67, 123.99, 123.09, 115.66, 111.15, 54.23, 29.38; HRMS (ESI): m/z calculated for [C₂₁H₁₉N₂]⁺ [M + H]⁺: 299.1548, Found: 299.1545; FTIR (NaCl): v 3442, 2916, 1583, 1463, 1429, 1327, 972, 732, 690 cm⁻¹

(E)-7-(4-methylstyryl)-1-(pyridin-2-yl)indoline (3b)

Following the general reaction procedure A, **3b** was obtained as a yellow solid (27.5 mg, 0.088 mmol, Yield: 63%); m.p. = 127-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.29 (m, 1H), 7.46 (d, *J* = 7.9 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.18 – 6.90 (m, 7H), 6.76 – 6.66 (m, 3H), 4.40 (t, *J* = 8.0 Hz, 2H), 3.07 (t, *J* = 8.0 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.00, 147.92, 143.04, 137.22, 136.65, 135.34, 134.81, 129.23 × 2, 127.72, 126.26 × 2, 125.37, 125.21, 124.50, 123.72, 123.03, 115.52, 111.06, 54.13, 29.35, 21.16; HRMS (ESI): m/z calculated for $[C_{22}H_{21}N_2]^+$ [M + H]⁺: 313.1705, Found: 313.1703; FTIR (NaCl): v 3583, 2916, 1583, 1465, 1429, 1371, 970, 806, 771 cm⁻¹

(*E*)-7-(4-methoxystyryl)-1-(pyridin-2-yl)indoline (3c)

Following the general reaction procedure A, **3c** was obtained as a yellow solid (30.8 mg, 0.093 mmol, Yield: 67%); m.p. = 97-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.35 (m, 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.43 – 7.35 (m, 1H), 7.21 – 7.14 (m, 3H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 16.3 Hz, 1H), 6.84 – 6.71 (m, 4H), 6.65 (d, *J* = 16.3 Hz, 1H), 4.44 (t, *J* = 8.0 Hz, 2H), 3.80 (s, 3H), 3.10 (t, *J* = 8.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.12, 157.98, 147.88, 142.88, 136.64, 135.35, 130.40, 127.53, 127.39,

125.38, 124.35 × 2, 124.30, 123.54, 123.07, 115.49, 113.98 × 2, 111.11, 55.22, 54.14, 29.37; HRMS (ESI): m/z calculated for $[C_{22}H_{21}N_2O]^+$ [M + H]⁺: 329.1654, Found: 329.1651; FTIR (NaCl): v 3053, 2985, 2304, 1604, 1583, 1510, 1465, 1265, 1174, 1033, 894cm⁻¹

(E)-7-(4-(tert-butyl)styryl)-1-(pyridin-2-yl)indoline (3d)

Following the general reaction procedure A, **3d** was obtained as a white solid (46.6 mg, 0.13 mmol, Yield: 94%); m.p. = 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.30 (m, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.36 (ddd, *J* = 8.3, 7.2, 2.0 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.14 (d, *J* = 8.3 Hz, 3H), 7.07 – 6.92 (m, 2H), 6.78 – 6.69 (m, 3H), 4.40 (t, *J* = 7.9 Hz, 2H), 3.06 (t, *J* = 7.9 Hz, 2H), 1.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 158.03, 150.44, 147.93, 143.02, 136.71, 135.35, 134.78, 127.56, 126.07 × 2, 125.46, 125.43 × 2, 125.25, 124.44, 123.71, 123.04, 115.52, 110.96, 54.13, 34.51, 31.21 × 3, 29.33; HRMS (ESI): m/z calculated for [C₂₅H₂₇N₂]⁺ [M + H]⁺: 355.2174, Found: 355.2171; FTIR (NaCl): v 2960, 2916, 1581, 1465, 1429, 1363, 1153, 819, 771 cm⁻¹

(E)-4-(2-(1-(pyridin-2-yl)indolin-7-yl)vinyl)phenyl acetate (3e)

Following the general reaction procedure A, **3e** was obtained as a yellow solid (46.4 mg, 0.13 mmol, Yield: 93%); m.p. = 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.28 (m, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.35 – 7.39 (m, 1H), 7.20 – 7.15 (m, 3H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.98 – 6.92 (m, 3H), 6.79 – 6.73 (m, 2H), 6.70 (d, *J* = 5.7 Hz, 1H), 4.39 (t, *J* = 7.9 Hz, 2H), 3.07 (t, *J* = 7.9 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.41, 157.93, 149.79, 147.92, 143.14, 136.75, 135.37, 135.33, 127.19 × 2, 126.64, 126.55, 124.79, 124.54, 123.98, 123.02, 121.58 × 2, 115.65, 110.98, 54.15, 29.28, 21.05; HRMS (ESI): m/z calculated for [C₂₃H₂₁N₂O₂]⁺ [M + H]⁺: 357.1603, Found: 357.1601; FTIR (NaCl): v 3412, 3049, 1759, 1583, 1504, 1469, 1433, 1369, 1193, 1165, 1014 cm⁻¹

(*E*)-7-(4-bromostyryl)-1-(pyridin-2-yl)indoline (3f)

Following the general reaction procedure A, 3f was obtained as a yellow solid (43.2 mg, 0.115 mmol,

Yield: 82%); m.p. = 117-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.27 (m, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.39 – 7.31 (m, 3H), 7.17 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 2H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.87 (d, *J* = 16.4 Hz, 1H), 6.75 – 6.70 (m, 3H), 4.38 (t, *J* = 8.0 Hz, 2H), 3.08 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.89, 147.96, 143.21, 136.67, 136.53, 135.32, 131.58 × 2, 127.72 × 2, 127.14, 126.31, 124.59, 124.51, 124.17, 123.00, 120.98, 115.68, 111.02, 54.14, 29.27; HRMS (ESI): m/z calculated for [C₂₁H₁₈BrN₂]⁺ [M + H]⁺: 377.0653, Found: 377.0650; FTIR (NaCl): v 3421, 2848, 1635, 1585, 1463, 1429, 1261, 1151, 1070, 810 cm⁻¹

(E)-7-(4-chlorostyryl)-1-(pyridin-2-yl)indoline (3g)

Following the general reaction procedure A, **3g** was obtained as a yellow solid (36.3 mg, 0.11 mmol, Yield: 78%); m.p. = 94-96 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.28 (m, 1H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.36 (ddd, *J* = 8.5, 7.7, 2.0 Hz, 1H), 7.20 – 7.16 (m, 3H), 7.14 – 7.07 (m, 2H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 16.4 Hz, 1H), 6.80 – 6.65 (m, 3H), 4.38 (t, *J* = 8.0 Hz, 2H), 3.08 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.88, 147.92, 143.18, 136.72, 136.09, 135.33, 132.85, 128.66 × 2, 127.41 × 2, 127.01, 126.34, 124.60, 124.56, 124.15, 123.03, 115.69, 111.08, 54.18, 29.29; HRMS (ESI): m/z calculated for [C₂₁H₁₈ClN₂]⁺ [M + H]⁺: 333.1159, Found: 333.1153; FTIR (NaCl): v 3047, 2916, 2846, 1581, 1444, 1371, 1261, 1091, 970,864, 813 cm⁻¹

(E)-7-(3-nitrostyryl)-1-(pyridin-2-yl)indoline (3h)

Following the general reaction procedure A, **3h** was obtained as a yellow solid (41.1 mg, 0.12 mmol, Yield: 85%); m.p. = 133-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.30 (m, 1H), 8.13 – 7.89 (m, 2H), 7.50 – 7.33 (m, 4H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 16.4 Hz, 1H), 6.90 (d, *J* = 16.4 Hz, 1H), 6.82 – 6.72 (m, 2H), 4.38 (t, *J* = 8.0 Hz, 2H), 3.12 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.81, 148.60, 148.06, 143.57, 139.57, 136.85, 135.32, 131.71, 129.68, 129.34, 124.90, 124.88, 124.77, 123.70, 122.97, 121.66, 120.91, 116.05, 111.23, 54.24, 29.25; HRMS (ESI): m/z calculated for [C₂₁H₁₈N₃O₂]⁺ [M + H]⁺: 344.1399, Found: 344.1395; FTIR (NaCl): v 2954, 2848, 1583, 1519, 1429, 1348, 1263, 960 cm⁻¹

(E)-7-(3-methylstyryl)-1-(pyridin-2-yl)indoline (3i)

Following the general reaction procedure A, **3i** was obtained as a yellow oil (36.7 mg, 0.12 mmol, Yield: 84%); ¹H NMR (400 MHz, CDCl₃) δ 8.56 – 8.20 (m, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.36 (ddd, *J* = 8.4, 7.8, 2.0 Hz, 1H), 7.20 – 7.06 (m, 2H), 7.06 – 6.89 (m, 5H), 6.75 – 6.71 (m, 3H), 4.40 (t, *J* = 8.0 Hz, 2H), 3.08 (t, *J* = 8.0 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.93, 147.84, 143.07, 138.00, 137.51, 136.80, 135.32, 128.38, 128.15, 127.86, 127.15, 126.13, 125.03, 124.55, 123.85, 123.44, 123.04, 115.56, 111.16, 54.17, 29.33, 21.29; HRMS (ESI): m/z calculated for [C₂₂H₂₁N₂]⁺ [M + H]⁺: 313.1705, Found: 313.1703; FTIR (NaCl): v 3047, 2916, 1693, 1583, 1427, 1263, 1153, 1056, 856 cm⁻¹

(E)-7-(2-methylstyryl)-1-(pyridin-2-yl)indoline (3j)

Following the general reaction procedure A, **3j** was obtained as yellow solid (33.7 mg, 0.11 mmol, Yield: 77%); m.p. = 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 – 8.28 (m, 1H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.42 – 7.34 (m, 1H), 7.21 – 6.98 (m, 7H), 6.82 – 6.61 (m, 3H), 4.40 (t, *J* = 8.0 Hz, 2H), 3.07 (t, *J* = 8.0 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.85, 147.89, 143.02, 136.73, 136.48, 135.60, 135.43, 130.16, 127.54, 127.23, 126.01, 125.96, 125.56, 125.21, 125.15, 123.87, 123.10, 115.62, 111.16, 54.22, 29.31, 19.72; HRMS (ESI): m/z calculated for [C₂₂H₂₁N₂]⁺ [M + H]⁺: 313.1705, Found: 313.1707; FTIR (NaCl): v 3421, 1637, 1583, 1463, 1429, 1371, 1263, 1153, 1056, 985, 970 cm⁻¹

(E)-7-(2-chlorostyryl)-1-(pyridin-2-yl)indoline (3k)

Following the general reaction procedure A, **3k** was obtained as a yellow oil (43.2 mg, 0.13 mmol, Yield: 93%); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 3.5 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.45 – 7.28 (m, 3H), 7.20 – 7,14 (m, 2H), 7.12 – 7.01 (m, 3H), 6.82 – 6.65 (m, 3H), 4.39 (t, J = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.99, 147.89, 143.33, 136.86, 135.59, 135.29, 133.18, 129.58, 128.83, 128.21, 126.76, 126.30, 124.99, 124.79, 124.34, 123.72, 123.13, 115.71, 111.07, 54.23, 29.29; HRMS (ESI): m/z calculated for [C₂₁H₁₈ClN₂]⁺ [M + H]⁺: 333.1159, Found: 333.1151; FTIR (NaCl): v 3053, 2956, 1583, 1469, 1429, 1261, 1153, 1051, 1033, 970 cm⁻¹

7-((1E, 3E)-4-phenylbuta-1,3-dien-1-yl)-1-(pyridin-2-yl)indoline (3l)

Following the general reaction procedure A, **31** was obtained as a yellow solid (29.5 mg, 0.09 mmol, Yield: 65%); m.p. = 138-140 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.31– 8.30 (m, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.20 – 7.13 (m, 2H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.82 (dd, *J* = 15.4, 10.5 Hz, 1H), 6.78 – 6.68 (m, 3H), 6.57 (d, *J* = 15.4 Hz, 1H), 6.34 (d, *J* = 15.4 Hz, 1H), 4.39 (t, *J* = 7.9 Hz, 2H), 3.05 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.02, 147.88, 142.92, 137.29, 136.72, 135.49, 132.41, 130.15, 129.54, 128.73, 128.54 × 2, 127.41, 126.28 × 2, 125.32, 124.39, 123.88, 123.16, 115.65, 110.98, 54.25, 29.30; HRMS (ESI): m/z calculated for [C₂₃H₂₁N₂]⁺ [M + H]⁺: 325.1705, Found: 325.1706; FTIR (NaCl): v 3442, 2916, 1587, 1463, 1429, 1361, 1263, 987 cm⁻¹

(*E*)-7-(6-chlorohex-1-en-1-yl)-1-(pyridin-2-yl)indoline (3m)

Following the general reaction procedure B, **3m** was obtained as a colorless oil (22.7 mg, 0.07 mmol, Yield: 52%); ¹H NMR (400 MHz, CDCl₃) *E* form δ 8.36 – 8.20 (m, 1H), 7.42 (ddd, *J* = 8.5, 7.2, 2.0 Hz, 1H), 7.26 (m, 1H), 7.12 (dd, *J* = 7.2, 2.0 Hz, 1H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.75 (dd, *J* = 7.2, 4.9 Hz, 1H), 6.64 (d, *J* = 8.5 Hz, 1H), 6.13 – 5.98 (m, 2H), 4.37 (t, *J* = 7.9 Hz, 2H), 3.46 (t, *J* = 6.7 Hz, 2H), 3.04 (t, *J* = 7.9 Hz, 2H), 2.07 (m, 2H), 1.71-1.65 (m, 2H), 1.50 – 1.37 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.01, 147.94, 142.43, 136.41, 135.37, 129.80, 128.15, 125.67, 124.83, 123.34, 123.10, 115.42, 111.33, 54.21, 44.88, 32.18, 31.92, 29.39, 26.39; HRMS (ESI): m/z calculated for [C₁₉H₂₂N₂]⁺ [M + H]⁺: 313.1472, Found: 313.1469; FTIR (NaCl): v 2954, 2850, 1585, 1469, 1431, 1056, 975, 771, 740 cm⁻¹

3n

Following the general reaction procedure B, **3n** was obtained as a colorless oil (15.9 mg, 0.05 mmol, Yield: 34%); ¹H NMR (*E* and major positional isomer, 400 MHz, $CDCl_3$) δ 8.31 – 8.25 (m, 1H), 7.53 –

7.37 (m, 1H), 7.31 – 7.08 (m, 2H), 6.96 (td, J = 7.5, 2.7 Hz, 1H), 6.75 (m, 1H), 6.64 (m, 1H), 6.09 -6.01 (m, 1H), 5.47 – 5.31 (m, 1H), 4.41 – 4.32 (m, 2H), 3.22 – 2.96 (m, 2H), 2.11 – 1.84 (m, 2H), 1.34 – 1.18 (m, 12H), 0.87 (t, J = 6.9 Hz, 3H). ¹³C NMR (*E* and major positional isomer, 101 MHz, CDCl₃) δ 158.46, 157.90, 147.99, 147.75, 143.58, 142.28, 136.86, 136.38, 135.32, 134.63, 132.58, 131.11, 129.08, 128.23, 127.46, 127.39, 126.01, 124.79, 123.17, 123.12, 123.10, 122.50, 115.43, 115.28, 111.44, 111.34, 54.90, 54.17, 36.01, 33.08, 32.53, 31.88, 31.86, 29.90, 29.47, 29.40, 29.24, 29.23, 29.224, 29.16, 29.15, 29.12, 27.18, 22.66, 22.65, 14.09; HRMS (ESI): m/z calculated for [C₂₃H₃₁N₂]⁺ [M + H]⁺: 335.2487, Found: 335.2489; FTIR (NaCl): v 2924, 2854, 1585, 1469,1431, 1369, 1153, 1056, 972, 771 cm⁻¹

(E)-7-(3-phenylprop-1-en-1-yl)-1-(pyridin-2-yl)indoline (30)

Following the general reaction procedure B, **30** was obtained as a colorless oil (21.9 mg, 0.07 mmol, Yield: 50%); ¹H NMR (400 MHz, CDCl₃) major δ 8.31-8.29 (m, 1H), 7.53 – 7.49 (m, 1H), 7.34 – 7.10 (m, 7H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.82 – 6.76 (m, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.30 (d, *J* = 15.9 Hz, 1H), 6.24 (dt, *J* = 15.9, 6.2 Hz, 1H), 4.27 (t, *J* = 7.9 Hz, 2H), 3.32 (d, *J* = 6.2 Hz, 2H), 3.08 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.48, 148.06, 143.81, 137.69, 137.03, 134.72, 131.38, 128.65, 128.51, 128.45 × 2, 128.37, 126.94, 126.07 × 2, 123.27, 122.83, 115.66, 111.57, 54.99, 36.57, 29.94; HRMS (ESI): m/z calculated for [C₂₂H₂₁N₂]⁺ [M + H]⁺: 313.1705.1705, Found: 313.1701; FTIR (NaCl): v 2920, 1643, 1465, 1431, 1369, 1153, 1056, 968, 698 cm⁻¹

(E)-2-methyl-1-(pyridin-2-yl)-7-styrylindoline (3p)

Following the general reaction procedure A, **3p** was obtained as a yellow oil (40.6 mg, 0.13 mmol, Yield: 95%); ¹H NMR (400 MHz, CDCl₃) δ 8.34 – 8.23 (m, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.34 (ddd, *J* = 8.5, 7.8, 2.0 Hz, 1H), 7.26 – 7.10 (m, 6H), 7.08 – 6.87 (m, 2H), 6.78 – 6.68 (m, 3H), 4.88 – 4.63 (m, 1H), 3.43 (dd, *J* = 15.5, 8.5 Hz, 1H), 2.51 (d, *J* = 15.5 Hz, 1H), 1.47 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.84, 148.03, 141.94, 137.62, 136.67, 134.11, 128.45 × 2, 127.50, 127.26, 126.43, 126.33 × 2, 125.45, 124.41, 124.39, 123.06, 115.68, 110.53, 61.63, 36.75, 22.45; HRMS (ESI): m/z calculated for [C₂₂H₂₁N₂]⁺ [M + H]⁺: 313.1705, Found: 313.1702; FTIR (NaCl): v 3442, 3051, 2972, 2920, 1581, 1467, 1429, 1265, 1153, 1060, 983, 968, 910 cm⁻¹

(E)-7-(4-bromostyryl)-2-methyl-1-(pyridin-2-yl)indoline (3q)

Following the general reaction procedure A, **3q** was obtained as a yellow oil (49.2 mg, 0.13 mmol, Yield: 90%); ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.25 (m, 1H), 7.51 – 7.41 (m, 1H), 7.39 – 7.31 (m, 3H), 7.17 (d, *J* = 7.4 Hz, 1H), 7.11 – 6.98 (m, 3H), 6.89 (d, *J* = 16.4 Hz, 1H), 6.82 – 6.59 (m, 3H), 4.83 – 4.70 (m, 1H), 3.45 (dd, *J* = 15.0, 8.5 Hz, 1H), 2.51 (d, *J* = 15.0Hz, 1H), 1.47 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.81, 148.08, 142.06, 136.69, 136.61, 134.13, 131.57 × 2, 127.77 × 2, 127.25, 126.13, 125.04, 124.69, 124.44, 123.08, 120.95, 115.81, 110.56, 61.72, 36.77, 22.49; HRMS (ESI): m/z calculated for [C₂₂H₂₀BrN₂]⁺ [M + H]⁺: 391.0810, Found: 391.0806; FTIR (NaCl): v 3074, 2970, 1581, 1444, 1365, 1334, 1303, 1072, 864, 692 cm⁻¹

(E)-2-phenyl-1-(pyridin-2-yl)-7-styrylindoline (3r)

Following the general reaction procedure A, **3r** was obtained as a yellow oil (39.3 mg, 0.11mmol, Yield: 75%); ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.23 (m, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 3H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.24 – 7.14 (m, 6H), 7.12 – 6.98 (m, 3H), 6.92 (d, *J* = 16.3 Hz, 1H), 6.77 – 6.73 (m, 2H), 5.67 (d, *J* = 8.8 Hz, 1H), 3.85 (dd, *J* = 15.5, 8.8 Hz, 1H), 2.93 (d, *J* = 15.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.83, 148.10, 144.35, 142.89, 137.69, 136.93, 133.14, 128.63 × 2, 128.51 × 2, 127.62, 127.33, 127.04, 126.58, 126.39 × 2, 125.58 × 2, 125.24, 124.61, 124.24, 123.52, 116.17, 110.74, 68.45, 38.83; HRMS (ESI): m/z calculated for [C₂₇H₂₃N₂]⁺ [M + H]⁺: 375.1861, Found: 375.1864; FTIR (NaCl): v 3061, 3028, 2956, 2916, 2846, 2245, 1583, 1568, 1556, 1446, 1371, 1265, 1244, 1153, 1060, 968 cm⁻¹

(E)-3-methyl-1-(pyridin-2-yl)-7-styrylindoline (3s)

Following the general reaction procedure A, **3s** was obtained as a yellow oil (39.8 mg, 0.13 mmol, Yield: 91%); ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.19 (m, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.41 – 7.32 (m, 1H), 7.28 – 7.10 (m, 6H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 16.4 Hz, 1H), 6.79 – 6.71 (m, 3H), 4.55 (dd, *J* = 10.8, 8.2 Hz, 1H), 3.92 (dd, *J* = 10.8, 6.9 Hz, 1H), 3.49 – 3.31 (m, 1H), 1.28 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.17, 147.98, 142.78, 140.58, 137.59, 136.77, 128.49 × 2, 127.77, 127.32, 126.32 × 2, 126.29, 125.01, 124.68, 123.21, 122.75, 115.53, 110.78, 62.04, 36.06,

19.12; HRMS (ESI): m/z calculated for $[C_{22}H_{21}N_2]^+$ [M + H]⁺: 313.1705, Found: 313.1704; FTIR (NaCl): v 3583, 3406, 2956, 2918, 1581, 1469, 1263, 1153, 1072, 910 cm⁻¹

(E)-4-methyl-1-(pyridin-2-yl)-7-styrylindoline (3t)

Following the general reaction procedure A, **3t** was obtained as a yellow oil (29.3 mg, 0.09 mmol, Yield: 67%); ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.29 (m, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.26 – 7.10 (m, 5H), 6.93 (d, *J* = 16.4 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.80 – 6.65 (m, 3H), 4.41 (t, *J* = 8.0 Hz, 2H), 2.98 (t, *J* = 8.0 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.11, 147.90, 142.79, 137.75, 136.67, 133.77, 133.64, 128.47 × 2, 127.13, 126.90, 126.36, 126.22 × 2, 124.61, 124.40, 122.46, 115.52, 111.12, 53.94, 28.06, 18.74; HRMS (ESI): m/z calculated for [C₂₂H₂₁N₂]⁺ [M + H]⁺: 313.1705, Found: 313.1703; FTIR (NaCl): v 3053, 2916, 2850, 2218, 1593, 1433, 1325, 1300, 1267, 1153, 1058, 968, 908, 692 cm⁻¹

(E)-7-(2-(bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl)vinyl)-2-methyl-1-(pyridin-2-yl)indoline (3u)

Following the general reaction procedure A, **3u** was obtained as a yellow oil (39.8 mg, 0.12 mmol, Yield: 84%); ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.28 (m, 1H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.34 (ddd, *J* = 8.5, 7.8, 2.0 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 7.09 – 6.89 (m, 5H), 6.75 – 6.62 (m, 3H), 4.80 (qd, *J* = 8.5, 6.6 Hz, 1H), 3.43 (dd, *J* = 15.5, 8.5 Hz, 1H), 3.10 – 3.09 (m, 4H), 2.50 (d, *J* = 15.5 Hz, 1H), 1.46 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.84, 147.96, 145.99, 145.33, 141.77, 136.69, 136.52, 134.13, 128.79, 125.86, 125.06 × 2, 124.31, 124.14, 123.12, 122.51, 119.91, 115.60, 110.56, 61.61, 36.77, 29.39, 29.21, 22.43; HRMS (ESI): m/z calculated for [C₂₄H₂₃N₂]⁺ [M + H]⁺: 339.1861, Found: 339.1860; FTIR (NaCl): v 3064, 2964, 2924, 2245, 1583, 1469, 1429, 1153 cm⁻¹

(E)-5-bromo-1-(pyridin-2-yl)-7-styrylindoline (3v)

Following the general reaction procedure A, 3v was obtained as a yellow oil (32.6 mg, 0.09 mmol, Yield: 62%); ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.24 (m, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.39 (ddd, J

= 8.5, 7.3, 2.0 Hz, 1H), 7.28 – 7.11 (m, 6H), 6.94 (d, J = 16.3 Hz, 1H), 6.77 (m, 1H), 6.77 (d, J = 8.5 Hz, 1H), 6.64 (d, J = 16.3 Hz, 1H), 4.36 (t, J = 8.0 Hz, 2H), 3.07 (t, J = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.57, 148.00, 142.32, 137.47, 137.11, 136.90 × 2, 128.74, 128.55 × 2, 127.67, 127.12, 126.70, 126.43, 125.13 × 2, 116.06, 115.41, 111.24, 54.32, 29.12; HRMS (ESI): m/z calculated for [C₂₁H₁₈BrN₂]⁺ [M + H]⁺: 377.0653, Found: 377.0650; FTIR (NaCl): v 30552958, 1589, 1469, 1431, 1323, 1153, 1056, 964, 910, 864,732 cm⁻¹

(E)-5-fluoro-1-(pyridin-2-yl)-7-styrylindoline (3w)

Following the general reaction procedure A, **3w** was obtained as a yellow solid (38.1 mg, 0.12 mmol, Yield: 86%); m.p. = 163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.27 (m, 1H), 7.46 – 7.33 (m, 1H), 7.28 – 7.11 (m, 6H), 6.95 (d, *J* = 16.3 Hz, 1H), 6.91 – 6.84 (m, 1H), 6.81 - 6.65 (m, 3H), 4.40 (t, *J* = 7.9 Hz, 2H), 3.04 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.50 (d, *J* = 240.6 Hz), 158.19, 147.97, 139.39, 137.42 (d, *J* = 8.9 Hz), 137.09, 136.88, 128.80, 128.54 × 2, 127.67, 126.45 × 2, 126.19 (d, *J* = 8.9 Hz), 125.31 (d, *J* = 2.3 Hz), 115.68, 111.45 (d, *J* = 24.4 Hz), 110.65, 109.94 (d, *J* = 24.4 Hz), 54.62, 29.63; ¹⁹F NMR (376 MHz, CDCl₃) δ -120.67; HRMS (ESI): m/z calculated for [C₂₁H₁₈FN₂]⁺ [M + H]⁺: 317.1454, Found: 317.1453; FTIR (NaCl): v 2954, 2916, 2848, 1463, 1431, 1263, 1176 cm⁻¹

(*E*)-5-methoxy-2-methyl-1-(pyridin-2-yl)-7-styrylindoline (3x)

Following the general reaction procedure A, **3x** was obtained as a yellow solid (45.0 mg, 0.13 mmol, Yield: 94%); m.p. = 122-124 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.26 (m, 1H), 7.34 (ddd, *J* = 8.5, 7.2, 2.0 Hz, 1H), 7.27 – 7.13 (m, 5H), 7.02 – 6.97 (m, 2H), 6.83 – 6.75 (m, 2H), 6.72 – 6.63 (m, 2H), 4.83 (qd, *J* = 8.5, 6.6 Hz, 1H), 3.85 (s, 3H), 3.41 (dd, *J* = 15.5, 8.3 Hz, 1H), 2.45 (d, *J* = 15.5 Hz, 1H), 1.45 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.38, 156.41, 147.98, 137.45, 136.75, 135.94 × 2, 128.48 × 2, 127.91, 127.39, 126.40 × 3, 126.17, 115.24, 111.63, 109.93, 108.14, 61.87, 55.71, 37.05, 22.31; HRMS (ESI): m/z calculated for [C₂₃H₂₃N₂O]⁺ [M + H]⁺: 343.1810, Found: 343.1807; FTIR (NaCl): v 3417, 2956, 2918, 1593, 1469, 1429, 1265, 1199, 1143, 1043, 736, 692 cm⁻¹

(E)-4-(2-(5-methoxy-2-methyl-1-(pyridin-2-yl)indolin-7-yl)vinyl)phenyl acetate (3y)

Following the general reaction procedure A, **3y** was obtained as a yellow oil (42.6 mg, 0.11 mmol, Yield: 76%); ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 8.25 (m, 1H), 7.35 (ddd, *J* = 8.9, 7.2, 2.0 Hz, 1H), 7.25 – 7.22 (m, 2H), 7.03 – 6.88 (m, 4H), 6.83 – 6.61 (m, 4H), 4.85 – 4.78 (m, 1H), 3.85 (s, 3H), 3.41 (dd, *J* = 15.6, 8.3 Hz, 1H), 2.45 (d, *J* = 15.6 Hz, 1H), 2.27 (s, 3H), 1.45 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.41, 158.39, 156.41, 149.87, 148.03, 136.79, 135.99, 135.96, 135.29, 127.32 × 2, 126.82, 126.44, 126.23, 121.59 × 2, 115.31, 111.72, 109.89, 108.14, 61.90, 55.73, 37.05, 22.34, 21.06; HRMS (ESI): m/z calculated for [C₂₅H₂₅N₂O₃]⁺ [M + H]⁺: 401.1865, Found: 401.1863; FTIR (NaCl): v 3429, 3417, 2843, 1761, 1587, 1504, 1469, 1429, 1193, 1165, 1143 cm⁻¹

(E)-5-methoxy-2-methyl-7-(2-methylstyryl)-1-(pyridin-2-yl)indoline (3z)

Following the general reaction procedure A, **3z** was obtained as a yellow solid (40.4 mg, 0.11 mmol, Yield: 81%); m.p. = 88-90 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.26 (m, 1H), 7.39 – 7.31 (m, 1H), 7.22 – 7.18 (m, 2H), 7.13 – 6.96 (m, 4H), 6.84 – 6.76 (m, 1H), 6.72 – 6.67 (m, 3H), 4.88 – 4.81 (m, 1H), 3.86 (s, 3H), 3.42 (dd, *J* = 15.6, 8.3 Hz, 1H), 2.46 (d, *J* = 15.6 Hz, 1H), 2.28 (s, 3H), 1.45 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.29, 156.49, 148.09, 136.77, 136.49, 136.08, 135.88, 135.72, 130.22, 127.45, 127.37, 127.14, 126.29, 126.07, 125.40, 115.33, 111.19, 110.12, 109.33, 61.92, 55.80, 37.09, 22.40, 19.75; HRMS (ESI): m/z calculated for [C₂₄H₂₅N₂O]⁺ [M + H]⁺: 357.1967, Found: 357.1968; FTIR (NaCl): v 3419, 1595, 1467, 1429, 1334, 1145, 1043, 968 cm⁻¹

(E)-5-bromo-7-(3-methylstyryl)-1-(pyridin-2-yl)indoline (3aa)

Following the general reaction procedure A, **3aa** was obtained as a yellow solid (43.7 mg, 0.11 mmol, Yield: 80%); m.p. = 99-101 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.30 (m, 1H), 7.60 (d, *J* = 1.5 Hz, 1H), 7.43 (td, *J* = 7.8, 1.5 Hz, 1H), 7.28 – 7.27 (m, 1H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.04 – 7.02 (m, 3H), 6.95 (d, *J* = 16.3 Hz, 1H), 6.80 (ddd, *J* = 7.8, 5.0, 0.7 Hz, 1H), 6.73 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 16.3 Hz, 1H), 4.40 (t, *J* = 8.0 Hz, 2H), 3.10 (t, *J* = 8.0 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.62, 148.04, 142.31, 138.10, 137.48, 137.09, 136.90, 128.81, 128.50, 128.45, 127.29, 127.08, 126.63, 126.51, 124.98, 123.57, 116.00, 115.40, 111.26, 54.30, 29.14, 21.29; HRMS (ESI): m/z calculated for [C₂₂H₂₀BrN₂]⁺ [M + H]⁺: 391.0810, Found: 391.0812; FTIR (NaCl): v 3431, 3419, 2916,

(S, E)-methyl 2-acetamido-3-(1-(pyridin-2-yl)-2-styryl-1H-indol-3-yl)propanoate (5a)

Following the general reaction procedure A, **5a** was obtained as a colorless oil (38.5 mg, 0.11 mmol, Yield: 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (dd, J = 4.9, 0.9 Hz, 1H), 7.87 (td, J = 7.7, 1.8 Hz, 1H), 7.57 (dd, J = 7.7, 1.8 Hz, 1H), 7.44 (dd, J = 7.7, 1.8 Hz, 1H), 7.38 (ddd, J = 7.7, 4.9, 0.9 Hz, 1H), 7.35 – 7.30 (m, 5H), 7.27 – 7.17 (m, 3H), 7.10 (d, J = 16.7 Hz, 1H), 6.37 (d, J = 16.7 Hz, 1H), 6.14 (d, J = 7.9 Hz, NH), 5.02 (dt, J = 7.9, 5.6 Hz, 1H), 3.67 – 3.50 (m, 5H), 1.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.21, 169.72, 152.14, 149.52, 138.35, 138.34, 136.91, 134.89, 132.24, 129.00, 128.71 × 2, 127.91, 126.21 × 2, 123.82, 122.36, 122.34, 121.19, 118.68, 116.69, 112.71, 110.90, 52.83, 52.48, 27.42, 23.13; HRMS (ESI): m/z calculated for [C₂₇H₂₆N₃O₃]⁺ [M + H]⁺: 440.1974, Found: 440.1971; FTIR (NaCl): v 3417, 3052, 1745, 1645, 1469, 1371, 1265, 1226, 698 cm⁻¹

(S, E)-methyl 2-acetamido-3-(2-phenyl-1-(pyridin-2-yl)-7-styryl-1H-indol-3-yl)propanoate (5b)

Following the general reaction procedure A, **5b** was obtained as a colorless oil (31.0 mg, 0.06 mmol, Yield: 43%); ¹H NMR (400 MHz, CDCl₃) δ 8.62 – 8.50 (m, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.58 (td, *J* = 7.7, 1.9 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.36 – 7.11 (m, 10H), 7.02 – 7.00 (m, 3H), 6.80 (d, *J* = 16.0 Hz, 1H), 6.53 (d, *J* = 16.0 Hz, 1H), 5.77 (d, *J* = 7.8 Hz, NH), 4.96 – 4.72 (m, 1H), 3.59 – 3.26 (m, 5H), 1.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.13, 169.63, 153.06, 148.96, 139.80, 137.75, 137.41, 134.80, 131.40, 130.96 × 2, 129.52, 129.34, 128.36 × 2, 128.26 × 2, 128.07, 127.22, 126.17 × 2, 125.63, 124.58, 123.29, 123.10, 121.91, 121.06, 118.58, 109.30, 52.59, 52.14, 26.54, 23.04; HRMS (ESI): m/z calculated for [C₃₃H₃₀N₃O₃]⁺ [M + H]⁺: 516.2287, Found: 516.2283; FTIR (NaCl): v 3583, 3425, 3055, 2918, 2247, 1745, 1585, 1469, 1371, 1265, 1217, 964 cm⁻¹

(*E*)-2-methyl-7-styrylindoline (3p')

Following the reported method^[3], **3p**' was obtained as a colorless oil (28.6 mg, 0.12 mmol, Yield: 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.23 (dt, *J* = 16.9, 7.7 Hz, 2H), 7.11 – 6.92 (m, 3H), 6.72 (t, *J* = 7.7 Hz, 1H), 4.29 – 3.78 (m, 1H), 3.17 (dd, *J* = 15.4, 7.8 Hz, 1H), 2.67 (dd, J = 15.4, 7.8 Hz, 1H), 1.33 (d, J = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.68, 137.82, 129.69, 128.61 × 2, 128.54, 127.28, 126.24 × 2, 125.43, 125.22, 123.84, 119.36, 119.05, 55.29, 37.68, 22.38; HRMS (ESI): m/z calculated for [C₁₇H₁₈N]⁺ [M + H]⁺: 236.1439, Found: 236.1433; FTIR (NaCl): v 3369, 2958, 1629, 1597, 1452, 1257, 1058, 960 690 cm⁻¹

1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6a)

Following the general reaction procedure C, **6a** was obtained as a yellow solid (40.6 mg, 0.11 mmol, Yield: 77%); m.p. = 44-46 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 5.0, 1.7 Hz, 1H), 7.50 – 7.42 (m, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.18 (dd, *J* = 7.3, 0.9 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.86 (t, *J* = 7.3 Hz, 1H), 6.77 (dd, *J* = 7.3, 5.0 Hz, 1H), 4.34 (t, *J* = 8.2 Hz, 2H), 3.07 (t, *J* = 8.2 Hz, 2H), 1.00 – 0.85 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 156.04, 147.57, 146.07, 136.12, 134.84, 132.59, 125.10, 121.50, 115.93, 112.88, 109.44, 104.40, 99.74, 53.83, 28.73, 18.51 × 6, 11.11 × 3; HRMS (ESI): m/z calculated for [C₂₄H₃₃N₂Si]⁺ [M + H]⁺: 377.2413, Found: 377.2417; FTIR (NaCl): v 3410, 2941, 2862, 2144, 1705, 1593, 1579, 1469, 1433, 1381, 1153, 1064, 883, 673 cm⁻¹

2-methyl-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6b)

Following the general reaction procedure C, **6b** was obtained as a yellow solid (44.8 mg, 0.11 mmol, Yield: 82%); m.p. = 92-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.44 (ddd, *J* = 8.5, 7.2, 1.9 Hz, 1H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.18 (dd, *J* = 7.2, 0.9 Hz, 1H), 6.91 (d, *J* = 8.5 Hz, 1H), 6.87 (t, *J* = 7.2 Hz, 1H), 6.76 (ddd, *J* = 7.2, 4.9, 0.9 Hz, 1H), 4.68 (dqd, *J* = 8.7, 6.5, 1.9 Hz, 1H), 3.41 (dd, *J* = 15.5, 8.7 Hz, 1H), 2.50 (dd, *J* = 15.5, 1.9 Hz, 1H), 1.43 (d, *J* = 6.5 Hz, 3H), 1.02 – 0.84 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 155.88, 147.75, 145.23, 136.07, 133.61, 132.41, 125.52, 121.58, 115.99, 112.39, 110.28, 104.48, 99.21, 61.42, 36.54, 22.31, 18.55 × 3, 18.50 × 3, 11.14 × 3; HRMS (ESI): m/z calculated for [C₂₅H₃₅N₂Si]⁺ [M + H]⁺: 391.2570, Found: 391.2563; FTIR (NaCl): v 3446, 3412, 2146, 1593, 1579, 1469, 1435, 1381, 883, 769 cm⁻¹

2-phenyl-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6c)

Following the general reaction procedure C, **6c** was obtained as a white solid (56.4 mg, 0.12 mmol, Yield: 89%); m.p. = 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (ddd, J = 5.0, 1.9, 0.8 Hz, 1H), 7.44 (ddd, J = 8.5, 7.2, 1.9 Hz, 1H), 7.42 – 7.39 (m, 2H), 7.35 – 7.17 (m, 4H), 7.09 (dd, J = 7.2, 0.8 Hz, 1H), 6.92 – 6.84 (m, 2H), 6.76 (ddd, J = 7.2, 5.0, 0.8 Hz, 1H), 5.64 (d, J = 8.7 Hz, 1H), 3.82 (dd, J = 15.5, 8.7 Hz, 1H), 2.91 (dd, J = 15.5, 1.4 Hz, 1H), 1.05 – 0.84 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ

155.91, 147.88, 146.06, 143.93, 136.31, 132.68, 132.19, 128.48 × 2, 126.92, 125.65 × 2, 125.28, 122.27, 116.19, 111.75, 110.84, 104.34, 99.08, 67.79, 38.69, 18.54 × 3, 18.46 × 3, 11.14 × 3; HRMS (ESI): m/z calculated for $[C_{30}H_{37}N_2Si]^+$ [M + H]⁺: 453.2726, Found: 453.2725; FTIR (NaCl): v 3412, 2941, 2864, 2146, 1797, 1583, 1469, 1433, 1379, 1253, 1153, 1060, 883, 771 cm⁻¹

3-methyl-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6d)

Following the general reaction procedure C, **6d** was obtained as a yellow oil (34.4 mg, 0.09mmol, Yield: 63%); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 5.0 Hz, 1H), 7.46 (ddd, *J* = 8.4, 7.3, 1.9 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.76 (dd, *J* = 7.3, 5.0 Hz, 1H), 4.48 (dd, *J* = 10.7, 8.7 Hz, 1H), 3.89 (dd, *J* = 10.7, 7.1 Hz, 1H), 3.46 – 3.32 (m, 1H), 1.28 (d, *J* = 6.9 Hz, 3H), 0.97 – 0.83 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 156.07, 147.62, 145.58, 140.01, 136.12, 132.68, 123.92, 121.62, 115.83, 112.61, 109.43, 104.29, 99.63, 61.72, 35.44, 19.33, 18.50 × 6, 11.10 × 3; HRMS (ESI): m/z calculated for [C₂₅H₃₅N₂Si]⁺ [M + H]⁺: 391.2570, Found: 391.2575; FTIR (NaCl): v 3583, 3412, 2956, 2916, 2144, 1703, 1593, 1435, 1325, 1153, 1074, 997, 883, 713 cm⁻¹

4-methyl-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6e)

Following the general reaction procedure C, **6e** was obtained as a yellow solid (37.2 mg, 0.10 mmol, Yield: 68%); m.p. = 55-57 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 – 8.22 (m, 1H), 7.45 (ddd, *J* = 8.4, 7.9, 2.0 Hz, 1H), 7.21 (d, *J* = 7.9 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.76 (ddd, *J* = 7.9, 5.0, 0.8 Hz, 1H), 6.70 (d, *J* = 7.9 Hz, 1H), 4.35 (t, *J* = 8.3 Hz, 2H), 2.97 (t, *J* = 8.3 Hz, 2H), 2.24 (s, 3H), 0.99 – 0.82 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 156.06, 147.56, 145.62, 135.98, 134.98, 133.12, 132.51, 122.92, 115.77, 112.87, 106.85, 104.50, 98.75, 53.55, 27.45, 18.85, 18.49 × 6, 11.11 × 3; HRMS (ESI): m/z calculated for [C₂₅H₃₅N₂Si]⁺ [M + H]⁺: 391.2570, Found: 391.2561; FTIR (NaCl): v 2941, 2864, 2304, 2148, 1593, 1573, 1469, 1433, 1153, 894 cm⁻¹

4-bromo-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6f)

Following the general reaction procedure C, **6f** was obtained as a yellow oil (46.4 mg, 0.10 mmol, Yield: 73%); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J = 4.9, 1.1 Hz, 1H), 7.49 (ddd, J = 8.4, 7.2, 1.1

Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.81 (ddd, J = 7.2, 4.9, 1.1 Hz, 1H), 4.34 (t, J = 8.4 Hz, 2H), 3.09 (t, J = 8.4 Hz, 2H), 0.94 – 0.91 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 155.59, 147.72, 146.81, 136.17, 134.92, 134.01, 124.23, 119.92, 116.61, 113.19, 107.86, 103.47, 100.70, 53.08, 30.18, 18.47 × 6, 11.05 × 3; HRMS (ESI): m/z calculated for [C₂₄H₃₂BrN₂Si]⁺ [M + H]⁺: 455.1518, Found: 455.1511; FTIR (NaCl): v 2953, 2916, 2146, 1732, 1568, 1435, 1317, 1153, 1062, 993, 883, 738 cm⁻¹

5-bromo-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6g)

Following the general reaction procedure C, **6g** was obtained as a yellow oil (49.6 mg, 0.11 mmol, Yield: 78%); ¹H NMR (400 MHz, CDCl₃) δ 8.37 – 8.20 (m, 1H), 7.48 (ddd, *J* = 8.4, 7.2, 2.0 Hz, 1H), 7.38 (d, *J* = 2.0 Hz, 1H), 7.25 (s, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.80 (ddd, *J* = 7.2, 5.0, 0.8 Hz, 1H), 4.32 (t, *J* = 8.3 Hz, 2H), 3.07 (t, *J* = 8.3 Hz, 2H), 0.98 – 0.83 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 155.63, 147.75, 145.33, 136.95, 136.22, 134.48, 128.15, 116.41, 112.95, 112.85, 110.68, 102.85, 101.27, 53.99, 28.51, 18.49 × 6, 11.06 × 3; HRMS (ESI): m/z calculated for [C₂₄H₃₂BrN₂Si]⁺ [M + H]⁺: 455.1518, Found: 455.1516; FTIR (NaCl): v 3001, 2954, 2862, 2146, 1705, 1593, 1573, 1469, 1435, 1319, 1153, 997, 881, 866, 717 cm⁻¹

5-fluoro-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6h)

Following the general reaction procedure C, **6h** was obtained as a yellow solid (40.8 mg, 0.10 mmol, Yield: 74%); m.p. = 44-46 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.26 (m, 1H), 7.49 – 7.44 (m, 1H), 7.01 – 6.85 (m, 3H), 6.77 (dd, *J* = 6.9, 5.2 Hz, 1H), 4.35 (t, *J* = 8.2 Hz, 2H), 3.05 (t, *J* = 8.2 Hz, 2H), 0.94 – 0.94 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 157.66 (d, *J* = 240.6 Hz), 156.16, 147.68, 142.58, 136.95 (d, *J* = 8.9 Hz), 136.20, 117.64 (d, *J* = 24.2 Hz), 115.91, 113.30 (d, *J* = 24.2 Hz), 112.31, 110.11 (d, *J* = 10.0 Hz), 103.08 (d, *J* = 2.5 Hz), 100.66, 54.27, 29.06 (d, *J* = 1.9 Hz), 18.45 × 6, 11.04 × 3; ¹⁹F NMR (376 MHz, CDCl₃) δ -122.41; HRMS (ESI): m/z calculated for [C₂₄H₃₂FN₂Si]⁺ [M + H]⁺: 395.2319, Found: 395.2308; FTIR (NaCl): v 3051, 2941, 2864, 2140, 1585, 1465, 1433, 1265, 1124, 696 cm⁻¹

6-chloro-1-(pyridin-2-yl)-7-((triisopropylsilyl)ethynyl)indoline (6i)

Following the general reaction procedure C, **6i** was obtained as a yellow oil (28.7 mg, 0.07 mmol, Yield: 50%); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J = 4.9, 1.3 Hz, 1H), 7.53 – 7.44 (m, 1H), 7.06 (d, J = 7.8 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.81 (dd, J = 7.8, 4.9 Hz, 1H), 4.36

(t, J = 8.3 Hz, 2H), 3.04 (t, J = 8.3 Hz, 2H), 0.99 – 0.82 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 155.63, 147.83, 147.67, 136.06, 135.78, 133.08, 124.74, 122.02, 116.45, 113.25, 109.48, 106.20, 100.39, 54.57, 28.28, 18.46 × 6, 11.03 × 3; HRMS (ESI): m/z calculated for [C₂₄H₃₂ClN₂Si]⁺ [M + H]⁺: 411.2023, Found: 411.2017; FTIR (NaCl): v 2954, 2891, 2148, 1699, 1587, 1469, 1427, 1309, 1232, 1062, 995, 883, 804 cm⁻¹

1-(pyridin-2-yl)-7-((triethylsilyl)ethynyl)indoline (6j)

Following the general reaction procedure D, **6j** was obtained as a brown solid (33.7 mg, 0.10 mmol, Yield: 72%); m.p. = 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (ddd, J = 5.0, 2.0, 0.8 Hz, 1H), 7.49 (ddd, J = 8.4, 7.6, 2.0 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.17 (dd, J = 7.6, 0.8 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 6.80 (ddd, J = 7.6, 5.0, 0.8 Hz, 1H), 4.33 (t, J = 8.4 Hz, 2H), 3.07 (t, J = 8.3 Hz, 2H), 0.82 (t, J = 7.9 Hz, 9H), 0.42 (q, J = 7.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.75, 147.51, 146.20, 135.74, 134.60, 132.23, 125.14, 121.29, 115.96, 113.22, 108.80, 103.58, 100.84, 53.69, 28.63, 7.28 × 3, 4.08 × 3; HRMS (ESI): m/z calculated for [C₂₁H₂₇N₂Si]⁺ [M + H]⁺:335.1944, Found: 335.1938; FTIR (NaCl): v 3583, 2954, 2873, 2144, 1593, 1579, 1469, 1433, 1377, 1263, 1016 cm⁻¹

7-((tert-butyldimethylsilyl)ethynyl)-1-(pyridin-2-yl)indoline (6k)

Following the general reaction procedure D, **6k** was obtained as a brown solid (38.8 mg, 0.12 mmol, Yield: 83%); m.p. = 86-88 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 – 8.25 (m, 1H), 7.49 (ddd, *J* = 8.6, 7.6, 2.0 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.17 (dd, *J* = 7.6, 0.8 Hz, 1H), 6.94 (d, *J* = 8.6 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.80 (ddd, *J* = 7.6, 5.0, 0.8 Hz, 1H), 4.33 (t, *J* = 8.3 Hz, 2H), 3.08 (t, *J* = 8.3 Hz, 2H), 0.79 (s, 9H), -0.09 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.81, 147.51, 146.25, 135.94, 134.58, 132.13, 125.18, 121.32, 116.03, 113.23, 108.76, 103.18, 101.51, 53.75, 28.65, 25.98 × 3, 16.42, -4.89 × 2; HRMS (ESI): m/z calculated for [C₂₁H₂₇N₂Si]⁺ [M + H]⁺: 335.1944, Found: 335.1936; FTIR (NaCl): v 3053, 2954, 2854, 2304, 2146, 1593, 1581, 1469, 1433, 1265, 894, 704 cm⁻¹

7-((tert-butyldiphenylsilyl)ethynyl)-1-(pyridin-2-yl)indoline (6l)

Following the general reaction procedure D, **61** was obtained as a yellow oil (47.5 mg, 0.10 mmol, Yield: 74%); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 5.2 Hz, 1H), 7.57 (dd, J = 7.6, 1.4 Hz, 4H), 7.42 – 7.26 (m, 7H), 7.21 (dd, J = 7.6, 0.9 Hz, 1H), 7.17 – 7.11 (m, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.89 (t, J = 7.6 Hz, 1H), 6.55 (dd, J = 7.6, 5.2 Hz, 1H), 4.33 (t, J = 8.3 Hz, 2H), 3.09 (t, J = 8.3 Hz, 2H), 0.96 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.67, 147.53, 146.17, 136.21 × 2, 135.52 × 4, 134.77,

133.37, 132.71, 129.20 × 2, 127.54 × 4, 125.58, 121.38, 116.26, 112.76, 108.56, 106.49, 98.22, 53.79, 28.61, 27.02 × 3, 18.48; HRMS (ESI): m/z calculated for $[C_{31}H_{31}N_2Si]^+$ [M + H]⁺: 459.2257, Found: 459.2254; FTIR (NaCl): v 3444, 3068, 2956, 2927, 2854, 2146, 1699, 1593, 1581, 1469, 1433, 1323, 1111, 819, 700 cm⁻¹

7-((tert-butyldiphenylsilyl)ethynyl)-2-phenyl-1-(pyridin-2-yl)indoline (6m)

Following the general reaction procedure D, **6m** was obtained as a white solid (60.6 mg, 0.11 mmol, Yield: 81%); m.p. = 194-196 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.07 (m, 1H), 7.69 – 7.59 (m, 4H), 7.46 – 7.42 (m, 3H), 7.39 – 7.19 (m, 10H), 7.15 (d, *J* = 7.6 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 6.57 (dd, *J* = 7.6, 5.0 Hz, 1H), 5.62 (d, *J* = 8.7 Hz, 1H), 3.86 (dd, *J* = 15.5, 8.7 Hz, 1H), 2.96 (d, *J* = 15.7 Hz, 1H), 0.95 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.89, 147.92, 146.41, 143.91, 136.56, 135.60 × 4, 133.50, 133.33, 132.68, 132.44, 129.24 × 2, 128.61 × 2, 127.57 × 4, 127.05, 125.83, 125.69 × 2, 122.25, 116.64, 111.83, 110.14, 106.71, 97.58, 68.08, 38.75, 26.98 × 3, 18.58; HRMS (ESI): m/z calculated for [C₃₇H₃₅N₂Si]⁺ [M + H]⁺: 535.2570, Found: 535.2563; FTIR (NaCl): v 3052, 2985, 2304, 2148, 1469, 1431, 1265, 894, 702 cm⁻¹

7-((tert-butyldiphenylsilyl)ethynyl)-3-methyl-1-(pyridin-2-yl)indoline (6n)

Following the general reaction procedure D, **6n** was obtained as a yellow oil (49.6 mg, 0.11 mmol, Yield: 75%); ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 8.08 (m, 1H), 7.59 – 7.56 (m, 4H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.38 – 7.25 (m, 6H), 7.21 – 7.09 (m, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.54 (ddd, *J* = 7.6, 5.0, 0.8 Hz, 1H), 4.48 (dd, *J* = 10.7, 8.7 Hz, 1H), 3.91 (dd, *J* = 10.7, 7.1 Hz, 1H), 3.47 – 3.34 (m, 1H), 1.30 (d, *J* = 7.1 Hz, 3H), 0.96 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.81, 147.57, 145.78, 140.01, 136.29, 135.53 × 4, 133.41, 133.36, 132.83, 129.21 × 2, 127.55 × 4, 124.46, 121.57, 116.22, 112.58, 108.58, 106.51, 98.16, 61.74, 35.36, 27.03 × 3, 19.39, 18.48; HRMS (ESI): m/z calculated for [C₃₂H₃₃N₂Si]⁺ [M + H]⁺: 473.2413, Found: 473.2414; FTIR (NaCl): v 3070, 2927, 2146, 1581, 1469, 1429, 1325, 1300, 1251, 1109, 908, 819 cm⁻¹

7-((tert-butyldiphenylsilyl)ethynyl)-4-methyl-1-(pyridin-2-yl)indoline (60)

Following the general reaction procedure D, **60** was obtained as a yellow oil (60.2 mg, 0.13 mmol, Yield: 91%); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 5.1 Hz, 1H), 7.58 – 7.58 (m, 4H), 7.41 – 7.21

(m, 7H), 7.18 – 7.10 (m, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 6.54 (dd, J = 7.9, 5.1 Hz, 1H), 4.35 (t, J = 8.3 Hz, 2H), 2.99 (t, J = 8.3 Hz, 2H), 2.26 (s, 3H), 0.95 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.83, 147.52, 145.84, 136.16 × 2, 135.58, 135.53 × 4, 133.51, 133.14, 132.67, 129.15 × 2, 127.51 × 4, 122.90, 116.14, 112.79, 106.78, 106.04, 97.32, 53.58, 27.39, 27.02 × 3, 18.91, 18.48; HRMS (ESI): m/z calculated for [C₃₂H₃₃N₂Si]⁺ [M + H]⁺: 473.2413, Found: 473.2404; FTIR (NaCl): v 3070, 2954, 2146, 1693, 1593, 1446, 1381, 1111, 908, 819 cm⁻¹

7-(3,3-dimethylbut-1-yn-1-yl)-1-(pyridin-2-yl)indoline (6p)

Following the general reaction procedure D, **6p** was obtained as a yellow solid (27.8 mg, 0.10 mmol, Yield: 72%); m.p. = 82-84 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.31 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.50 (ddd, *J* = 8.4, 7.8, 1.9 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 1H), 7.13 (dd, *J* = 7.8, 1.1 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.84 (t, *J* = 7.8 Hz, 1H), 6.79 (ddd, *J* = 7.8, 5.0, 1.1 Hz, 1H), 4.33 (t, *J* = 8.2 Hz, 2H), 3.07 (t, *J* = 8.2 Hz, 2H), 0.99 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 156.19, 147.53, 145.88, 135.85, 134.45, 131.49, 124.23, 121.48, 115.68, 113.33, 109.74, 107.17, 77.10, 53.74, 30.54 × 3, 28.87, 28.00; HRMS (ESI): m/z calculated for [C₁₉H₂₁N₂]⁺ [M + H]⁺: 277.1705, Found: 277.1702; FTIR (NaCl): v 3419, 2966, 2922, 2108, 1635, 1593, 1581, 1469, 1433, 1327,1151, 987 cm⁻¹

7-(3,3-dimethylbut-1-yn-1-yl)-3-methyl-1-(pyridin-2-yl)indoline (6q)

Following the general reaction procedure D, **6q** was obtained as a yellow oil (30.1 mg, 0.10 mmol, Yield: 74%); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (ddd, J = 5.0, 1.9, 0.8 Hz, 1H), 7.50 (ddd, J = 8.5, 7.1, 1.9 Hz, 1H), 7.19 (d, J = 8.5 Hz, 1H), 7.10 (dt, J = 7.1, 0.8 Hz, 1H), 6.95 – 6.84 (m, 2H), 6.78 (ddd, J = 7.1, 5.0, 0.8 Hz, 1H), 4.46 (dd, J = 10.7, 8.7 Hz, 1H), 3.88 (dd, J = 10.7, 7.1 Hz, 1H), 3.44 – 3.35 (m, 1H), 1.28 (d, J = 6.9 Hz, 3H), 0.99 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 156.29, 147.57, 145.47, 139.66, 135.84, 131.53, 123.02, 121.59, 115.57, 113.04, 109.70, 107.08, 77.04, 61.64, 35.56, 30.51 × 3, 27.96, 19.36; HRMS (ESI): m/z calculated for [C₂₀H₂₃N₂]⁺ [M + H]⁺: 291.1961, Found: 291.1859; FTIR (NaCl): v 2964, 2868, 2218, 1728, 1579, 1429, 1220, 1056, 910 cm⁻¹

5-bromo-7-(3,3-dimethylbut-1-yn-1-yl)-1-(pyridin-2-yl)indoline (6r)

Following the general reaction procedure D, **6r** was obtained as a yellow oil (43.6 mg, 0.12 mmol, Yield: 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.67 – 8.18 (m, 1H), 7.52 (ddd, *J* = 8.4, 7.2, 1.9 Hz, 1H), 7.30 (d, *J* = 2.0 Hz, 1H), 7.22 (d, *J* = 2.0 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 6.82 (dd, *J* = 7.2, 5.0 Hz, 1H), 4.30 (t, *J* = 8.3 Hz, 2H), 3.07 (t, *J* = 8.3 Hz, 2H), 0.98 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ

155.74, 147.60, 145.12, 136.48, 135.97, 133.62, 127.24, 116.14, 113.43, 112.87, 110.95, 108.31, 76.01, 53.87, 30.37×3 , 28.60, 27.96; HRMS (ESI): m/z calculated for $[C_{19}H_{20}BrN_2]^+$ [M + H]⁺: 355.0810, Found: 355.0811; FTIR (NaCl): v 2968, 2899, 2222, 1593, 1469, 1359, 1321, 1213, 1153, 910, 862 cm⁻¹

7-(phenylethynyl)-1-(pyridin-2-yl)indoline (6s)

Following the general reaction procedure E, **6s** was obtained as a yellow solid (27.8 mg, 0.09mmol, Yield: 67%); m.p. = 97-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.30 (m, 1H), 7.46 (ddd, *J* = 8.4, 7.8, 1.9 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.24 – 7.15 (m, 4H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.98 – 6.92 (m, 2H), 6.89 (t, *J* = 7.6 Hz, 1H), 6.86 – 6.78 (m, 1H), 4.36 (t, *J* = 8.3 Hz, 2H), 3.13 (t, *J* = 8.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.54, 147.57, 145.98, 135.86, 134.48, 131.38, 130.98 × 2, 128.00 × 2, 127.80, 125.00, 123.36, 121.28, 116.08, 113.26, 108.12, 98.33, 87.81, 53.66, 28.67; HRMS (ESI): m/z calculated for [C₂₁H₁₇N₂]⁺ [M + H]⁺: 297.1392, Found: 297.1395; FTIR (NaCl): v 3051, 2916, 2848, 2303, 1589, 1467, 1431, 1265, 1153, 1066, 894, 702 cm⁻¹

7-ethynylindoline (6a')

Following the reported method^[3,4], **6a'** was obtained as a colorless oil (13.3 mg, 0.09 mmol, Yield: 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.03 (m, 2H), 6.60 (t, *J* = 7.5 Hz, 1H), 4.21 (s, NH), 3.63 (t, *J* = 8.4 Hz, 2H), 3.25 (s, 1H), 3.07 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 154.32, 130.03, 128.85, 125.16, 117.88, 101.81, 80.84, 80.66, 46.98, 29.83; HRMS (ESI): m/z calculated for [C₁₀H₁₀N]⁺ [M + H]⁺: 144.0813, Found: 144.0815; FTIR (NaCl): v 3390, 3288, 2916, 2848, 2096, 1595, 1469, 1334, 1055, 1028 cm⁻¹

c1 was obtained as a red solid. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 5.8, 1.8 Hz, 1H), 7.54 (ddd, J = 8.8, 7.3, 1.8 Hz, 1H), 7.37 (d, J = 7.3 Hz, 1H), 6.90 (t, J = 7.3 Hz, 1H), 6.77 (dd, J = 7.3, 1.8 Hz, 1H), 6.74 – 6.65 (m, 1H), 6.54 (d, J = 8.8 Hz, 1H), 3.98 (td, J = 9.8, 5.8 Hz, 1H), 3.70 (dd, J = 18.7, 9.8 Hz, 1H), 3.35 – 3.18 (m, 2H), 1.39 (s, 15H); ¹³C NMR (101 MHz, CDCl₃) δ 154.11, 153.25, 141.54, 140.04, 139.74, 137.62, 137.59, 124.64, 124.60, 118.90, 114.62, 107.87, 95.61 × 2, 95.55 × 2, 48.36, 28.55, 8.82 × 5; HRMS (ESI): m/z calculated for [C₂₃H₂₆N₂Rh]⁺ [M – Cl]⁺: 433.1151, Found: 433.1146; FTIR (NaCl): v 3583, 3053, 2914, 1593, 1469, 1431, 1265, 894, 738 cm⁻¹

2154-20-1, 1H, AV 400 MHz, 20140801

2106-20-2, 1H NMR, CDC13, BBF0-01, Jul 14

1108-20-1, BBF01, 1H-NMR,

170 160

150 140 130 120

90

110 100

80

70

60

50

40

30

20

10 ppm

1128-20-1, BBF01

1106-20-22, BBF01, 1H-NMR,

1108-20-3, BBF01, 1H-NMR,

318	303	299	249	.195	.194	.177	.176	.168	.162	.150	.144	.116	.110	.098	.092	.080	. 077	.073	.064	.060	.046	.027	.008	.769	.761	.750	.743	.737	. 733	.728	.413	.393	.373	.105	.085	065	222.
C - 1	5	1	-	1	1-1	L'J	LJ	LJ	LJ	5	5	17	17	5-1	5-1	5	5-1	1-1	1.7	1	5	5	5	9	9	50	5	9-	9-0	97	14	P-1	5	n L	13	1	3

1108--20-2, AV500

2228-10-1A, BBF01, Oct 14

436	423	420	419	415	402	398	280	259	133	131	115	113	080	966	947	0170	768	758	756	753	750	740	738	648	627	67.0	065	057	390	370	350	0110	0.00	705	445	100	037	017	092	078	073	090	055	042	708	690	670	653	468	456	449	431
•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	•	•	•	•	•	•		•	•				5.7	• •	•	•	•	
r-	5	r	r-	-	1-	1-	5	r-	5	-	r-	-	0	6	6	6	6	6	6	6	6	6	0	0	9	9	0	6	1	4	4	Ċ	0.0	5 0	m	3	m	3	2	2	2	0	3	2		-			. —	-	-	-
-	-	-				L	1		1	1	1	4	1	1	1		1					-	-	-		4	-	-	1	k	1		1	\downarrow	1	1	1	1	7	-	1	1	1	1	1		1	-	1	2		-

2214-20, AV400, sep 14

1132-10-1, BBF01

.403	.402	.399	.386	.381	.282	.274	.267	.253	.233	.227	.219	.212.	.202.	.091	.072	.060	.054	.019	.838	1.6L.	.784	.778	PTT.	.768	753	878	100	100.	.844	.821	.810	.525	203	 .486	.465	585	200	.546		L C U	010.	STC.
		1-1	LT	L.	L L	5-11	117	1.1	1-1	1-7	1	17	27/1	5	2-1	5	L	1.7	9-10	5	9	94	0	9 -		1	1		-4	5-	٢4	53	1-2	シ	13	(1	10	27		7	V	ī

1132-10-1, BBF01

1132-10-2, BBF01

4 Ო Ო Თ 4 Ს Თ Მ Მ Თ Ც 4 Ც Ს Ო Თ Ო Ა 4 Ც Ს Ო ഗ 4 Ს Თ Მ Მ Ტ Თ Ო 4 4 Ს Ო Ო ഗ 4 Ს Ს Ო Ო Მ Ტ Ტ Თ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	010	78 62
C C C C C C C C C C C C C C C C C		1.4
	\vee	\vee

1162-10, BBF01

.414	+20.	.376	.371	.315	.297	.278	.241	.237	.228	.219	.212	.190	.168	.087	.071	.030	.011	.992	.938	.897	.769	.752	.739	.731	. 683	. 661	.879	.856	.840	1.0	/ 12.	. 948	91 D	>+
		-	5-1	5	1	1	1. 1	61	1-1	11	1	1	61	117	11	1-7	1-1	9-10	94	916	166	16	10	9	5	ی ب	53	13	1 a	1	, L	1	1	1

2104-10, 1H NMR, CDC13, BBF0-01, Jul 14

0000 000000000000000000000000000000000	22222222222222222222222222222222222222	020202 000 0202 000 000 00	963 963 270
	· · · · · · · ·		

1162-20-1, BBF01

2104-20aa, 1H NMR, CDC13, BBF0-01, Jul 14

20104-20aa, 1H NMR, CDC13, AV400, 20140701

2114-20, 1H NMR, CDC13, BBF0-01, Jul 14

1150-10-1, BBF01

1150-10-1, BBF01

1144-20-1q, BBF01

Х9885-9999999999999999999999999999999999	5 4 4 4 5 1 8 2 8 4 4 7 1 8 2 8 4 4 7 1 8 2 8 4 4 8 2 8 4 4 8 2 8 4 4 8 2 8 4 4 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	35	54
NOO00000000000000000000000000000000000	00 4440)	4 4	~ ~
		0 0	
		V	V

1144-20-2q, BBF01

1144-20-2q, BBF01

1144-10-2a, BB201 1144-10-2a, BB201 1146-10-2a, B

1270-10b,BBF01, MAY 14

288008834444888478444188868488	30.800	ŝ
00000000000000000000000000000000000000		00
DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	നനനന	-
	\checkmark	1

2070-10, 1H NMR, CDC13, BBFC-01, Jul 14

1180-0 CDC13 B3F01 400 Apr

22222222222222222222222222222222222222	065 049 023 023 008	203 181 164 164 6699 66799 6610 6611	333
~~~~~~~~~~~	4-0-4-0-4-0-4-0-4-0-4-0-4-0-4-0-4-0-4-0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			$\vee$









1206-20-16 CDC13 BBF01 400 Apr

279 2579 11855 11855 11855 11855 11855 871 8716 871 7756 7756 7756 7756 7756 7756 7756 77	714 702 697 692 698 698 691 6649 649 649	438 416 377 377 377 377 377 377 377 377 377	. 440 954 933 933 923 923 923 923
	444444444444444444444444444444444444444		









1210-10 CDC13 BBF01 400 Apr









アア ららら 4 またい 1 あの 4 で ららららら 4 またのの 2 ち 5 ち 5 ち 5 ち 5 ち 5 ち 5 ち 5 ち 5 ち 5 ち	70 28 28	94 53	45	17
0444444400-0000000000000000000000000000		000	c2.	<u>م</u>
000000000000000000000000000000000000000	444	NON	5	0
	$\searrow$			











B





1252-10,3BF01, MAY 14





## 2122-10-2, BBOF1,Aug 14







1208-20b CDC13 BBF01 400 Apr













## 1270-20, 1H, CDC13, 400MHz, AV400











. .

2084-20, 1H NMR, CDC13, BBFO-01, Jul 14







80

70

60 50

40

30

20

10 ppm

170 160 150 140 130 120 110 100 90














2084-30, 1H NMR, CDC13, BBFC-01, Jul 14











2144-10, BBOF1,Aug 14







823, 1H, AV 400 MHz, 20140801





X-ray Data X-Ray Structure for 3a Cambridge Crystallographic Data Centre Deposition Number: 1029305



## X-Ray Structure for 6b

Cambridge Crystallographic Data Centre Deposition Number: 1029306



X-Ray Structure for c1 Cambridge Crystallographic Data Centre Deposition Number: 1029307





## **Reference:**

- [1] S. Wagaw, S. L. Buchwald, J. Org. Chem., 1996, 61, 7240.
- [2] J. P. Brand, J. Waser, Angew. Chem. Int. Ed., 2010, 49, 7304.
- [3] V. Smout, A. Peschiulli, S. Verbeeck, E. A. Mitchell, W, Herrebout, P. Bultinck, C. M. L. V. Velde, D. Berthelot, L. Meerpoel, B. U. W. Maes, *J. Org. Chem.* 2013, 78, 9803.
- [4] K. D. Collins, F. Lied, F. Glorius, Chem. Commun. 2014, 50, 4459.