Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Organocatalytic Biomimetic Approach to $\alpha\text{-}Aminophosphonates$

by

Dorota Kowalczyk, and Łukasz Albrecht*

Institute of Organic Chemistry, Chemistry Department, Lodz University of Technology Żeromskiego 116, 90-924 Łódź, Poland E-mail: <u>lukasz.albrecht@p.lodz.pl</u>

Supporting Information

1.	General methods	S2
2.	Screening results	S 3
3.	Biomimetic asymmetric synthesis of α -aminophosphonates 7 – general procedure	S6
4.	Biomimetic asymmetric synthesis of α -aminophosphonates 3 – general procedure	S10
5.	HPLC traces	S12

1. General methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ¹H and 176 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). ³¹P NMR spectra were recorded on a Bruker Avance DPX 250 spectrometer at room temperature in CDCl₃ as a solvent using 85% H₃PO₄ as external standard. Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+) ionization (referenced to the mass of the charged species, due to the acidic conditions of the analysis in the mass spectra of the products 7 only the molecular peaks of the corresponding free amines 3 were observed and therefore are reported). Optical rotations were measured on a Perkin-Elmer 241 polarimeter and $[\alpha]_{D}$ values are given in deg-cm-g⁻¹-dm⁻¹; concentration c is listed in g-(100 mL)⁻¹. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or I2 stain. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak IC column). Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka). Acylphosphonates **1** were prepared according to literature procedures.¹ Cinchona-alkaloidderived catalysts **10d**² and **10e-f**³ were synthesized following the literature procedures.

¹ (a) J. Zon, *Synthesis* 1984, **4**, 324; (b) H. Maeda, K. Takahashi and H. Ohmori, *Tetrahedron* 1998, **54**, 12233; (c) S. M. A. Kedrowski and D. A. Dougherty, *Org. Lett.* 2010, **12**, 3990.

² W. Yang and D.-M. Du, *Org. Lett.* 2010, **12**, 5450.

³ X. Liu, H. Li and L. Deng, *Org. Lett*. 2005, **7**, 167.

2. Screening results

2.1. Benzylamine screening^a

Entry	Amine	1a:5:9a ratio ^b	Conversion [%] ^c
1	2a	0:1:4	20
2	2b	0:0:1	0
3	2c	2:2:7	18
4	2d	0:2:13	13
5	2e	0:1:5	17

^a Reactions performed on a 0.1 mmol scale. ^b As determined by a ³¹P NMR of a crude reaction mixture.

^c Conversion into the desired product **5** is given.

2.2. Condensation reaction conditions screening^a

		$H_{3}C \xrightarrow{P(OEt}_{O} P(OEt$ $H_{2}N \xrightarrow{Ar}$ $H_{2}N \xrightarrow{Ar}$ $2a: Ar = 2-CIC_{6}$)2 Additive Solvent T, t ₁	$ \begin{array}{c} $)₂ ar ⁺ O H−P(OEt)₂ 9a	
Entry	Solvent	T [°C]	Additive	t ₁ [min]	1a:5a:9a ratio ^b	Conversion [%] ^c
1	$CICH_2CH_2CI$	-40	-	30	0:0:1	0
2	$CICH_2CH_2CI$	0	-	30	0:0:1	0
3	$CICH_2CH_2CI$	rt	-	30	0:1:5	20
4	$CICH_2CH_2CI$	40	-	30	0:1:3	25
5	$CICH_2CH_2CI$	50	-	30	0:1:2	33
6	$CICH_2CH_2CI$	60	-	30	0:1:3	25
7	CH_2CI_2	50	-	30	0:2:3	40
8	CHCl₃	50	-	30	0:1:1	50
9	THF	50	-	30	0:1:3	25
10	Toluene	50	-	30	0:1:3	25
11	Benzene	50	-	30	0:1:5	17
12	CHCl₃	50	MS 4Å	30	0:3:1	75
13	CHCl₃	50	MgSO ₄	30	0:2:1	67
14	CHCl₃	50	MS 4Å	1	13:4:1	22
15	CHCl₃	50	MS 4Å	10	5:4:1	40
16	CHCl₃	50	MS 4Å	60	0:2:8	18

^a Reactions performed on a 0.1 mmol scale. ^b As determined by a ³¹P NMR of a crude reaction mixture. ^c Conversion into the desired product **5a** is given.

2.3. Isomerization reaction catalyst screening

Reactions performed on a 0.1 mmol scale. Isolated yields over two steps are given. Enantiomeric excesses as determined by the chiral stationary phase HPLC.

3. Biomimetic asymmetric synthesis of α -aminophosphonates 7 – general procedure

An ordinary screw-cap vial was charged with a magnetic stirring bar, the corresponding acylphosphonate **1** (0.2 mmol, 1 equiv), CHCl₃ (0.4 mL), 2-chlorobenzylamine **2a** (0.2 mmol, 1 equiv) and powdered molecular sieves 4Å (100 mg). The resulting mixture was heated at 50 °C for a given time (t_1 - reaction progress was monitored by ³¹P NMR spectroscopy). After cooling the reaction mixture to room temperature, catalyst **10e** (0.02 mmol, 0.2 equiv) was added. Subsequent heating of the reaction at 40 °C for a given time (t_2 - reaction progress was monitored by ³¹P NMR spectroscopy) resulted in a complete consumption of the *N*-benzylimine **5**. The crude reaction mixture was directly purified by FC on silica gel to afford target product **7**.

7b (*R*,*E*)-Diisopropyl (1-((2-chlorobenzylidene)amino)ethyl)phosphonate (Table 2, entry 1)

Following the general procedure, **7b** was isolated by FC on silica (hexane/EtOAc 3:1) in 55% yield as a pale-yellow oil ($t_1 = 30$ min; $t_2 = 24$ h). ¹H NMR (700 MHz, CDCl₃) δ

^O 8.67 (d, *J* = 4.9 Hz, 1H), 7.97 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.37 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.34 (dt, *J* = 7.8, 0.9 Hz, 1H), 7.28 (dt, *J* = 7.8, 0.9 Hz, 1H), 4.74 (ddt, *J* = 12.5, 7.4, 6.2 Hz, 2H), 3.87 (dq, *J* = 13.5, 6.8 Hz, 1H), 1.56 (dd, *J* = 17.9, 6.9 Hz, 3H), 1.37 (d, *J* = 6.2 Hz, 3H), 1.34 (d, *J* = 6.2 Hz, 3H), 1.32 (d, *J* = 6.2 Hz, 3H), 1.27 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 160.0 (d, *J* = 16.9 Hz), 135.5, 133.1 (d, *J* = 3.2 Hz), 131.9, 129.9, 128.7, 127.1, 71.1 (d, *J* = 7.2 Hz, 2C), 64.5(d, *J* = 158.7 Hz), 24.4 (d, *J* = 3.4 Hz), 24.3 (d, *J* = 3.4 Hz), 24.1 (d, *J* = 5.0 Hz, 2C), 17.0 (d, *J* = 5.6 Hz).³¹P NMR (101 MHz, CDCl₃) δ 22.6. HRMS calculated for $[C_{15}H_{23}CINO_3P-C_7H_3CI+H]^+$: 210.1259; found: 210.1255. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 9.0 min, τ_{minor} = 7.5 min (96% *ee*). $[\alpha]^{20}_{D}$ = -1.2 (*c* = 1.23, CHCl₃).

7c (*R*,*E*)-Diisopropyl (1-((2-chlorobenzylidene)amino)butyl)phosphonate (Table 2, entry 2)

Following the general procedure, **7c** was isolated by FC on silica (hexane/EtOAc 3:1) in 59% yield as a pale-yellow oil ($t_1 = 120$ min; $t_2 = 30$ h). ¹H NMR (700 MHz, CDCl₃) δ 8.70 (d, J = 5.1 Hz, 1H), 8.06 (dd, J = 7.9, 1.7 Hz, 1H), 7.36 (dd, J = 8.1, 1.4 Hz, 1H),

7.33 (dt, J = 8.1, 1.8 Hz, 1H), 7.28 (dt, J = 7.2, 1.0 Hz, 1H), 4.71 - 4.74 (m, 2H), 3.65 (ddd, J = 13.4, 10.5, 3.0 Hz, 1H), 2.05 - 1.88 (m, 2H), 1.41 - 1.36 (m, 1H), 1.35 (d, J = 6.2 Hz, 3H), 1.33 (d, J = 6.2 Hz, 3H), 1.31 (d, J = 6.2 Hz, 3H), 1.25 (d, J = 6.2 Hz, 3H), 1.23 - 1.16 (m, 1H), 0.91 (t, J = 7.4 Hz, 3H).¹³C NMR (176

MHz, CDCl₃) δ 160.6 (d, *J* = 17.2 Hz), 135.3, 133.1 (d, *J* = 3.2 Hz), 131.8, 129.9, 128.8, 127.1, 71.0 (d, *J* = 7.4 Hz), 70.9 (d, *J* = 6.9 Hz),69.7 (d, *J* = 157.2 Hz), 32.2 (d, *J* = 4.6 Hz), 24.3 (d, *J* = 3.4 Hz), 24.2 (d, *J* = 3.4 Hz), 24.1 (d, *J* = 4.5 Hz), 24.1 (d, *J* = 4.5 Hz), 20.0 (d, *J* = 15.5 Hz), 13.6.³¹P NMR (101 MHz, CDCl₃) δ 22.9. HRMS calculated for $[C_{17}H_{27}CINO_3P-C_7H_3CI+H]^+$: 238.1567; found: 238.1568. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 7.1 \text{ min}$, $\tau_{minor} = 5.2 \text{ min} (92\% ee)$. $[\alpha]^{20}_{D} = -4.3 (c = 0.98, CHCl_3)$.

7d (*R*,*E*)-Diisopropyl (1-((2-chlorobenzylidene)amino)pentyl)phosphonate (Table 2, entry 3)

P(O/Pr)₂ 3:1)

Following the general procedure, **7d** was isolated by FC on silica (hexane/EtOAc 3:1) in 56% yield as a pale-yellow oil ($t_1 = 120$ min; $t_2 = 30$ h). ¹H NMR (700 MHz, CDCl₃) δ 8.69 (d, J = 4.9 Hz, 1H), 8.06 (dd, J = 7.7, 1.6 Hz, 1H), 7.36 (dd, J = 7.9, 1.7

Hz, 1H), 7.34 (dt, *J* = 8.0, 1.7 Hz, 1H), 7.28 (dt, *J* = 7.7, 1.6 Hz, 1H), 4.67–4.79 (m, 2H), 3.63 (dt, *J* = 13.4, 6.7 Hz, 1H), 2.04 – 1.93 (m, 2H), 1.35 (d, *J* = 6.2 Hz, 3H), 1.33 (d, *J* = 6.2 Hz, 3H), 1.30 (d, *J* = 6.2 Hz, 3H), 1.27-1.34 (m, 3H), 1.24 (d, *J* = 6.1 Hz, 3H), 1.17 (dt, *J* = 7.5, 4.1 Hz, 1H), 0.87 (dt, *J* = 7.2, 1.8 Hz, 3H).¹³C NMR (176 MHz, CDCl₃) δ 160.5 (d, *J* = 17.1 Hz), 135.4, 133.1 (d, *J* = 3.3 Hz), 131.8, 129.9, 128.8, 127.1, 71.0 (d, *J* = 7.2 Hz), 70.9 (d, *J* = 6.9 Hz), 70,0 (d, *J* = 157.0 Hz), 29.9 (d, *J* = 4.4 Hz), 29.1 (d, *J* = 15.0 Hz), 24.3 (d, *J* = 3.4 Hz), 24.3 (d, *J*= 3.5 Hz), 24.1 (d, *J* = 4.6 Hz), 24.1 (d, *J* = 4.6 Hz), 22.3, 14.0.³¹P NMR (101 MHz, CDCl₃) δ 22.8. HRMS calculated for [C₁₈H₂₉ClNO₃P-C₇H₃Cl+H]⁺: 252.1723; found: 252.1726. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 6.5 min, \tau_{minor} = 5.0 min (90\% ee). [\alpha]^{20} = -2.1 (c = 1.33, CHCl₃).$

7e(*R,E*)-Diisopropyl(1-((2-chlorobenzylidene)amino)-2-methylpropyl)phosphonate (Table 2, entry 4)

Following the general procedure, **7e** was isolated by FC on silica (hexane/EtOAc 3:1) in 20% yield as a pale-yellow oil ($t_1 = 120$ min; $t_2 = 30$ h). ¹H NMR (700 MHz, CDCl₃) δ 8.67 (d, J = 4.9 Hz, 1H), 8.09 (dd, J = 7.8, 1.7 Hz, 1H), 7.37 (dd, J = 8.0, 1.4 Hz, 1H),

7.34 (td, *J* = 7.5, 1.7 Hz, 1H), 7.28 (td, *J* = 7.5, 1.5 Hz, 1H), 4.79 – 4.65 (m, 2H), 3.44 (dd, *J* = 13.4, 5.3 Hz, 1H), 2.43 (m, 1H), 1.34 (d, *J* = 6.2 Hz, 3H), 1.32 (d, *J* = 5.8 Hz, 3H), 1.31 (d, *J* = 5.8 Hz, 3H), 1.20 (d, *J* = 6.2 Hz, 3H), 1.08 (d, *J* = 6.8 Hz, 3H), 1.03 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 160.6 (d, *J* = 17.2 Hz), 135.4, 133.2 (d, *J* = 3.3 Hz), 131.8, 129.9, 128.8, 127.1, 76.0 (d, *J* = 156.0 Hz), 71.0 (d, *J* = 7.4 Hz), 70.7 (d, *J* = 7.1 Hz), 30.0 (d, *J* = 3.3 Hz), 24.4 (d, *J* = 3.3 Hz), 24.3 (d, *J* = 3.3 Hz), 24.2 (d, *J* = 5.4 Hz), 24.1 (d, *J* = 5.3 Hz), 21.3 (d, *J* = 10.7 Hz), 19.4 (d, *J* = 7.3 Hz).³¹P NMR (101 MHz, CDCl₃) δ 23.0. HRMS calculated for $[C_{17}H_{27}CINO_3P-C_7H_3CI+H]^+$: 238.1567; found: 238.1568. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 6.1 min$, $\tau_{minor} = 5.0 min$ (72% ee). $[\alpha]^{20}_{D} = -5.8 (c = 0.84$, CHCl₃).

7f (*R,E*)-Diisopropyl (1-((2-chlorobenzylidene)amino)-3-methylbutyl)phosphonate (Table 2, entry 5)

Following the general procedure, **7f** was isolated by FC on silica (hexane/EtOAc 3:1) in 62% yield as a pale-yellow oil ($t_1 = 180$ min; $t_2 = 24$ h). ¹H NMR (700 MHz, CDCl₃) δ 8.72 (d, J = 5.2 Hz, 1H), 8.06 (dd, J = 7.8, 1.7 Hz, 1H), 7.37 (dd, J = 8.0, 1.4 Hz, 1H),

7.34 (dt, J = 7.1, 1.7 Hz, 1H), 7.28 (dt, J = 7.5, 0.9 Hz, 1H), 4.72 (m, 2H), 3.78 (ddd, J = 14.1, 11.3, 2.7 Hz, 1H), 2.05-2.10 (m, 1H), 1.66-1.71 (m, 1H), 1.57 – 1.49 (m, 1H), 1.36 (d, J = 6.2 Hz, 3H), 1.33 (d, J = 6.2 Hz, 3H), 1.31 (d, J = 6.2 Hz, 3H), 1.24 (d, J = 6.2 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.85 (d, J = 6.6 Hz, 3H).¹³C NMR (176 MHz, CDCl₃) δ 160.6 (d, J = 16.5 Hz), 135.3, 133.2 (d, J = 3.3 Hz), 131.8, 129.9, 128.8, 127.1, 71.1 (d, J = 7.3 Hz), 71.0 (d, J = 6.8 Hz), 67.8 (d, J = 156.9 Hz), 38.7 (d, J = 4.5 Hz), 24.7 (d, J = 14.9 Hz), 24.3 (d, J = 4.1 Hz), 24.1 (d, J = 5.1 Hz), 24.1 (d, J = 5.1 Hz), 23.7 (d, J = 11.3 Hz), 20.6 (d, J = 8.2 Hz). ³¹P NMR (101 MHz, CDCl₃) δ 23.3. HRMS calculated for [C₁₈H₂₉CINO₃P-C₇H₃Cl+H]⁺: 252.1723; found: 252.1726. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 5.7$ min, $\tau_{minor} = 4.7$ min (91% ee). [α]²⁰_D = -12.1 (c = 1.59, CHCl₃).

7g(*R,E*)-Diisopropyl(1-((2-chlorobenzylidene)amino)pent-4-en-1-yl)phosphonate (Table 2, entry 6)

Following the general procedure, **7g** was isolated by FC on silica (hexane/EtOAc 3:1) in 63% yield as a pale-yellow oil ($t_1 = 180$ min; $t_2 = 24$ h). ¹H NMR (700 MHz, CDCl₃) δ 8.70 (d, J = 5.0 Hz, 1H), 8.06 (dd, J = 7.8, 1.7 Hz, 1H), 7.37 (dd, J = 8.1, 1.4

Hz, 1H), 7.34 (td, *J* = 8.0, 1.7 Hz, 1H), 7.28 (td, *J* = 7.5, 1.4 Hz, 1H), 5.84 – 5.63 (m, 1H), 5.03 – 4.97 (m, 2H), 4.85 – 4.64 (m, 2H), 3.70 (ddd, *J* = 13.3, 10.2, 3.1 Hz, 1H), 2.34 – 2.02 (m, 3H), 1.98 – 1.91 (m, 1H), 1.35 (d, *J* = 6.2 Hz, 3H), 1.33 (d, *J* = 6.2 Hz, 3H), 1.31 (d, *J* = 6.2 Hz, 3H), 1.25 (d, *J* = 6.2 Hz, 3H).¹³C NMR (176 MHz, CDCl₃) δ 161.2 (d, *J* = 16.8 Hz), 137.4, 135.4, 133.1 (d, *J* = 3.1 Hz), 131.9, 129.9, 128.7, 127.1, 115.8, 71.1 (d, *J* = 5.8 Hz), 71,0 (d, *J* = 5.6 Hz), 68.9 (d, *J* = 154.9 Hz), 30.7 (d, *J* = 15.6 Hz), 29.2 (d, *J* = 4.0 Hz), 24.3 (d, *J* = 3.3 Hz), 24.2 (d, *J* = 3.7 Hz), 24.1 (d, *J* = 4.1 Hz), 24.1 (d, *J* = 4.2 Hz).³¹P NMR (101 MHz, CDCl₃) δ 22.6. HRMS calculated for $[C_{18}H_{27}CINO_3P-C_7H_3CI+H]^+$: 250.1567; found: 250.1571. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 6.5 min$, $\tau_{minor} = 5.2 min$ (95% ee). $[\alpha]^{20}_{D} = -3.0$ (*c* = 1.46, CHCl₃).

7h(*R*,*E*)-Diisopropyl(1-((2-chlorobenzylidene)amino)-3-phenylpropyl)phosphonate (Table 2, entry 7)

Following the general procedure, **7h** was isolated by FC on silica (hexane/EtOAc 3:1) in 40% yield as a pale-yellow oil ($t_1 = 30$ min; $t_2 = 30$ h). ¹H NMR (700 MHz, CDCl₃) δ 8.68 (d, *J* = 5.0 Hz, 1H), 8.09 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.38 (dd, *J* = 7.9, 1.4

Hz, 1H), 7.35 (dt, J = 7.6, 1.7 Hz, 1H), 7.30 (dt, J = 7.5, 1.4 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.18 – 7.14 (m, 3H), 4.74 – 4.65 (m, 2H), 3.64 (ddd, J = 13.5, 10.3, 3.1 Hz, 1H), 2.73 (ddd, J = 14.0, 9.1, 4.9 Hz, 1H), 2.49 (dt, J = 13.9, 8.4 Hz, 1H), 2.41 – 2.25 (m, 2H), 1.34 (d, J = 6.2 Hz, 3H), 1.31 (d, J = 6.2 Hz, 3H), 1.29 (d, J = 6.2 Hz, 3H), 1.21 (d, J = 6.2 Hz, 3H).¹³C NMR (176 MHz, CDCl₃) δ 161.36 (d, J = 16.5 Hz), 141.0, 135.5, 133.1 (d, J = 3.3 Hz), 132.0, 129.9, 128.8, 128.7 (2C), 128.6 (2C), 127.1, 126.1, 71.1 (d, J = 4.0 Hz), 71.0

(d, J = 3.6 Hz), 68.8 (d, J = 156.9 Hz), 32.8 (d, J = 15.7 Hz), 31.6 (d, J = 3.9 Hz), 24.3 (d, J = 3.5 Hz), 24.2 (d, J = 3.8 Hz), 24.2 (d, J = 5.1 Hz), 24.1 (d, J = 5.1 Hz). ³¹P NMR (101 MHz, CDCl₃) δ 22.4. HRMS calculated for [C₂₂H₂₉ClNO₃P-C₇H₃Cl+H]⁺: 300.1723; found: 300.1729. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 7.4 \text{ min}$, $\tau_{minor} = 6.0 \text{ min}$ (94% ee). [α]²⁰_D = -15.6 (c = 1.70, CHCl₃).

4. Biomimetic asymmetric synthesis of α -aminophosphonates 3 – general procedure

 $\begin{array}{l} \textbf{3b: } R = \textit{iPr} \\ 74\% \textit{ yield, 96\% ee} \\ [\alpha]_D{}^{rt:} -2.5 \textit{ (c = 1.15, MeOH)} \\ \textbf{lit. } [\alpha]_D{}^{rt:} -1.5 \textit{ (c = 0.85, MeOH) ref. 4 (ESI)} \end{array}$

"Step-wise" procedure

An ordinary screw-cap vial was charged with a magnetic stirring bar, aminophosphonate **7b** (0.1 mmol, 1 equiv), MeOH (0.5 mL) and aqueous 1N HCl (0.5 mL). Upon stirring at room temperature for 2 h, the resulting mixture was extracted with hexane (3x5 mL). The combined organic phases were washed with 1N HCl (0.5 mL). The aqueous phases were combined, brought to pH 8.0 with solid NaHCO₃, extracted with CH₂Cl₂ (3x5 mL), dired MgSO₄, filtered, concentrated and subjected to FC on silica gel to give α -aminophosphonate **3b**.

"One-pot" procedure

An ordinary screw-cap vial was charged with a magnetic stirring bar, the corresponding acylphosphonate **1a** or **1b** (0.2 mmol, 1 equiv.), CHCl₃ (0.4 mL), 2-chlorobenzylamine **2a** (0.2 mmol, 1 equiv.) and powdered molecular sieves 4Å (100 mg). The resulting mixture was heated at 50 °C for 30 min. After cooling the reaction mixture to room temperature, catalyst **10e** (0.02 mmol, 0.2 equiv) was added. Subsequent heating of the reaction at 40 °C for 24 h resulted in a complete consumption of the imine **7**. Subsequently, the reaction mixture was filtered to remove molecular sieves and concentrated. The resulting residue was dissolved in MeOH (1 mL) and aqueous 1N HCl (1 mL) was added. Upon stirring at room temperature for 2 h, the resulting mixture was extracted with hexane (3x5 mL). The combined organic phases were washed with 1N HCl (1 mL). The aqueous phases were combined, brought to pH 8.0 with solid NaHCO₃, extracted with CH₂Cl₂ (3x5 mL), dired MgSO₄, filtered, concentrated and subjected to FC on silica gel to give α -aminophosphonates **3**.

3a (R)-Diethyl (1-aminoethyl)phosphonate (Scheme 5)

H₃C^{··}_O(OEt)₂ Following the general "one-pot" procedure, **3a** was isolated by FC on silica (CH₂Cl₂/MeOH 20:1) in 73% yield as a pale-yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 4.21 – 4.06 (m, 4H), 3.10 (dq, J = 9.0, 7.2 Hz, 1H), 1.36 – 1.31 (m, 9H). ¹³C NMR (176 MHz, CDCl₃) δ 62.3 (d, J = 4.9 Hz), 62.25 (d, J = 4.5 Hz), 44.4 (d, J = 149.3 Hz), 17.4, 16.7 (d, J = 5.5 Hz, 2C). ³¹P NMR (101 MHz, CDCl₃) δ 30.5. HRMS calculated for [C₆H₁₆NO₃P+H]⁺: 182.0941; found: 182.0944. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (70:30)]; flow rate 1.0 mL/min; τ_{major} = 13.1 min, τ_{minor} = 11.8 min (89% ee). [α]²⁰_D = -4.3 (*c* = 0.64, CHCl₃).

3b (*R*)-Diisopropyl (1-aminoethyl)phosphonate (Scheme 5)

H₃C $P_{0}^{(O/Pr)_2}$ Following either the general "step-wise" or "one-pot" procedure, **3b** was isolated by FC on silica (CH₂Cl₂/MeOH 20:1) in 79% or 74% yield, respectively, as a pale-yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 4.72 (dtd, *J* = 7.8, 6.2, 1.6 Hz, 2H), 3.02 (dq, *J* = 9.0, 7.2 Hz, 1H), 1.37 (ddd, *J* = 9.8, 6.2, 2.8 Hz, 2H), 1.36 – 1.34 (m, 3H), 1.34 (d, *J* = 6.8 Hz, 3H), 1.32 (d, *J* = 6.5 Hz, 3H), 1.31 (d, *J* = 6.8 Hz, 3H), 1.29 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 70.6 (d, *J* = 7.4 Hz), 70.5 (d, *J* = 7.2 Hz), 44.9 (d, *J* = 149.7 Hz), 24.3 (d, *J* = 2.0 Hz), 24.25 (d, *J* = 1.4 Hz, 2C), 24.2 (d, *J* = 1.4 Hz), 17.33. ³¹P NMR (101 MHz, CDCl₃) δ 28.5. HRMS calculated for C₈H₂₀NO₃P+H]⁺: 210.1254; found: 210.1255. The ee was determined by HPLC using a Chiralpak IC column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 9.0 min, τ_{minor} = 7.2 min (96% ee). [α]²⁰_D = -2.5 (*c* = 1.15, MeOH).⁴

⁴ C. Yuan, C. Xu and Y. Zhang, *Tetrahedron* 2003, **59**, 6095.

5. HPLC traces

7b (R,E)-Diisopropyl (1-((2-chlorobenzylidene)amino)ethyl)phosphonate (Table 2, entry 1)

Racemic sample

7c (R,E)-Diisopropyl (1-((2-chlorobenzylidene)amino)butyl)phosphonate (Table 2, entry 2)

Peak#	Name	Ret. Time	Area	Area%
1		5,245	180036	50,715
2		7,107	174962	49,285
Total			354997	100,000

Enantiomerically enriched sample

Peak#	Name	Ret. Time	Area	Area%
1		5,241	1368959	3,960
2		7,141	33200034	96,040
Total			34568993	100,000

7d (R,E)-Diisopropyl (1-((2-chlorobenzylidene)amino)pentyl)phosphonate (Table 2, entry 3)

Enantiomerically enriched sample

7e (*R,E*)-Diisopropyl (1-((2-chlorobenzylidene)amino)-2-methylpropyl)phosphonate (Table 2, entry 4)

Racemic sample

Enantiomerically enriched sample

7f (R,E)-Diisopropyl (1-((2-chlorobenzylidene)amino)-3-methylbutyl)phosphonate (Table 2, entry 5)

Peak#	Name	Ret. Time	Area	Area%
1		4,727	117472	49,625
2		5,740	119249	50,375
Total			236721	100,000

Enantiomerically enriched sample

Peak#	Name	Ret. Time	Area	Area%
1		4,890	28772	4,521
2		6,155	607569	95,479
Total			636340	100,000

7g (R,E)-Diisopropyl (1-((2-chlorobenzylidene)amino)pent-4-en-1-yl)phosphonate (Table 2, entry 6)

Peak#	Name	Ret. Time	Area	Area%
1		5,185	542384	2,635
2		6,529	20039164	97,365
Total			20581548	100,000

7h (R,E)-Diisopropyl (1-((2-chlorobenzylidene)amino)-3-phenylpropyl)phosphonate (Table 2, entry 7)

Enantiomerically enriched sample

1294070 2541604

100,000

3a (R)-Diethyl (1-aminoethyl)phosphonate (Scheme 5)

Peak#	Name	Ret. Time	Area	Area%
1		11,792	68454166	43,991
2		13,072	87156425	56,009
Total			155610590	100,000

Peak#	Name	Ret. Time	Area	Area%
1		11,581	2652702	5,672
2		12,850	44114000	94,328
Total			46766702	100,000

3b (R)-Diisopropyl (1-aminoethyl)phosphonate (Scheme 5)

ak#	Name	Ret. Time	Area	Area%
		7,204	6315872	97,747
		8,867	145590	2,253
al			6461463	100,000