Electronic Supplementary Information

Rhenium-Catalyzed Dehydrogenative Borylation of Primary and Secondary C(sp³)–H Bonds Adjacent to a Nitrogen Atom

Masahito Murai,*^{,†} Tetsuya Omura,[†]

Yoichiro Kuninobu,[†] and Kazuhiko Takai^{*,†,‡}

 † Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
 ‡Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530, Japan.

> E-mail: <u>masahito.murai@cc.okayama-u.ac.jp</u> ktakai@cc.okayama-u.ac.jp

Table of Contents

General Methods	S2
Procedure for the Synthesis of 2-Aminopyridine.	S2
Rhenium-Catalyzed Dehydrogenative Borylation of C(sp ³)–H Bond.	S 6
References	S10
X-ray Crystallographic Study of N–B Coordinated Heterocycle 2d	S 11
¹¹ B NMR Study for the Reaction of $[ReBr(CO)_3(thf)]_2$ with 9-BBN	S14
¹ H NMR and ¹³ C-NMR Spectra of Selected Compounds	S15

General Methods. All reactions were carried out in dry solvent under an argon atmosphere. Unless otherwise noted, other chemicals obtained from commercial suppliers were used without further purification. 1,2-Dichloroethane was purchased from Wako Pure Chemical Industries and was dried by the usual methods, distilled, and degassed with an argon gas for 20 min before use. Re₂(CO)₁₀ was purchased from $[\text{ReBr}(\text{CO})_3(\text{thf})]_2$ was synthesized by the reported method.¹ Sigma-Aldrich. 2-(N,N-Dimethylamino)pyridine **1a** was purchased from Tokyo Chemical Industry CO. LTD. fine chemicals. Column chromatography was performed with silica gel 60N (neutral, 40-50 purchased 9-BBN μm) from Kanto Chemical. (9-borabicyclo[3.3.1]nonane) was purchased from Sigma-Aldrich and kept under the argon in the dark. ¹H (400 MHz), ¹³C (100 MHz), and ¹¹B (130 MHz) NMR spectra were recorded on a JEOL JNN-LA400 or Varian 400 MR or Varian 300 MR spectrometer. Proton chemical shifts are reported in ppm based on the solvent resonance resulting from incomplete deuteration (CDCl₃ at 7.26 ppm) as the internal standard. 13 C NMR was recorded with complete proton decoupling and the chemical shifts are reported relative to CDCl₃ at 77.00 ppm. Boron chemical shifts are reported relative to BF₃-OEt₂ at 0.0 ppm in CDCl₃ as the external standard. The following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, m: multiplet. IR spectra were recorded on a SHIMADZU IRAFFINITY-1 100V J. High-resolution mass spectra (HRMS) was measured with JEOL JMS-700 MStation FAB-MS. Melting points were measured on a Yanaco micromelting point apparatus and are uncorrected.

Procedure for the Synthesis of 2-Aminopyridine.

2-(N-Hexyl-N-methylamino)pyridine (1b). A solution of *N*-hexyl-*N*methylamine (1.8 mL, 12 mmol) in THF (6.0 mL) was cooled to 0 $^{\circ}$ C, and 1.6 M hexane solution of ^{*n*}BuLi (6.9 mL, 11 mmol) was added dropwise over 10 min. To a mixture of 2-fluoropyridine (0.86 mL, 10 mmol) in THF (6.0 mL) was added the above lithium amide solution at 0 °C. The resultant mixture was warmed to 25 °C gradually and stirred additionally for 12 h. The reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc for three times. The combined organic layer was dried over MgSO₄, and then the organic solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with hexane and ethyl acetate as eluents to afford 2-(*N*-hexyl-*N*-methylamino)pyridine **1b** (1.88 g, 9.8 mmol, 98% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 6.8 Hz, 3H), 1.27-1.34 (m, 6H), 1.57 (quint, *J* = 7.2 Hz, 2H), 3.03 (s, 3H), 3.47 (t, *J* = 7.2 Hz, 3H), 6.45 (d, *J* = 8.0 Hz, 1H), 6.47 (dd, *J* = 4.8, 6.8 Hz, 1H), 7.39 (dt, *J* = 2.0, 8.0 Hz, 1H), 8.14 (d, *J* = 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 22.6, 26.7, 27.1, 31.7, 36.2. 50.2, 105.6, 111.0, 137.0, 147.9, 158.5. IR (neat / cm⁻¹): 3009, 2955, 2928, 2857, 1597, 1558, 1504, 1472, 1421, 1373, 1319, 1277, 1219, 1159, 1094, 982, 768, 731. HRMS (FAB⁺): calcd for C₁₂H₂₀N₂ ([M]⁺) 192.1626; found. 192.1603.

Me N 2-(*N*,*N*-Dimethylamino)-4-methylpyridine (1c): This compound was prepared by the reported procedure.² A colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 5.2 Hz, 1H), 6.39 (d, *J* = 4.8 Hz, 1H), 6.33 (s, 1H), 3.07 (s, 6H), 2.26 (s, 3H). The analytical data match those reported in the literature (*Chem. Commun.* 2008, 5779).

Figure 2-(*N*,*N*-Dimethylamino)-5-fluoropyridine (1d): This compound was prepared by the reported procedure.² A pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 3.02 (s, 6H), 6.42 (dd, *J* = 2.8, 8.0 Hz, 1H), 7.18 (dd, *J* = 2.8, 8.0 Hz, 1H), 8.00 (d, *J* = 2.8 Hz, 1H). The analytical data match those reported in the literature (*Chem. Asian J.* 2013, **8**, 2970). **2-(N,N-Dimethylamino)pyrimidine (1e):** This compound was prepared by NMe_2 the reported procedure.² A colorless oil; ¹H NMR (400 MHz, CDCl₃): $\delta 3.08$ (s, 6H), 6.34 (t, J = 4.8 Hz, 1H), 8.20 (d, J = 4.8 Hz, 2H). The analytical data match those reported in the literature (*Chem. Asian J.* 2013, **8**, 2970).

1-(N,N-Dimethylamino)isoquinoline (1f): This compound was prepared by the reported procedure.² A pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 3.10 (s, 6H), 7.16 (d, J = 6.8 Hz, 1H), 7.47 (t, J = 6.8 Hz, 1H), 7.58 (t, J = 6.8 Hz, 1H) 7.71 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H). The analytical data match those reported in the literature (*Chem. Asian J.* 2013, **8**, 2970).

2-(Pyrrolidino)pyridine (1g): This compound was prepared by the reported procedure.³ A pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 2.00-2.03 (m, 4H), 3.45-3.47 (m, 4H), 6.36 (d, J = 8.8 Hz, 1H), 6.51 (t, J = 6.8 Hz, 1H), 7.43 (dt, J = 2.0, 8.8 Hz, 1H), 8.16 (d, J = 4.8 Hz, 1H). The analytical data match those reported in the literature (*Org. Lett.* 2003, **5**, 3867).

N-(2-Pyridinyl)-1,2,3,4-tetrahydroisoquinoline (1i): This compound was prepared according to the similar procedure reported in the literature.³ An orange oil; ¹H NMR (400 MHz, CDCl₃): δ 2.98 (t, J =

6.0 Hz, 2H), 3.85 (t, *J* = 6.0 Hz, 2H), 4.71 (s, 2H), 6.60 (dd, *J* = 5.2, 6.8 Hz, 1H), 6.68 (d, *J* = 8.8 Hz, 1H), 7.18-7.21 (m, 4H), 7.50 (dt, *J* = 2.0, 8.8 Hz, 1H), 8.23 (d, *J* = 4.8 Hz, 1H). The analytical data match those reported in the literature (*J. Am. Chem. Soc.* 2001, **123**, 10935.).

N-(1-Pyridinyl)-2,3-dihydro-1*H*-indole (3): This compound was prepared according to the similar procedure reported in the literature.³

A colorless solid; ¹H NMR (400 MHz, CDCl₃): δ 3.19 (t, J = 8.8 Hz, 2H), 4.02 (t, J = 8.8 Hz, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.76 (d, J = 8.8 Hz, 1H), 6.85 (t, J = 6.8 Hz, 1H), 7.15-7.18 (m, 2H), 7.56 (dt, J = 2.0, 6.8 Hz, 1H), 8.18 (d, J = 7.6 Hz, 1H), 8.34 (d, J = 4.0 Hz, 1H). The analytical data match those reported in the literature (*J. Am. Chem. Soc.* 2001, **123**, 10935).

2-(*N***-Benzyl-***N***-methylamino)pyridine (5):** This compound was prepared by the reported procedure.² A pare yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 3.09$ (s, 3H), 4.81 (s, 2H), 6.52 (d, J = 8.8 Hz, 1H), 6.57 (dd, J = 4.8, 6.8 Hz, 1H), 7.23 (d, J = 8.8 Hz, 2H), 7.28-7.33 (m, 3H), 7.44 (dt, J = 2.0, 7.8 Hz, 1H), 8.19 (d, J = 4.0 Hz, 1H). The analytical data match those reported in the literature (*Eur. J. Org. Chem.* 2009, 4586).

[D₆]**2**-(*N*,*N*-**Dimethylamino**)**pyridine** (**1a**-*d*₆): A solution of 2-aminopyridine (565 mg, 6.0 mmol) in THF (10 mL) was cooled to 0 °C, and 1.6 M hexane solution of ^{*n*}BuLi (4.1 mL, 6.6 mmol) was added dropwise over 10 min. To a mixture of [D₃]methyl *p*-toluenesulphonate⁴ (2.27 g, 12 mmol) in THF (2.0 mL) was added the above lithium amide solution at -78 °C. The resultant mixture was warmed to 25 °C gradually and stirred additionally for 12 h. The reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc for three times. The combined organic layer was dried over MgSO₄, and then the organic solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with hexane and ethyl acetate as eluents to afford [D₆]2-(*N*,*N*-dimethylamino)pyridine **1a**-*d*₆ (462 mg, 3.6 mmol, 60% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.49 (d, *J* = 8.4 Hz, 1H), 6.52 (t, J = 7.2 Hz, 1H), 7.43 (dt, J = 1.2, 7.2 Hz, 1H), 8.16 (d, J = 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 105.7, 111.3, 137.0, 147.8, 159.4. The analytical data match those reported in the literature (*Chem. Asian J.* 2013, **8**, 2970).

Rhenium-Catalyzed Dehydrogenative Borylation of $C(sp^3)$ **–H Bond.** A flame dried sealed tube was charged with [ReBr(CO)₃(thf)]₂ (10.6 mg, 0.0125 mmol), 2-aminopyridine (0.25 mmol), 9-BBN (42.7 mg, 0.175 mmol), and toluene (2.5 mL), and the resulting mixture was stirred at 125 °C or 150 °C. After 24 h, the solvent was removed *in vacuo* and the residue was subjected to flash column chromatography on silica gel with hexane / benzene / Et₃N = 1 / 1 / 0.025 as eluents to afford the corresponding borylated compounds **2**, **5**, and **7**, respectively.

[*N*-(9-Borabicyclo[3.3.1]non-9-ylmethyl)-*N*-methyl]pyridin-2-ylamin e (2a): A colorless crystal; mp 155.4-156.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 0.61 (br, 2H), 1.36-1.43 (m, 1H), 1.66-1.73 (m, 7H), 1.78-1.86 (m, 1H), 1.93-2.06 (m, 3H), 2.65 (s, 2H), 2.96 (s, 3H), 6.31 (d, *J* = 8.8 Hz, 1H), 6.36 (t, *J* = 6.8 Hz, 1H), 7.43 (dt, *J* = 1.6, 8.0 Hz, 1H); 8.19 (d, *J* = 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 24.6, 29.7, 33.1, 35.9, 104.8, 108.4, 139.3, 143.0, 158.3. ¹¹B NMR (130 MHz, CDCl₃): δ -1.69. IR (KBr / cm⁻¹): 2916, 2835, 1638, 1545, 1458, 1420, 1290, 1240, 1196, 1157, 1141, 1105, 1031, 962, 907, 764, 735, 669, 582, 548, 527. HRMS (FAB⁺): calcd for C₁₅H₂₃BN₂ ([M]⁺) 242.1954; found. 242.1928.

[*N*-(9-Borabicyclo[3.3.1]non-9-ylmethyl)-*N*-hexyl]pyridin-2-yl amine (2b): A colorless solid; mp 56.5-57.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 0.52 (br, 2H), 0.73-0.82 (m, 3H), 1.10-1.26 (m, 6H),

1.26-1.35 (m, 2H), 1.42-1.67 (m, 8H), 1.67-1.80 (m, 1H), 1.80-2.00 (m, 3H), 2.52 (s, 2H),

3.13 (t, J = 6.2 Hz, 2H), 6.21 (d, J = 7.2 Hz, 2H); 7.25-7.29 (m, 1H), 8.07 (d, J = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 22.6, 24.1, 24.6, 26.4, 26.5, 29.7, 31.6, 33.2, 48.4, 104.9, 108.1, 139.1, 143.0, 157.8. ¹¹B NMR (130 MHz, CDCl₃): δ -1.64. IR (KBr / cm⁻¹): 3090, 2918, 2839, 2654, 1634, 1545, 1447, 1371, 1288, 1238, 1198, 1161, 1107, 1038, 968, 908, 827, 758, 677, 527. HRMS (FAB⁺): calcd for C₂₀H₃₃BN₂ ([M]⁺) 312.2737; found. 312.2739.

Me N_N-Me

[*N*-(9-Borabicyclo[3.3.1]non-9-ylmethyl)-4-methylpyridin-2-yl]-*N*methylamine (2c): A colorless crystal; mp 156.9-157.4 °C. ¹H NMR (400 MHz, CDCl₃): ¹H NMR (400 MHz, CDCl₃): δ 0.59 (br, 2H),

1.36-1.43 (m, 1H), 1.64-1.74 (m, 7H), 1.80-1.87 (m, 1H), 1.93-2.05 (m, 3H), 2.23 (s, 3H), 2.63 (s, 2H), 2.94 (s, 3H), 6.11 (s, 1H), 6.21 (dd, J = 1.6, 6.4 Hz, 1H), 8.05 (d, J = 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 24.1, 24.7, 29.8, 33.2, 35.9, 104.5, 110.4, 142.1, 151.0, 158.5. IR (KBr / cm⁻¹): 2912, 2838, 1633, 1545, 1448, 1241, 1194, 1160, 1108, 1031, 964, 908, 757, 672, 554, 527. HRMS (FAB⁺): calcd for C₁₆H₂₅BN₂ ([M]⁺) 256.2111; found. 256.2089.

[*N*-(9-Borabicyclo[3.3.1]non-9-ylmethyl)-5-fluoropyridin-2-yl]-*N*methylamine (2d): A pale yellow crystal; mp 110.1-111.0 °C. ¹H

NMR (400 MHz, CDCl₃): δ 0.63 (br, 2H), 1.35-1.43 (m, 1H), 1.61-2.15 (m, 11H), 2.67 (s, 2H), 2.96 (s, 3H), 6.25 (dd, J = 4.4, 9.6 Hz, 1H), 7.31 (dt, J = 2.4, 7.2 Hz, 1H), 8.11 (t, J = 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 23.8, 24.5, 29.5, 32.9, 36.3, 104.6 (d, $J_{CF} = 5.3$ Hz), 128.6 (d, $J_{CF} = 21.6$ Hz), 130.0 (d, $J_{CF} = 32.7$), 149.9 (d, $J_{CF} = 232.1$ Hz), 156.0. ¹¹B NMR (130 MHz, CDCl₃): δ -0.94. IR (KBr / cm⁻¹): 2913, 2857, 1653, 1560, 1449, 1410, 1389, 1275, 1240, 1107, 1036, 962, 893, 797, 735, 586, 557, 527. HRMS (FAB⁺): calcd for C₁₅H₂₂BFN₂ ([M]⁺) 260.1860; found. 260.1862.

[*N*-(**9**-Borabicyclo[**3.3.1**]non-9-ylmethyl)-*N*-methyl]pyrimidin-2-yl amine (**2e**): A yellow solid; mp 111.2-112.1 °C. ¹H NMR (400 MHz,

CDCl₃): δ 0.62 (br, 2H), 1.36-1.43 (m, 1H), 1.60-1.70 (m, 6H), 1.70-1.90 (m, 4H), 1.93-2.10 (m, 1H), 2.64 (s, 2H), 3.12 (s, 3H), 6.34 (t, J = 6.0 Hz, 1H), 8.29 (dd, J = 2.2, 6.0 Hz, 1H), 8.39 (dd, J = 2.2, 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 23.8, 24.4, 29.4, 32.3, 34.7, 105.7, 152.0, 161.1. ¹¹B NMR (130 MHz, CDCl₃): δ -3.14. IR (KBr / cm⁻¹): 2918, 2868, 2839, 1626, 1549, 1443, 1408, 1381, 1294, 1248, 1227, 1200, 1105, 1028, 962, 907, 833, 777, 738, 675, 586, 529. HRMS (FAB⁺): calcd for C₁₄H₂₂BN₃ ([M]⁺) 243.1907; found. 243.1892.

[*N*-(9-Borabicyclo[3.3.1]non-9-ylmethyl)isoquinolin-1-yl]-*N*-methyl amine (2f): A colorless solid; mp 183.2-184.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 0.64 (br, 2H), 1.25 (br, 1H), 1.38-1.45 (m, 1H), 1.62-1.79 (m, 6H), 1.79-1.93 (m, 1H), 1.98-2.12 (m, 3H), 2.90 (s, 2H),

3.63 (s, 3H), 6.68 (d, J = 6.8 Hz, 1H), 7.39 (dt, J = 6.4 Hz, 1H), 7.57-7.62 (m, 2H), 8.02 (d, J = 6.4 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 24.2, 24.6, 29.9, 33.4, 42.8, 108.0, 117.8, 125.2, 126.2, 126.8, 131.2, 135.8, 139.0. ¹¹B NMR (130 MHz, CDCl₃): δ -2.97. IR (KBr / cm⁻¹): 2913, 2843, 1740, 1628, 1560, 1450, 1435, 1408, 1356, 1339, 1248, 1196, 1144, 1101, 1034, 910, 887, 866, 787, 739, 679, 633, 569. HRMS (FAB⁺): calcd for C₁₉H₂₅BN₂ ([M]⁺) 292.2111; found. 292.2085.

J = 7.2 Hz, 1H), 6.49 (dt, J = 2.4, 7.2 Hz, 1H), 7.47 (dt, J = 2.4, 7.8 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta 23.9$, 24.7, 27.5, 28.4, 29.3, 30.3, 32.6, 34.6, 48.3, 107.6, 110.3, 139.3, 143.0, 159.8. ¹¹B NMR (130 MHz, CDCl₃): $\delta -0.35$. IR (KBr / cm⁻¹): 2949, 1951, 1902, 1639, 1533, 1450, 1402, 1331, 1298, 1248, 1194, 1152, 1105, 1035, 943, 901, 883, 833, 797, 758, 739, 675, 646, 623, 569, 530. HRMS (FAB⁺): calcd for C₁₇H₂₅BN₂ ([M]⁺) 268.2111; found. 268.2096.

1-[(9-Borabicyclo[3.3.1]non-9-yl)-2-pyridin-2-yl]-1,2,3,4-tetrahydro isoquinoline (2i): A colorless solid; mp 158.2-159.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 0.56 (br, 1H), 1.39-1.50 (m, 1H), 1.50-1.62 (m,

2H), 1.62-1.80 (m, 3H), 1.80-2.17 (m, 6H), 2.21-2.32 (m, 1H), 3.01 (t, J = 6.4 Hz, 2H), 3.35 (dt, J = 7.2, 11.6 Hz, 1H), 3.70 (dt, J = 5.6, 11.6 Hz, 1H), 4.11 (s, 1H), 6.40 (d, J = 8.8 Hz, 1H), 6.46 (t, J = 6.6 Hz 1H), 7.08-7.19 (m, 3H), 7.45 (dt, J = 7.0 Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 8.27 (d, J = 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 23.4, 24.7, 28.4, 29.7, 30.7, 31.9, 35.8, 43.8, 105.7, 109.6, 125.2, 125.9, 126.7, 127.5, 136.7, 139.3, 142.8, 143.7, 157.5. ¹¹B NMR (130 MHz, CDCl₃): δ 0.20. IR (KBr / cm⁻¹): 2918, 2880, 1633, 1558, 1519, 1471, 1365, 1288, 1269, 1213, 1159, 1103, 1067, 1034, 995, 970, 920, 899, 862, 833, 806, 758, 743, 679, 644, 623, 604, 557, 525. HRMS (FAB⁺): calcd for C₂₂H₂₇BN₂ ([M]⁺) 330.2267; found. 330.2257.

7-[(9-Borabicyclo[3.3.1]non-9-yl)-2-pyridin-2-yl]-2,3-dihydroindole (**4**): A yellow crystal; ¹H NMR (400 MHz, CDCl₃): δ 1.22 (br, 2H), 1.39-1.49 (m, 2H), 1.52-1.68 (m, 6H), 1.83-1.97 (m, 2H), 2.04-2.11 (m,

2H), 3.36 (t, J = 8.0 Hz, 2H), 3.98 (t, J = 8.0 Hz, 2H), 6.78 (d, J = 8.0 Hz 1H), 6.92 (t, J = 6.8 Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 7.12 (t, J = 6.8 Hz, 1H), 7.67 (t, J = 7.2 Hz, 2H), 8.39 (d, J = 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 23.8, 28.4, 31.3, 33.2, 48.0,

108.4, 113.4, 120.2, 124.0, 125.1, 130.7, 138.2, 143.9, 144.6, 153.0. ¹¹B NMR (130 MHz, CDCl₃): δ -2.48. IR (KBr / cm⁻¹): 2920, 2860, 2839, 1622, 1556, 1502, 1467, 1458, 1422, 1263, 1159, 1032, 953, 764. HRMS (FAB⁺): calcd for C₂₁H₂₅BN₂ ([M]⁺) 316.2111; found. 316.2111.

[N-benzyl-N-(9-Borabicyclo[3.3.1]non-9-ylmethyl)]pyridin-2-yl

amine (6): A colorless crystal; mp 127.5-128.3 °C. ¹H NMR (400

MHz, CDCl₃): δ 0.70 (br, 2H), 1.34-1.42 (m, 1H), 1.63-1.70 (m, 4H), 1.71-1.79 (m, 3H), 1.80-1.89 (m, 1H), 1.96-2.08 (m, 3H), 2.77 (s, 2H), 4.53 (s, 2H), 6.33 (d, *J* = 8.8 Hz, 1H), 6.41 (dt, *J* = 1.2, 7.2 Hz, 1H), 7.22 (d, *J* = 6.8 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.39 (dt, *J* = 1.6, 8.8 Hz, 1H), 8.25 (d, *J* = 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 24.6, 29.7, 33.1, 52.4, 105.1, 109.0, 126.7, 127.3, 128.8, 136.7, 139.5, 143.1, 158.2. ¹¹B NMR (130 MHz, CDCl₃): δ -1.44. IR (KBr / cm⁻¹): 2916, 2870, 2837, 1634, 1543, 1449, 1435, 1356, 1292, 1263, 1238, 1157, 1105, 1063, 1026, 947, 905, 802, 764, 729, 694, 529. HRMS (FAB⁺): calcd for C₂₁H₂₇BN₂ ([M]⁺) 318.2267; found. 318.2276.

References

- (a) D. Vitali, F. Calderazzo, *Gazz. Chim. Ital.* 1972, **102**, 587. (b) S. Du, J. A. Kautz, T. D. McGrath, F. G. A. Stone, *Organometallics*, 2003, **22**, 2842.
- 2. T. Mita, K. Michigami, Y. Sato, Chem. Asian J. 2013, 8, 2970.
- L. Pasumansky, A. R. Hernández, S. Gamsey, C. T. Goralski, B. Singaram, *Tetrahedron Lett.* 2004, 45, 6417.
- (a) H. Oikawa, Y. Suzuki, K. Katayama, A. Naya, C. Sakano, A. Ichihara, J. Chem. Soc., Perkin Trans. 1 1999, 1225. (b) S.-r. Choi, M. Breugst, K. N. Houk, C. D. Poulter, J. Org. Chem. 2014, 79, 3572.

X-ray Crystallographic Studies of N–B Coordinated Heterocycle 2d (CCDC 1035997): Yellow crystal of N–B coordinated heterocycle **2d** suitable for X-ray analysis was obtained by recrystallization from Et₂O. All measurements were made on a Rigaku R-AXIS imaging plate area detector with multi-layer monochromated Mo-K α radiation. Details of crystal and data collection parameters are summarized in Table S1. The positions of non-hydrogen atoms were determined by direct methods (SHELX97) and subsequent Fourier syntheses. An ORTEP drawing of **2d** is shown in Figure S1.

Figure S1. ORTEP drawing of N–B coordinated heterocycle **2d**. Thermal ellipsoids are drawn at the 50% probability level.

Table S1. Summary of Crystallographic Data of 2d

```
Empirical formula: C<sub>15</sub>H<sub>22</sub>BFN<sub>2</sub>
Formula weight: 260.16
Crystal system: triclinic
Space group: P-1 (#2)
Crystal color: yellow
Lattice parameters:
a (Å) = 7.486(7), b (Å) = 9.564(9), c (Å) = 10.597(11)
V (Å<sup>3</sup>) = 700.8(12), \beta = 76.99(4)^{\circ}, Z = 2
D_{calc} (g cm<sup>-3</sup>): 1.233
\mu (Mo K \alpha ) (cm<sup>-1</sup>): 0.809
Goodness of fit (GOF) = 1.218
F(000): 280.00
Diffractometer: Saturn724
Radiation: MoK \alpha (\lambda = 0.71075 Å), Multi-layer Mirror Monochromated
Temp (°C): 20
Scan type: \omega - 2 \theta
Max. 2 \theta (°): 54.9
No. of reflections measured total: 11219
No. of observns (I > 3.00 \sigma (I)): 3173
Structure solution: Direct Methods (SHELX97)
Refinement: Full-Matrix Least-Squares on F<sup>2</sup>
No. of variables: 172
Reflection/parameter ratio: 18.45
Residuals: R = 0.1194, wR2 = 0.1989
Max Shift/Error in Final Cycle: 0.000
Maximum peak in Final Diff Map (e (Å^{-3}): 0.23
Minimum peak in Final Diff Map (e (Å^{-3}): -0.26
```


Figure S2. Ineffective substrates for the current catalytic reaction

Figure S3. Time-course of the formation of 2a (red), 2b (blue), 2d (green), 2g (yellow)

¹¹B NMR Study for the Reaction of [ReBr(CO)₃(thf)]₂ with 9-BBN

Figure S4. ¹¹B NMR study for the reaction of $[ReBr(CO)_3(thf)]_2$ with a stoichiometric amount of 9-BBN in C₆D₆ at 70 °C for 30 min

¹H NMR and ¹³C NMR Spectra of Selected Compounds

S18

S34

