Supporting Information

Pd-Catalyzed α-Selective C(sp³)-H Acetoxylation of Amides through an Unusual Cyclopalladation Mechanism

Meining Wang,^{†,} Yang Yang,^{‡,} Zhoulong Fan,[†] Zhen Cheng, ^{J,*} Weiliang Zhu, ^{‡,*} and Ao Zhang^{†,*}

[†]CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.

[‡]Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.

^JDepartment of Radiology, School of Medicine, Stanford University, Stanford, California, 94305-5484.

1. General information

All reactions were performed in glassware containing a Teflon-coated stir bar. All solvents and chemical reagents were obtained from commercial sources and used without further purifications. ¹H and ¹³C NMR spectra were recorded with tetramethylsilane as an internal reference. High-resolution mass spectrometry (HRMS) analysis was recorded by electron ionization (EI-TOF). Flash column chromatography on silica gel (200-300 mesh) was used for the routine purification of reaction products. The column output was monitored by TLC on silica gel (100-200 mesh) precoated on plates (15×50 mm), and spots were visualized by UV light at 254 or 365 nm.

2. General procedure for preparation of N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)amides 1

To the solution of 1-amino anthraquinoneand triethylamine (2 equiv) in dichloromethane was added dropwise acyl chlorides (2 equiv) at 0 °C. The resulting mixture was then stirred at room temperature for 1-5 h, and then quenched with water. The organic layer was concentrated, and the residue was purified by column chromatography to give the N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)amides **1**.

3. General procedure for the screening of directing group

A solution of amides 1 (0.1 mmol), $Pd(OAc)_2$ (0.1 equiv) and $PhI(OAc)_2$ (3 equiv) in AcOH-Ac₂O (50:1, 0.5 mL) was stirred in sealed tube at 120 °C for 12 h. The reaction was then cooled to room temperature, concentrated in vacuum and purified by column chromatography using petroleum ether/ethyl acetate to afford corresponding products 2.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-1-oxobutan-2-yl acetate (2ae). Yellow solid, 27 mg (76%). ¹H NMR (300 MHz, CDCl₃) δ 12.84 (s, 1H), 9.18 (dd, J = 8.5, 1.2 Hz, 1H), 8.30 (m, 2H), 8.10 (dd, J = 7.6, 1.2 Hz, 1H), 7.80 (m, 3H), 5.34 (dd, J = 7.1, 4.7 Hz, 1H), 2.46 (s, 3H), 2.05 (m, 1H), 1.06 (t, J =

7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.7, 182.1, 169.8(2), 140.7, 135.4, 134.0, 133.8, 133.6, 133.4, 132.3, 126.9, 126.6, 125.6, 122.5, 117.8, 74.8, 24.9, 20.6, 8.9. EI-MS (m/z): 351 (M⁺); HRMS (EI): calcd for C₂₀H₁₇NO₅ (M⁺), 351.1107; found, 351.1100.

1-((4-Methyl-9,10-dioxo-9,10-dihydroanthracen-1-yl)amino)-1-oxobutan-2yl acetate (2af).Yellow solid, 6 mg (16%). ¹**H NMR**(400 MHz, CDCl₃) δ 13.03 (s, 1H), 9.07 (d, *J* = 8.8 Hz, 1H), 8.26 (m, 2H), 7.81 (m, 2H), 7.62 (d, *J* = 8.8 Hz, 1H), 5.36 (dd, *J* = 7.3, 4.5 Hz, 1H), 2.82 (s, 3H), 2.49 (s, 3H), 2.05 (m, 2H),

1.08 (t, J = 7.4 Hz, 3H). ¹³C NMR(126 MHz, CDCl₃) δ 187.9, 185.0, 170.3(2), 140.4, 140.0, 137.7, 134.5, 133.9, 133.7, 133.3, 131.5, 126.9, 126.8, 125.7, 119.3, 75.3, 25.4, 23.8, 21.1, 9.4. ESI-MS (m/z): 388 (M+Na); HRMS (EI): calcd for C₂₁H₁₉NO₅Na (M+Na), 388.1161; found, 388.1163.

4. General procedure for preparation of 2

A solution of amides **1** (0.1 mmol), $Pd(OAc)_2$ (0.1 equiv), $PhI(OAc)_2$ (5 equiv) and LiOAc (2 equiv) in DCE (0.5 mL) was stirred in sealed tube at 120 °C for 12 h. The reaction was then cooled to room temperature, concentrated in vacuum and purified by column chromatography using petroleum ether/ethyl acetate to afford corresponding products **2**.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-2-oxoethyl acetate (2ba). Yellow solid, 30 mg (92%). ¹H NMR (300 MHz, CDCl₃) δ 12.85 (s, 1H), 9.12 (dd, *J* = 8.5, 1.1 Hz, 1H), 8.25 (m, 2H), 8.06 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.78 (m, 3H), 4.79 (s, 2H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.1, 182.5,

169.9, 167.3, 140.9, 135.9, 134.5, 134.3, 134.0, 133.8, 132.7, 127.3, 127.1, 126.0, 123.1, 118.1, 63.0, 20.8. **EI-MS (m/z)**: 323 (M⁺); **HRMS** (EI): calcd for C₁₈H₁₃NO₅ (M⁺), 323.0794; found, 323.0788.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-1-oxopropan-2-ylacetate(2bb). Yellow solid, 28 mg (82%). ¹H NMR (400 MHz, CDCl₃) δ 12.85 (s, 1H),9.12 (d, J = 8.1 Hz, 1H), 8.24 (m, 2H), 8.05 (d, J = 7.3 Hz, 1H), 7.77 (m, 3H), 5.43(q, J = 6.8 Hz, 1H), 2.46 (s, 3H), 1.65 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 187.0, 182.4, 170.7, 169.9, 141.1, 135.8, 134.4, 134.2, 133.9, 133.8, 132.7, 127.3, 127.0, 126.0, 122.9, 118.1, 70.7, 21.1, 17.9. **EI-MS (m/z)**: 337(M⁺); **HRMS** (EI): calcd for C₁₉H₁₅NO₅ (M⁺), 337.0950; found, 337.0956.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-3-methyl-1-oxobutan-2-yl acetate (2bc). Yellow solid, 19 mg (52%). ¹H NMR (300 MHz, CDCl₃) δ 12.77 (s, 1H), 9.16 (d, *J* = 7.9 Hz, 1H), 8.26 (m, 2H), 8.07 (d, *J* = 6.9 Hz, 1H), 7.78 (m, 3H), 5.26 (d, *J* = 3.9 Hz, 1H), 2.44 (m, 4H), 1.05 (m, 6H). ¹³C NMR (126 MHz,

CDCl₃) δ 187.2, 182.5, 170.4, 169.9, 141.0, 135.8, 134.4, 134.3, 134.0, 133.9, 132.7, 127.3, 127.0, 126.1, 122.9, 118.2, 78.3, 30.9, 21.0, 18.9, 16.9. **EI-MS (m/z)**: 365(M⁺); **HRMS** (EI): calcd for C₂₁H₁₉NO₅ (M⁺), 365.1263; found, 365.1259.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-4-methyl-1-oxopentan2-yl acetate (2bd). Yellow solid, 22 mg (59%). ¹H NMR (400 MHz, CDCl₃)
δ 12.84 (s, 1H), 9.17 (d, J = 8.4 Hz, 1H), 8.30 (m, 2H), 8.10 (d, J = 7.6 Hz, 1H), 7.81 (m, 3H), 5.43 (dd, J = 8.7, 4.3 Hz, 1H), 2.48 (s, 3H), 1.89 (m, 3H),

1.03 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 187.2, 182.5, 170.8, 170.3, 141.2, 135.8, 134.4, 134.3, 134.0, 133.8, 132.7, 127.3, 127.1, 126.1, 122.9, 118.2, 73.1, 41.0, 24.7, 23.1, 21.7, 21.1. EI-MS (m/z): 379(M⁺); HRMS (EI): calcd for C₂₂H₂₁NO₅ (M⁺), 379.1420; found, 379.1417.

1-Cyclopentyl-2-(9,10-dioxo-9,10-dihydroanthracen-1-ylamino)-2-oxoethyl acetate (2be). Yellow

solid, 21 mg (53%). ¹**H NMR** (400 MHz, CDCl₃) δ 12.80 (s, 1H), 9.19 (d, *J* = 8.5 Hz, 1H), 8.31 (m, 2H), 8.11 (d, *J* = 7.5 Hz, 1H), 7.80 (m, 3H), 5.32 (d, *J* = 5.5 Hz, 1H), 2.60 (m, 1H), 2.46 (s, 3H), 1.83 (m, 2H), 1.71 (m, 2H), 1.56 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 187.2, 182.6, 170.4, 170.2, 141.2, 135.8,

134.4, 134.3, 134.0, 133.9, 132.7, 127.3, 127.1, 126.1, 122.9, 118.2, 76.7, 41.8, 28.7, 27.6, 25.4, 25.2, 21.0. **EI-MS (m/z)**: 391(M⁺); **HRMS (**EI): calcd for C₂₃H₂₁NO₅ (M⁺), 391.1420; found, 391.1422.

3-Cyclopentyl-1-(9,10-dioxo-9,10-dihydroanthracen-1-ylamino)-1-

oxopropan-2-yl acetate (2bf). Yellow solid, 27 mg (66%). ¹H NMR (400 MHz, CDCl₃) δ 12.83 (s, 1H), 9.15 (d, *J* = 8.4 Hz, 1H), 8.27 (m, 2H), 8.07 (d, *J* = 7.5 Hz, 1H), 7.78 (m, 3H), 5.40 (t, *J* = 6.2 Hz, 1H), 2.48 (s, 3H), 2.02 (m, 3H), 1.87 (m, 2H), 1.65 (m, 2H), 1.57 (m, 2H), 1.24 (m, 2H). ¹³C

NMR (126 MHz, CDCl₃) δ 187.1, 182.5, 170.6, 170.2, 141.1, 135.8, 134.4, 134.2, 133.9, 133.8, 132.7, 127.3, 127.0, 126.0, 122.9, 118.1, 74.1, 38.2, 36.5, 33.0, 32.4, 25.1, 25.0, 21.1. EI-MS (m/z): 405(M⁺); HRMS (EI): calcd for C₂₄H₂₃NO₅ (M⁺), 405.1576; found, 405.1578.

1-Cyclohexyl-2-(9,10-dioxo-9,10-dihydroanthracen-1-ylamino)-2oxoethyl acetate (2bg). Yellow solid, 28 mg (68%). ¹H NMR (400 MHz, CDCl₃) δ 12.78 (s, 1H), 9.19 (d, J = 8.3 Hz, 1H), 8.28 (m, 2H), 8.08 (d, J = 7.6 Hz, 1H), 7.78 (m, 3H), 5.26 (d, J = 4.0 Hz, 1H), 2.48 (s, 3H), 2.13 (m,

1H), 1.75 (m, 5H), 1.28 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 187.1, 182.5,

170.3, 169.9, 141.0, 135.8, 134.4, 134.2, 133.9, 133.8, 132.7, 127.3, 127.0, 126.0, 122.9, 118.1, 78.1, 40.4, 29.3, 27.2, 26.1, 25.9, 21.0. **EI-MS (m/z)**: 405(M⁺); **HRMS** (EI): calcd for C₂₄H₂₃NO₅ (M⁺), 405.1576; found, 405.1576.

3-Cyclohexyl-1-(9,10-dioxo-9,10-dihydroanthracen-1-ylamino)-1-oxopropan-2-yl acetate (2bh).

Yellow solid, 26 mg (62%). ¹H NMR (400 MHz, CDCl₃) δ 12.80 (s, 1H), 9.14 (d, J = 8.5 Hz, 1H), 8.27 (m, 2H), 8.06 (d, J = 7.6 Hz, 1H), 7.78 (m, 3H), 5.44 (dd, J = 8.7, 4.7 Hz, 1H), 2.47 (s, 3H), 1.90 (m, 3H), 1.72 (m, 4H), 1.51 (m, 1H), 1.23 (m, 3H), 1.02 (m, 2H). ¹³C NMR (126 MHz,

CDCl₃) δ 187.1, 182.4, 170.9, 170.3, 141.2, 135.8, 134.4, 134.2, 133.9, 133.8, 132.7, 127.3, 127.0, 126.1, 122.9, 118.1, 72.6, 39.7, 34.0, 33.7, 32.3, 26.4, 26.2, 26.0, 21.1. **EI-MS (m/z)**: 419(M⁺); **HRMS** (EI): calcd for C₂₅H₂₅NO₅ (M⁺), 419.1733; found, 419.1734.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-1-oxo-3-

phenylpropan-2-yl acetate (2bi). Yellow solid, 26 mg (63%). ¹H NMR
(400 MHz, CDCl₃) δ 12.77 (s, 1H), 9.18 (d, J = 8.5 Hz, 1H), 8.28 (m, 2H),
8.11 (d, J = 7.6 Hz, 1H), 7.81 (m, 3H), 7.26 (m, 5H), 5.62 (dd, J = 8.4, 4.1)

Hz, 1H), 3.43 (dd, J = 14.3, 4.0 Hz, 1H), 3.24 (dd, J = 14.3, 8.4 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.0, 182.5, 169.9, 169.5, 140.9, 136.0, 135.8, 134.4, 134.2, 134.0, 133.8, 132.7,

129.5, 128.4, 127.3, 127.1, 126.9, 126.1, 123.0, 118.3, 74.7, 38.1, 20.9. **EI-MS (m/z)**: 413(M⁺); **HRMS** (EI): calcd for $C_{25}H_{19}NO_5$ (M⁺), 413.1263; found, 413.1243.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-3-(3-fluorophenyl)-1oxopropan-2-yl acetate(2bj). Yellow solid, 20 mg (47%). ¹H NMR (400 MHz, CDCl₃) δ 12.80 (s, 1H), 9.17 (d, *J* = 8.4 Hz, 1H), 8.31 (m, 2H), 8.13 (d, *J* = 7.6 Hz, 1H), 7.83 (m, 3H), 7.25 (m, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.04 (d, *J* = 9.7 Hz, 1H), 6.93 (m, 1H), 5.62 (dd, *J* = 8.1, 4.1 Hz, 1H), 3.42

(dd, J = 14.3, 4.0 Hz, 1H), 3.25 (dd, J = 14.3, 8.2 Hz, 1H), 2.42 (s, 3H).¹³**C NMR** (151 MHz, CDCl₃) δ 187.1, 182.5, 169.8, 169.2, 162.8 (d, J = 245.9 Hz), 140.8, 138.5 (d, J = 7.3 Hz), 135.9, 134.5, 134.3, 134.0, 133.8, 132.8, 129.9 (d, J = 8.2 Hz), 127.4, 127.1, 126.1, 125.2 (d, J = 2.6 Hz), 123.2, 118.3, 116.5(d, J = 21.3 Hz), 114.0 (d, J = 21.0 Hz), 74.3, 37.8, 21.0. **EI-MS (m/z)**: 431(M⁺); **HRMS** (EI): calcd for C₂₅H₁₈FNO₅ (M⁺), 431.1169; found, 431.1160.

3-(4-Chlorophenyl)-1-(9,10-dioxo-9,10-dihydroanthracen-1ylamino)-1-oxopropan-2-yl acetate (2bk). Yellow solid, 23 mg (51%). ¹**H NMR** (400 MHz, CDCl₃) δ 12.78 (s, 1H), 9.16 (d, *J* = 8.5 Hz, 1H), 8.30 (m, 2H), 8.13 (d, *J* = 7.6 Hz, 1H), 7.83 (m, 3H), 7.26 (m, 4H), 5.60 (dd, *J* = 7.9, 4.2 Hz, 1H), 3.39 (dd, *J* = 14.3, 4.2 Hz, 1H), 3.24 (dd, *J* =

14.3, 7.9 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 187.1, 182.6, 169.8, 169.3, 140.8, 135.9, 134.5(2), 134.3, 134.1, 133.8, 132.9, 132.8, 130.9, 128.6, 127.4, 127.1, 126.1, 123.2, 118.4, 74.3, 37.4, 21.0. **EI-MS (m/z)**: 447(M⁺); **HRMS** (EI): calcd for C₂₅H₁₈ClNO₅ (M⁺), 447.0874; found, 447.0874.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-1-oxo-3-p-

tolylpropan-2-yl acetate (2bl). Yellow solid, 26 mg (61%). ¹H NMR (300 MHz, CDCl₃) δ 12.72 (s, 1H), 9.14 (d, J = 8.5 Hz, 1H), 8.25 (m, 2H), 8.08 (dd, J = 7.6, 1.1 Hz, 1H), 7.79 (m, 3H), 7.15 (d, J = 7.9 Hz,

2H), 7.06 (d, J = 7.8 Hz, 2H), 5.54 (dd, J = 8.2, 4.1 Hz, 1H), 3.34 (dd, J = 14.2, 4.1 Hz, 1H), 3.16 (dd, J = 14.3, 8.2 Hz, 1H), 2.35 (s, 3H), 2.24 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 187.0, 182.6, 169.9, 169.7, 141.0, 136.5, 135.8, 134.5, 134.3, 134.0, 133.9, 132.9, 132.8, 129.4, 129.2, 127.4, 127.1, 126.2, 123.1, 118.3, 74.9, 37.7, 21.1, 21.0. **EI-MS (m/z)**: 426([M-H]⁺); **HRMS** (EI): calcd for C₂₆H₂NO₅ ([M-H]⁺), 426.1336; found, 426.1338.

4-Chloro-1-(9,10-dioxo-9,10-dihydroanthracen-1-ylamino)-1-oxobutan-

2-yl acetate (2bm). Yellow solid, 27 mg (69%). ¹H NMR (300 MHz, CDCl₃)
δ 12.89 (s, 1H), 9.11 (d, J = 8.4 Hz, 1H), 8.26 (m, 2H), 8.08 (d, J = 7.6 Hz,
1H), 7.78 (m, 3H), 5.53 (dd, J = 8.0, 4.4 Hz, 1H), 3.68 (dd, J = 9.6, 4.1 Hz,
2H), 2.47 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 187.3, 182.5, 169.9,

169.3, 140.9, 135.9, 134.6, 134.3, 134.0, 133.8, 132.8, 127.4, 127.1, 126.1, 123.2, 118.3, 71.6, 40.1, 34.9, 21.0. **EI-MS (m/z)**: 385(M⁺); **HRMS** (EI): calcd for C₂₀H₁₆ClNO₅ (M⁺), 385.0717; found,

3-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-3-oxopropane-1,2-diyl

diacetate (2bn). Yellow solid, 31 mg (78%). ¹H NMR (300 MHz, CDCl₃) δ 12.94 (s, 1H), 9.11 (d, J = 8.5 Hz, 1H), 8.25 (m, 2H), 8.07 (d, J = 7.6 Hz, 1H),
7.77 (m, 3H), 5.61 (m, 1H), 4.68 (dd, J = 12.1, 2.7 Hz, 1H), 4.52 (dd, J = 12.1, 4.8 Hz, 1H), 2.47 (s, 3H), 2.04 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

187.2, 182.4, 170.5, 169.7, 167.1, 140.7, 135.9, 134.6, 134.3(2), 133.8, 132.7, 127.3, 127.1, 126.0, 123.3, 118.3, 72.0, 63.2, 20.9, 20.7. **EI-MS (m/z)**: $395(M^+)$; **HRMS** (EI): calcd for $C_{21}H_{17}NO_7$ (M⁺), 395.1005; found, 395.1004.

1-(9,10-Dioxo-9,10-dihydroanthracen-1-ylcarbamoyl)cyclobutylacetate(2bo). Yellow solid, 12 mg (32%). ¹H NMR (400 MHz, CDCl₃) δ 12.64 (s, 1H),9.20 (d, J = 8.5 Hz, 1H), 8.27 (m, 2H), 8.06 (d, J = 7.6 Hz, 1H), 7.79 (m, 3H),2.88 (m, 2H), 2.48 (m, 2H), 2.35 (s, 3H), 2.10 (m, 2H). ¹³C NMR (126 MHz,

CDCl₃) δ 187.3, 182.5, 171.7, 170.1, 141.8, 135.8, 134.4, 134.2, 133.9(2), 132.7, 127.3, 127.0, 126.1, 122.6, 118.1, 81.0, 32.1, 21.4, 14.5. **EI-MS (m/z)**: 363(M⁺); **HRMS** (EI): calcd for C₂₁H₁₇NO₅ (M⁺), 363.1107; found, 363.1105.

5. General procedure for preparation of 4

Encouraged by the successful acetoxylation of α -C(sp³)-H bonds, we further expanded the reaction protocol to the *ortho* C(sp²)-H bond activation. As shown in Scheme S1, with the assistance of 1aminoanthraquinone as the BDG, substrates **3** took part in the C-H activation/acetoxylation smoothly and yielded the corresponding mono-acetoxylated products **4a**, **4b**, and **4d** in moderate yields, except for **4c** which gave a mixture of products in 82% total yield due to the existence of two asymmetric *ortho* C(sp²)-H bonds.

^aThe reaction were performed with N-anthraquinon-1-ylanilines **3** (0.1 mmol), Pd(OAc)₂ (0.1 equiv), PhI(OAc)₂ (5 equiv) and pyridine (2 equiv) in AcOH-Ac₂O (10:1, 0.5 mL) in a sealed tube at 120 °C for 12 h. ^bIsolated yields were listed.

A solution of **3** (0.1 mmol), $Pd(OAc)_2$ (0.1 equiv), $PhI(OAc)_2$ (5 equiv)and pyridine (2 equiv) in AcOH-AcO₂ (10:1, 0.5 mL) was stirred in sealed tube at 120 °C for 12 h. The reaction was then cooled to room temperature, concentrated in vacuum and purified by column chromatography using petroleum ether/ethyl acetate to afford corresponding products **4**.

4-Chloro-2-(9,10-dioxo-9,10-dihydroanthracen-1-ylamino)phenyl acetate
(4a). Red solid, 17 mg (44%). ¹H NMR (300 MHz, CDCl₃) δ 11.28 (s, 1H),
8.25 (m, 2H), 7.74 (m, 3H), 7.48 (t, J = 7.2 Hz, 2H), 7.39 (d, J = 2.2 Hz, 1H),
7.21 (dd, J = 8.7, 2.1 Hz, 1H), 7.15 (d, J = 8.6 Hz, 1H), 2.36 (s, 3H). ¹³C
NMR (101 MHz, CDCl₃) δ 185.7, 183.2, 168.7, 148.4, 143.8, 138.3, 135.2,

134.7, 134.6, 134.2, 133.6, 133.0, 127.7, 127.0, 126.9, 125.3, 124.5, 123.1, 119.8, 118.5, 114.6, 20.7. **EI-MS (m/z)**: 391(M⁺); **HRMS** (EI): calcd for C₂₂H₁₄ClNO₄ (M⁺), 391.0611; found, 391.0612.

5-Chloro-2-(9,10-dioxo-9,10-dihydroanthracen-1-ylamino)phenyl acetate (4b). Red solid, 16 mg (42%). ¹H NMR (300 MHz, CDCl₃) δ 11.32 (s, 1H), 8.33 (d, *J* = 7.6 Hz, 1H), 8.27 (d, *J* = 7.1 Hz, 1H), 7.76 (m, 3H), 7.51 (m, 2H), 7.36 (d, *J* = 8.5 Hz, 1H), 7.30 (d, *J* = 2.4 Hz, 1H), 7.05 (dd, *J* = 8.7, 2.4 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.2, 184.8,

170.6, 149.6, 148.9, 136.5, 136.2, 136.1, 135.6, 135.0, 134.5, 130.8, 128.5, 128.3, 126.7, 125.3, 122.4, 121.3, 119.9, 116.5, 22.5. **EI-MS (m/z)**: 391(M⁺); **HRMS** (EI): calcd for C₂₂H₁₄ClNO₄ (M⁺), 391.0611; found, 391.0607.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-4-methylphenyl acetate (4c). Red solid, 6 mg (16%). ¹H NMR (300 MHz, CDCl₃) δ 11.28 (s, 1H), 8.30 (d, *J* = 7.4 Hz, 1H), 8.26 (d, *J* = 7.6 Hz, 1H), 7.74 (m, 3H), 7.47 (m, 2H), 7.15 (m, 2H), 7.04 (d, *J* = 8.2 Hz, 1H), 2.33 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.5, 183.5, 169.4, 149.4, 146.5, 137.1, 135.0, 134.8, 134.6,

134.1, 133.4, 133.1, 131.7, 126.9(2), 123.0, 122.8, 120.1, 117.8, 114.1, 20.9, 16.4. **EI-MS (m/z)**: 371(M⁺); **HRMS** (EI): calcd for C₂₃H₁₇NO₄ (M⁺), 371.1158; found, 371.1158.

2-(9,10-Dioxo-9,10-dihydroanthracen-1-ylamino)-4-methyl-1,3-phenylene diacetate (4c'). Red solid, 28 mg (66%). ¹H NMR (300 MHz, CDCl₃) δ 11.30 (s, 1H), 8.26 (m, 2H), 7.73 (m, 3H), 7.52 (m, 2H), 7.03 (d, *J* = 8.8 Hz, 2H), 2.32 (s, 3H), 2.28 (s, 3H), 2.21 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 185.6, 183.4, 168.3, 168.2, 148.7, 143.0, 137.9, 137.4, 135.1, 134.7, 134.6, 134.1, 133.4(2),

133.0, 127.0, 126.9, 123.5, 120.1, 118.2, 116.4, 114.4, 20.7, 20.4, 16.4. **EI-MS (m/z)**: 429(M⁺); **HRMS** (EI): calcd for C₂₅H₁₉NO₆ (M⁺), 429.1212; found, 429.1206.

5-*tert*-**Butyl-2-(9,10**-dioxo-9,10-dihydroanthracen-1-ylamino)phenyl acetate (4d). Red solid, 21 mg (52%). ¹**H NMR** (300 MHz, CDCl₃) δ 11.07 (s, 1H), 8.32 (d, *J* = 7.3 Hz, 1H), 8.25 (d, *J* = 7.7 Hz, 1H),

7.74 (m, 3H), 7.47 (m, 1H), 7.34 (m, 3H), 7.19 (d, J = 1.8 Hz, 1H), 2.22 (s, 3H), 1.34 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 185.5, 183.5, 169.2, 150.0, 149.1, 144.7, 134.9, 134.8, 134.5, 134.1, 133.3, 133.1, 129.1, 127.0, 126.8, 125.4, 123.7, 120.4, 120.2, 117.9, 114.3, 34.7, 31.3, 20.8. **EI-MS (m/z)**: 413(M⁺); **HRMS** (EI): calcd for C₂₆H₂₃NO₄ (M⁺), 413.1627; found, 413.1629.

6. Removal of directing group

A solution of **2bi** (50mg, 0.12 mmol) and NaOH (20mg, 0.5 mmol) in MeOH (5 ml) was refluxed for 10 min and then concentrated in vacuum. The residue was dissolved in water and washed with ethyl acetate for two times. Concentration of the combined ethyl acetate layer gave 1-aminoanthraquinone**6** in 95% yield. Proper PH adjustment of the aqueous phase (2-3), followed by extraction with ethyl acetate and concentration, gave product **5i** in 87% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 7.27 (m, 5H), 5.99 (m, 2H), 4.49 (m, 1H), 3.18 (d, J = 13.4 Hz, 1H), 2.97 (dd, J = 13.7, 6.7 Hz, 1H).

7. General procedure for preparation of 7

A solution of amides 1 (0.1 mmol), $Pd(OAc)_2$ (0.1 equiv), $PhI(OAc)_2$ (5equiv) and LiOAc (2 equiv) in DCE (0.5 mL) was stirred in sealed tube at 120 °C for 12 h. The reaction was then cooled to room temperature, concentrated in vacuum and purified by column chromatography using petroleum ether/ethyl acetate to afford corresponding products 7.

3-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2,2-dimethyl-3-

oxopropyl acetate (7a). Yellow solid, 14 mg (37%). ¹H NMR (300 MHz, CDCl₃) δ 12.61 (s, 1H), 9.18 (d, J = 8.6 Hz, 1H), 8.29 (m, 2H), 8.07 (d, J = 7.6 Hz, 1H), 7.78 (m, 3H), 4.25 (s, 2H), 2.05 (s, 3H), 1.46 (s, 6H). ¹³C NMR (126)

MHz, CDCl₃) δ 187.4, 182.8, 175.8, 171.0, 142.1, 135.9, 134.5, 134.4, 134.0(2), 132.8, 127.4, 127.1, 126.3, 122.7, 118.0, 70.4, 44.2, 22.8, 20.9. **EI-MS (m/z)**: 365(M⁺); **HRMS** (EI): calcd for C₂₁H₁₉NO₅ (M⁺), 365.1263; found, 365.1262.

3-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-methyl-3-oxopropyl acetate (7b). Yellow solid, 15 mg (41%). ¹H NMR(400 MHz, CDCl₃) δ 12.51 (s, 1H), 9.18 (d, *J* = 8.5 Hz, 1H), 8.30 (m, 2H), 8.10 (d, *J* = 7.6 Hz, 1H), 7.82 (m, 3H), 4.35 (m, 2H), 2.99 (m, 1H), 2.09 (s, 3H), 1.40 (d, *J* = 7.1 Hz, 3H). ¹³C

NMR(126 MHz, CDCl₃) & 187.3, 182.6, 173.6, 170.8, 141.9, 135.8, 134.4, 134.3, 133.9(2), 132.8,

127.3, 127.1, 126.2, 122.7, 117.7, 65.9, 42.6, 20.9, 14.3. **EI-MS (m/z)**: 351(M⁺); **HRMS** (EI): calcd for C₂₀H₁₇NO₅ (M⁺), 351.1107; found, 365.1118.

 2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)carbamoyl)pentyl
 acetate

 (7c). Yellow solid, 13 mg (33%). ¹H NMR(300 MHz, CDCl₃) δ 12.46 (s,

 1H), 9.17 (dd, J = 8.5, 1.0 Hz, 1H), 8.28 (m, 2H), 8.07 (dd, J = 7.6, 1.0 Hz,

 1H), 7.80 (m, 3H), 4.31 (m, 2H), 2.82 (m, 1H), 2.02 (s, 3H), 1.79 (m, 1H),

1.60 (m, 1H), 1.45 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³C NMR(126 MHz, CDCl₃) δ187.4, 182.7, 173.5, 170.9, 141.9, 135.9, 134.5, 134.4, 134.0(2), 132.8, 127.4, 127.1, 126.3, 122.8, 117.8, 65.2, 48.6, 31.4, 20.9, 20.5, 14.0. **EI-MS (m/z)**: 379(M⁺); **HRMS** (EI): calcd for C₂₂H₂₁NO₅ (M⁺), 379.1420; found, 379.1408.

8. Computational methods

Gaussian 09¹ was performed at the B3LYP² level of density functional theory (DFT) for geometry optimizations. A combined basis set was applied in which Pd was described by the LANL2DZ basis set and 6-31(d) was used for C, H, O, N.³ Frequency calculations were performed for all stationary points to determine them either as local minima or transition states and to obtain the thermochemical corrections to Gibbs free energies (Table S1). Each transition structure contained one imaginary frequency, exhibiting atom displacements consistent with the anticipated reaction pathway. For each saddle point, intrinsic reaction coordinate (IRC) analysis⁴ was carried out to confirm whether it connected the correct configurations of reactant and product on the potential energy surface. Solvent effects in dichloroethane solvent ($\varepsilon = 10.125$) were evaluated by structure optimizations and frequency calculations in the solvent utilizing the self-consistent reaction field method⁵ with CPCM solvation model.⁶ The solvation single-point energies with Gibbs free energy corrections were used to describe the reaction energetics throughout the study.

Different initial conformations have been investigated to obtain the geometry of intermediate A at the energy minimum. Careful examination of the optimized geometry of **A** has revealed a distance of 2.36Å between the α -C(sp³)-H and oxygen atom of acetic acid moiety (Figure S1a), which is reasonable for the proton abstraction. However, there will be too much steric hindrance for the β -C(sp³)-H to approach the same oxygen atom by a near dihedral 180-degree rotation of the bond C(O)-C(α). In addition, there is an energy barrier of about 1.3 kcal/mol between the optimized orientation of **1a** and the configuration **of 1a'** (Figure S1b, S1c), thus disfavoring an effective β -selective C-H activation.

Figure S1. Optimized geometry of A, 1a and 1a'.

9. Calculated energies and cartesiancoordinates for the relevant intermediates and transition states

Species	E ^{a,b}	ZPE ^{a,c}	H ₂₉₈ ^{a,d}	G ₂₉₈ ^{a,e}	Frequency ^{a,f}
Pd(OAc) ₂	-583.7295404	-583.625871	-583.614194	-583.664888	
PhI(OAc) ₂	-699.899216	-699.706441	-699.688281	-699.755715	
PhI	-243.024598	-242.934338	-242.92749	-242.966125	
АсОН	-229.087810	-229.026009	-229.020473	-229.053384	
1a	-975.439368	-975.146486	-975.127045	-975.195211	
E	-1559.150962	-1558.753632	-1558.721439	-1558.821112	
Α	-1330.066707	-1329.733358	-1329.707398	-1329.790467	
TS (A-B)	-1330.025984	-1329.697685	-1329.672435	-1329.753629	-1395.77
В	-1330.058712	-1329.72574	-1329.699747	-1329.78312	
С	-1786.984071	-1786.548256	-1786.511759	-1786.619792	
D	-1787.050730	-1786.611509	-1786.575172	-1786.68522	
2ea	-1203.323902	-1202.988574	-1202.964711	-1203.044943	
TS (A-B')	-1330.021880	-1329.693417	-1329.668377	-1329.74897	-1408.15
В'	-1330.065631	-1329.732065	-1329.706559	-1329.787843	
C'	-1786.996898	-1786.560407	-1786.524172	-1786.630607	
D'	-1787.050730	-1786.611509	-1786.575172	-1786.68522	
7d	-1203.323902	-1202.988574	-1202.964711	-1203.044943	

 Table S1. Calculated energy values

^aWith B3LYP functional; 6-31(d)for C,H,O,N and LANL2DZ for Pd

^bElectronic energies (Gibss free energy in a. u.)

^cSum of electronic and zero-point energies(Gibss free energy in a. u.)

^dSum of electronic and thermal enthalpies(Gibss free energy in a. u.)

^eSum of electronic and thermal free energies(Gibss free energy in a. u.)

^fThe only imaginary frequency of transition state

Cartesian coordinates

Pd(OAc)₂:

0 1 (charge, spin multiplicity)

С	-2.19951713	-1.86428369	0.52422447
0	-1.00305452	-2.17743381	0.19681937
0	-2.41360374	-0.63528978	0.80754452
С	1.37931939	1.46293824	0.40837695
0	0.18270917	1.77560663	0.73581171
0	1.59390487	0.23406384	0.12503487
Pd	-0.40987819	-0.20090758	0.46626161
С	2.46544427	2.48948745	0.33122830
Н	3.44270739	2.01176586	0.42904080
Н	2.41550345	2.99122040	-0.64238459
Н	2.32354510	3.24349890	1.10961996
С	-3.28613440	-2.89031987	0.60128430
Н	-3.14467538	-3.64422563	-0.17729500
Н	-3.23635527	-3.39229054	1.57478019
Н	-4.26317690	-2.41212419	0.50359730

PhI(OAc)₂:

С	2.41965386	-1.82648443	0.18349676
0	1.59607556	-1.48374127	-0.79581437
0	2.21058737	-1.64633170	1.37755031
С	3.68796464	-2.47505683	-0.34841834
Н	4.20762064	-1.78197911	-1.01780267
Н	4.34231972	-2.74689470	0.48153060
Н	3.43581155	-3.36686300	-0.93079032
Ι	-0.37708076	-0.70814211	-0.21878250
0	-2.19977917	0.44564595	0.23203811
С	-3.23449948	-0.36727547	0.24251036
0	-3.14132522	-1.57794252	0.03969805
С	-4.54868416	0.33365369	0.52965855
Н	-4.50174247	0.82632057	1.50599928
Н	-4.73004086	1.10816349	-0.22219902
Н	-5.36522589	-0.38993549	0.51994351
С	0.51108014	1.23953956	-0.07429373
С	0.15310040	2.19761406	-1.01852392
С	1.41053756	1.48571998	0.95846078
С	0.73091899	3.46589159	-0.91562513

Н	-0.55559968	1.97709907	-1.80820679
С	1.98033082	2.76039830	1.03671665
Н	1.67550788	0.70930681	1.66613089
С	1.64130066	3.74527114	0.10664279
Н	0.46793976	4.22991063	-1.64095386
Н	2.68663178	2.97700138	1.83254796
Н	2.08736882	4.73272851	0.17774744

PhI:

0 1 (charge, spin multiplicity)

Ι	1.56868546	-0.00000045	-0.00001140
С	-0.58522687	-0.00000181	0.00006912
С	-1.26513163	-1.21743393	0.00008732
С	-1.26510647	1.21740844	0.00000998
С	-2.66360587	-1.20824141	-0.00004694
Н	-0.72570688	-2.15820138	0.00004270
С	-2.66358823	1.20825854	0.00001959
Н	-0.72581356	2.15826049	0.00020327
С	-3.36370181	0.00000100	-0.00005014
Н	-3.20047943	-2.15274294	0.00001239
Н	-3.20041602	2.15277884	-0.00011019
Н	-4.44974831	-0.00001606	-0.00007761

AcOH:

0 1 (charge, spin multip	licity)
--------------------------	---------

С	-0.09185722	0.12250219	-0.00065308
0	-0.64371908	1.20424192	0.00016580
0	-0.77940488	-1.04332913	0.00007972
Н	-1.72853277	-0.81373068	0.00043437
С	1.39636407	-0.11143734	0.00011351
Н	1.68292783	-0.69260602	0.88260553
Н	1.68380348	-0.69212159	-0.88240799
Н	1.91975203	0.84476684	0.00064128

1a:

С	2.23126198	-1.19353106	-0.00002917
С	0.42848437	0.62007250	-0.00008089
С	1.45859564	1.59812453	-0.00004370
С	2.90479764	1.22167583	-0.00003376
С	3.24744382	-0.22117977	0.00001233

С	-0.93085040	1.06060226	-0.00007524
С	1.15860927	2.95720954	-0.00000634
С	-0.17339002	3.37096548	-0.00000667
С	-1.20613424	2.44452001	-0.00004223
Н	1.97361832	3.67148608	0.00001765
Н	-0.41239524	4.43046109	0.00001416
Н	-2.23783717	2.76331935	-0.00004231
Ν	-1.95469334	0.11573456	-0.00012915
С	-3.32554650	0.30000012	0.00012625
0	-3.87765419	1.39517115	0.00034158
С	-4.09956292	-1.01544852	0.00014203
Н	-3.78693037	-1.60114654	-0.87606773
Н	-3.78718461	-1.60091605	0.87660078
С	-5.61740938	-0.82497091	-0.00009112
Н	-5.90557846	-0.23246634	0.87619724
Н	-5.90534303	-0.23269589	-0.87661567
С	-6.37052211	-2.15846167	-0.00002183
Н	-7.45407794	-1.99636096	-0.00019264
Н	-6.12217489	-2.75692997	-0.88517677
Н	-6.12241863	-2.75669708	0.88535895
С	4.59099701	-0.61321775	0.00009913
С	4.92476493	-1.96524963	0.00015292
Н	5.96811610	-2.26639347	0.00022404
С	3.91498240	-2.93475729	0.00011546
Н	4.17439892	-3.98928376	0.00016128
С	2.57579088	-2.55130249	0.00001986
Н	1.78346805	-3.29137998	-0.00001906
Н	5.35676159	0.15497298	0.00012360
0	3.78257228	2.08254813	-0.00004718
С	0.79006311	-0.81573520	-0.00014676
0	-0.06056012	-1.71983082	-0.00029089
Н	-1.60868584	-0.84511519	-0.00024898

E:

С	-0.62681697	2.20326321	0.70926683
С	1.55023265	1.45690135	-0.38134794
С	1.89775236	2.82415723	-0.56641743
С	0.95981811	3.92747579	-0.19874169
С	-0.28237282	3.55868538	0.52160794

С	2.50721016	0.45158160	-0.73705329
С	3.12707026	3.18914736	-1.10041150
С	4.04139158	2.20059138	-1.46972662
С	3.73499745	0.85965922	-1.29855803
Н	3.34563494	4.24171018	-1.23591696
Н	4.99253565	2.47626206	-1.91438419
Н	4.43606482	0.11182967	-1.64127829
Ν	2.21466898	-0.89707614	-0.56856412
С	3.00675662	-2.01988893	-0.32018255
0	2.44095994	-3.10523479	-0.26449258
С	4.49931357	-1.87573713	-0.07245253
Н	5.01100684	-1.86082795	-1.04542097
Н	4.71350338	-0.91318102	0.40526726
С	5.05898025	-3.03015438	0.77019205
Н	4.55047786	-3.04560595	1.74223523
Н	4.81697269	-3.97870300	0.28031977
Pd	-2.09272657	-0.99310320	-0.31107870
0	-3.77702708	-1.87420733	-1.14123663
С	-3.43552776	-1.47389670	-2.31335037
С	-4.29219069	-1.75818708	-3.50559417
0	-2.34989708	-0.80645960	-2.40123494
С	6.57190978	-2.91088688	0.97540029
Н	6.94961004	-3.74191436	1.58127416
Н	7.10558059	-2.92621409	0.01707353
Н	6.83475159	-1.97736668	1.48789170
С	-1.09439701	4.56741454	1.04565203
С	-2.22914852	4.23931446	1.78630343
Н	-2.85428790	5.02585210	2.19774467
С	-2.54756093	2.89722829	2.01469330
Н	-3.41328714	2.63854121	2.61660926
С	-1.75679656	1.88129561	1.47787280
Н	-1.99882313	0.84506485	1.68445911
Н	-0.81384230	5.60087101	0.87435008
Н	-5.09979759	-1.01808371	-3.55048837
Н	-4.74412838	-2.74935646	-3.41734864
Н	-3.70058841	-1.68777040	-4.42069863
0	1.23328648	5.09930413	-0.44398528
С	0.20262605	1.13818417	0.11042102
0	-0.22333138	-0.04330188	0.00681481

С	-1.69750861	-2.33956289	2.16258157
0	-2.37172362	-1.33061449	1.65516609
0	-0.93481614	-3.06500847	1.52757962
С	-1.96536042	-2.52975914	3.64926604
Н	-1.70680322	-1.61908573	4.19945395
Н	-3.03010980	-2.72275011	3.81726468
Н	-1.37745489	-3.36759376	4.02864793
Н	1.22384381	-1.10617712	-0.48290189

A:

С	-2.70183871	-0.92607579	0.71513001
С	-1.20103868	0.63323938	-0.61461902
С	-2.35440772	1.16226573	-1.25782018
С	-3.72037594	0.62667679	-0.97624276
С	-3.84973399	-0.38458234	0.10291494
С	0.06569208	1.26524933	-0.81508122
С	-2.25093438	2.22752163	-2.14363299
С	-1.00011020	2.80185079	-2.39330927
С	0.12945587	2.33515889	-1.74029215
Н	-3.14780964	2.59233469	-2.63035599
Н	-0.90800081	3.61538604	-3.10653658
Н	1.09601591	2.77678551	-1.95217149
Ν	1.20547124	0.84564201	-0.14944258
С	2.15473715	1.65952658	0.43143066
0	3.20279757	1.17757849	0.86865028
С	1.87290778	3.15420123	0.62383993
Н	2.38281604	3.70330619	-0.18023248
Н	0.80613617	3.37634963	0.52633536
С	2.39307332	3.65669457	1.98000293
Н	1.88397972	3.11089211	2.78548786
Н	3.45644213	3.41149561	2.06321519
Pd	1.52510319	-1.14360804	-0.05016866
0	3.43697954	-1.53196974	-0.82529952
С	3.28106848	-2.78948292	-0.63449513
С	4.38338142	-3.75613300	-0.94692540
0	2.16881757	-3.17888169	-0.14213163
С	2.17886253	5.16241093	2.16045542
Н	2.55537696	5.49822036	3.13338737

Н	2.70272979	5.73355088	1.38387628
Н	1.11519925	5.42548113	2.10548873
С	-5.11881448	-0.81449913	0.50128143
С	-5.25090756	-1.76306712	1.51420657
Н	-6.23883646	-2.08733310	1.82665985
С	-4.11165625	-2.29931093	2.12543445
Н	-4.21457321	-3.03821843	2.91403034
С	-2.84162935	-1.89264252	1.72181939
Н	-1.95438562	-2.31223553	2.18184677
Н	-5.98838819	-0.39377579	0.00819883
Н	5.03231454	-3.85351418	-0.06843286
Н	4.98764216	-3.38810887	-1.77942483
Н	3.96946663	-4.73965128	-1.18071220
0	-4.70361617	1.03998773	-1.58534655
С	-1.35532335	-0.52521108	0.25832392
0	-0.39793090	-1.25011919	0.64021081

TS (A-B) :

Ν	-1.25377337	-1.60527042	-1.00039154
С	-0.07410314	-2.30507735	-1.14345762
0	1.06563349	-1.94848521	-0.87128835
С	-0.40462470	-3.67219408	-1.75940370
Н	0.22621490	-4.40119081	-1.23041574
Н	0.99493709	-3.41738657	-3.35920013
С	-0.06859619	-3.67900240	-3.26646502
Н	-1.42253214	-4.62024665	-1.49858908
Н	-0.62932087	-2.87950375	-3.76579059
Pd	-2.54986753	-3.03187743	-1.35155064
0	-3.82201121	-4.66924554	-1.67918692
С	-3.21910073	-5.78553000	-1.57838220
С	-4.03017750	-7.05372238	-1.70536269
0	-1.96451060	-5.88636409	-1.39555269
С	-0.32122352	-5.00750214	-3.98521937
Н	-1.38546508	-5.26273537	-4.00213653
Н	0.02662774	-4.94427323	-5.02235110
Н	0.21313918	-5.83223354	-3.50003545
Н	-3.78378623	-7.53854881	-2.65662795
Н	-3.76241692	-7.74722070	-0.90341437

Н	-5.09947504	-6.84029985	-1.67672540
С	-1.48530039	-0.33875530	-0.53188097
С	-2.81601451	0.18251093	-0.34246081
С	-0.37311506	0.50329955	-0.24593032
С	-4.04217500	-0.57553988	-0.58363678
С	-2.94342372	1.53547987	0.11700278
С	-0.54557210	1.79633299	0.19997786
Н	0.61564403	0.09109819	-0.38750550
С	-5.36767302	0.07085211	-0.39571417
С	-4.26816799	2.19000353	0.33944054
C	-1.83198730	2.31850228	0.38199736
Н	0.32535109	2.41050221	0.40926656
С	-6.53436677	-0.66318533	-0.66361726
С	-5.48268562	1.39925845	0.05093562
Н	-1.98537772	3.33310085	0.72981171
С	-7.78704372	-0.07995484	-0.48895378
Н	-6.44850628	-1.68662169	-1.00787230
С	-6.74432435	1.97795789	0.22683182
С	-7.89539615	1.24229648	-0.04235650
Н	-8.68177921	-0.65742921	-0.70084735
Н	-6.79876542	3.00361807	0.57497738
Н	-8.87357543	1.69336904	0.09406438
0	-4.10951384	-1.78406665	-0.94732638
0	-4.34486101	3.34880004	0.74461758

B:

С	2.25188937	-3.78444887	0.33742976
С	3.29952156	-2.86148364	0.24730818
С	0.60921079	-1.97563239	0.16287095
С	0.94259165	-3.35514162	0.30014409
С	5.08343228	1.71459321	-0.10384820
Н	6.08296058	1.29907323	-0.03532219
С	4.87602826	3.08645807	-0.21319165
С	3.57119985	3.58669460	-0.30290052
С	2.48252583	2.71826140	-0.28357597
Н	2.46655898	-4.84422290	0.44181266
Н	4.33534358	-3.17712021	0.28426617
Н	0.12512407	-4.05896156	0.37154329

Н	5.72310497	3.76572873	-0.22923356
Н	3.40402689	4.65637555	-0.38801934
Н	1.47108778	3.09980111	-0.35523618
0	0.39008195	1.01297606	-0.31790175
0	5.36328947	-1.07603756	0.08159172
С	-2.98188107	-1.36760757	0.16012271
Н	-3.39740713	-1.24327951	1.16882108
С	-1.86132218	-2.40122229	0.17045495
0	-1.97062490	-3.62150450	0.11273296
Ν	-0.71397565	-1.62062177	0.18446131
Pd	-1.57890966	0.12615329	-0.13179835
0	-2.73150847	1.93624276	-0.44892476
С	-3.20731471	2.56172936	0.50595832
0	-3.07860429	2.15468780	1.76144638
С	-3.98522151	3.83159640	0.34694311
Н	-3.98722826	4.13902962	-0.69831498
Н	-5.01323775	3.67169363	0.68905557
Н	-3.54746692	4.61561841	0.97207003
С	-4.07657782	-1.61027020	-0.87295570
Н	-4.50500828	-2.60698981	-0.68422686
Н	-3.63619280	-1.65688564	-1.87793416
С	-5.19937519	-0.56883635	-0.84849253
Н	-4.82152644	0.42589345	-1.10677057
Н	-5.98803153	-0.82809449	-1.56413887
Н	-5.65795336	-0.50766030	0.14656856
С	4.22197190	-0.61686381	0.03619571
С	1.48928768	0.43235450	-0.15092382
С	2.68032639	1.33341257	-0.16926109
С	3.99179209	0.83786318	-0.07957206
С	3.02510487	-1.50910406	0.10780579
С	1.67973523	-1.01397033	0.04462010
Н	-2.56510268	1.31009230	1.75420502

C:

Ν	-0.44553011	1.71646669	-0.69950829
С	-1.54534241	2.47623258	-1.02289056
0	-1.62864659	3.66038897	-1.31613181
C	-2.72618633	1.52548199	-0.93839412

Н	-2.95852232	1.04475452	-1.89055345
Н	-4.23396818	2.90594865	-0.56696236
С	-3.91653835	1.94717752	-0.12354145
Н	-3.60280572	2.17479714	0.89961764
Pd	-1.40424062	0.05853767	-0.14419253
0	-2.74925364	-1.47641284	0.48436515
0	-1.63612755	-3.41340059	0.13076644
Н	-1.06743712	-2.91855317	-0.59190734
С	-5.08342028	0.95701856	-0.14195434
Н	-4.79836470	0.00809304	0.32106074
Н	-5.93546878	1.36671624	0.41026249
Н	-5.41276321	0.75210871	-1.16747534
С	0.84580022	2.11833442	-0.38151458
С	1.90871940	1.20854716	-0.06726888
С	1.13475692	3.50638123	-0.43661159
С	1.74084469	-0.24673792	0.12991723
С	3.21860143	1.74480451	0.11817148
С	2.41157640	3.98959131	-0.21095145
Н	0.32909718	4.18407719	-0.67874643
С	2.94362120	-1.12110115	0.14759090
С	4.41632699	0.87950286	0.36399282
С	3.46077264	3.11190219	0.05814176
Н	2.59007819	5.05979053	-0.25441691
С	2.77659676	-2.51081243	0.06042917
С	4.23545588	-0.58573680	0.28289361
Н	4.47158034	3.46716546	0.21898195
С	3.88853258	-3.34982675	0.10121431
Н	1.77829219	-2.91572902	-0.05463946
С	5.34569920	-1.43456901	0.34356790
С	5.17354482	-2.81384553	0.24863037
Н	3.75469873	-4.42427419	0.01988501
Н	6.33086970	-0.99617939	0.46015560
Н	6.03628720	-3.47199167	0.28690764
0	0.64772976	-0.81681257	0.31351377
0	5.51878752	1.37497466	0.58532647
0	-1.53849338	1.35045275	3.80263712
С	-1.39283559	0.56769635	2.86873816
0	-1.63845382	1.00289005	1.64221169
С	-0.99281226	-0.87468376	3.11047738

Н	-0.49617080	-0.94477857	4.08049866
Н	-1.89968084	-1.48805465	3.14918874
Н	-0.33974545	-1.27015746	2.33104024
С	-0.69925699	-1.60298146	-2.55206409
0	-1.28547066	-0.53164250	-2.13536830
0	-0.36684001	-2.58095933	-1.85048351
С	-0.39479980	-1.60312674	-4.03842788
Н	0.49396043	-0.98677078	-4.21677802
Н	-0.19786574	-2.61990417	-4.38246016
Н	-1.22256758	-1.16410443	-4.60076981
С	-3.62307490	-3.49545548	1.41003943
Н	-4.14944322	-4.17879501	0.73511707
Н	-3.11018755	-4.10483052	2.16045067
Н	-4.33734811	-2.82675524	1.88976081
С	-2.60901527	-2.71319392	0.62256449
D :			

С	1.70088590	-3.76092318	-1.24236990
С	2.92030873	-3.08056510	-1.30829433
С	0.62732952	-1.81736519	-0.23461160
С	0.58096423	-3.14863568	-0.69749964
С	5.73054187	0.77661378	-0.00386895
Н	6.59778903	0.25279142	-0.39087442
С	5.85756320	2.00365140	0.64579926
С	4.72096884	2.66484947	1.12541131
С	3.45759950	2.10445687	0.94952854
Н	1.62790852	-4.77943342	-1.61173616
Н	3.81082704	-3.55408616	-1.70535488
Н	-0.35479021	-3.68597202	-0.62581647
Н	6.83984211	2.44703603	0.77750938
Н	4.82041106	3.61988286	1.63185046
Н	2.57099503	2.61610804	1.30607007
0	1.00519707	1.06729745	0.23317885
0	5.32289108	-1.66280573	-1.36236890
С	-2.29468658	-1.20766046	2.12829335
Н	-2.20351123	-1.60801126	3.14045344
С	-1.15257047	-1.89140746	1.35595810
0	-0.86247350	-3.03857242	1.71439251
Ν	-0.50559695	-1.22798780	0.34778131

Pd	-0.89701494	0.59341875	-0.40340587
0	-2.18615415	0.23400973	2.20994240
С	-1.26105050	0.73060481	3.06815310
0	-0.50551913	0.03171645	3.71323691
С	-1.29805671	2.23816428	3.09390429
Н	-2.32357351	2.59641754	3.22237952
Н	-0.66688710	2.60556436	3.90410501
Н	-0.92684940	2.62841883	2.13948196
С	-3.69341977	-1.50697201	1.57166528
Н	-3.76823614	-1.08942007	0.56365399
Н	-4.40321119	-0.95765354	2.20246072
С	-4.05389574	-2.99640113	1.57110108
Н	-3.99550847	-3.42247771	2.57945996
Н	-5.07843679	-3.13149336	1.20806965
Н	-3.38681110	-3.57708681	0.92708590
С	4.34719050	-1.11722973	-0.85320116
С	1.98362618	0.28988762	0.07945471
С	3.32462932	0.86204785	0.31256125
С	4.47023968	0.19447338	-0.16503546
С	3.00648521	-1.77129650	-0.84851744
С	1.85587658	-1.10538301	-0.34381596
С	-2.12621289	3.21427090	-1.39422652
С	-2.76907931	-0.62928013	-2.26246147
0	-3.31085600	2.65604413	-1.44841554
0	-1.07944295	2.60138686	-1.11093856
0	-2.75245977	0.12351531	-1.16551515
0	-1.76841125	-1.06839316	-2.81225341
С	-4.17702103	-0.90533672	-2.76394557
Н	-4.73831249	-1.46504914	-2.00803610
Н	-4.71309786	0.03346187	-2.93883045
Н	-4.13776773	-1.48182654	-3.68965722
С	-2.10660827	4.68023546	-1.71285103
Н	-2.85408839	5.19927384	-1.10549160
Н	-1.11565810	5.09488896	-1.52972956
Н	-2.37875248	4.82270939	-2.76430510
Н	-3.23223378	1.65622303	-1.30740762

2ea:

С	0.51675203	3.60896751	0.42916218
С	1.82354477	3.12234561	0.42573577
С	-0.34545435	1.39757032	-0.08926246
С	-0.55627217	2.76584337	0.17545463
С	5.06962067	-0.58928624	-0.05132207
Н	5.87013131	0.11559313	0.14561046
С	5.33527446	-1.93634306	-0.28494134
С	4.28224570	-2.82354023	-0.53661001
С	2.96771471	-2.36296404	-0.55421246
Н	0.32924542	4.65967582	0.62963300
Н	2.66963037	3.77074489	0.62103741
Н	-1.56869409	3.14171766	0.17731377
Н	6.35935335	-2.29724922	-0.27167712
Н	4.48855611	-3.87393363	-0.71909902
Н	2.14248194	-3.03846547	-0.74926662
0	0.38357829	-1.37709666	-0.58760555
0	4.39682952	2.10683540	0.40198786
С	-3.61449000	-0.44465567	-0.69615803
Н	-3.54586095	-0.52783364	-1.78703414
С	-2.76230254	0.77743240	-0.29187512
0	-3.28011518	1.85309736	-0.01945493
Ν	-1.41016254	0.53626564	-0.35801771
0	-2.99856273	-1.68828194	-0.26226741
С	-2.80992467	-1.87837599	1.07013968
0	-3.10916078	-1.05550087	1.91028226
С	-2.15151866	-3.20786142	1.32957132
Н	-1.13032495	-3.18102147	0.93311820
Н	-2.12342534	-3.40050307	2.40242392
Н	-2.68754572	-4.01010689	0.81449816
С	-5.09012203	-0.33533620	-0.29703646
Н	-5.16739943	0.03822297	0.72656500
Н	-5.49572185	-1.35381591	-0.30737948
С	-5.90234085	0.54604678	-1.25369417
Н	-5.85529763	0.16517409	-2.28128336
Н	-6.95508321	0.56107250	-0.95182709
Н	-5.53262333	1.57470196	-1.25128837
С	3.48108252	1.31628896	0.18440141
С	1.27654359	-0.54783347	-0.34883099
С	2.69154406	-1.00988610	-0.31937683

С	3.75130525	-0.12009162	-0.06669905
С	2.05842882	1.77462550	0.16827991
С	0.98593136	0.88173136	-0.09256278
Н	-1.11221309	-0.41832625	-0.56973729

TS (A-B') :

N	-0.98796076	-1.47978940	-0.76505799
С	0.25692245	-1.92050674	-0.33780472
0	1.04830810	-1.26141596	0.33378639
С	0.55817744	-3.35292215	-0.73975999
Н	1.64471534	-3.42443580	-0.87956876
Н	0.31507355	-3.99929005	0.11415844
С	-0.17340779	-3.84875341	-1.99512889
Н	-1.30962324	-4.63814746	-2.05135205
Н	0.16965182	-4.89022755	-2.09628786
Pd	-2.20091187	-2.93042148	-1.47088020
0	-3.63565814	-4.29169514	-2.14604066
С	-3.21754325	-5.45131202	-2.45442881
С	-4.22079717	-6.48120292	-2.91737929
0	-1.99248755	-5.77275524	-2.39944489
С	0.21829420	-3.14613037	-3.30097602
Н	1.28796546	-3.29686497	-3.50509796
Н	-0.34240580	-3.55908997	-4.14671846
Н	0.03339729	-2.06855336	-3.27013783
Н	-4.02361578	-6.72499811	-3.96680925
Н	-4.09604235	-7.40011885	-2.33711753
Н	-5.24118943	-6.11034323	-2.81547414
С	-1.36386718	-0.14957018	-0.68206613
С	-2.72231632	0.28797691	-0.52457301
С	-0.35967833	0.85595224	-0.78064817
С	-3.85926127	-0.61868526	-0.52122150
С	-2.98696591	1.68791061	-0.37211177
С	-0.65493595	2.19978968	-0.68023182
Н	0.66181569	0.54545158	-0.94135046
С	-5.19556631	-0.14085282	-0.09053736
С	-4.35738801	2.21517483	-0.10004577
С	-1.96976225	2.62394098	-0.45260404
Н	0.14262769	2.93020626	-0.77984841

С	-6.23606971	-1.06356520	0.09568034
С	-5.44438816	1.23010820	0.10150516
Н	-2.21689021	3.67364130	-0.34640313
С	-7.50048482	-0.62274591	0.47984022
Н	-6.04250541	-2.11865836	-0.05817013
С	-6.72064991	1.66601079	0.47267770
С	-7.74563476	0.74291415	0.66686632
Н	-8.29771125	-1.34396759	0.63196886
Н	-6.88753247	2.72950289	0.60504935
Н	-8.73374288	1.08296087	0.96183166
0	-3.81884805	-1.82103355	-0.89482764
Ο	-4.57013853	3.42336471	-0.01274390

B' :

Ν	0.85289178	1.67296611	-0.28081951
С	1.67043512	2.65766811	-0.82253422
0	1.31938892	3.80077310	-1.11760861
С	3.08131204	2.15367265	-1.09406635
Н	3.13185160	1.89497916	-2.16196666
Н	3.77827310	2.99160609	-0.95096614
С	3.45132169	0.93454152	-0.24519228
Н	3.62869817	1.24742475	0.79243624
Pd	1.71745449	-0.14735689	-0.18790331
0	2.63978251	-2.10449905	-0.04624911
С	2.92331780	-2.59101021	1.05452569
С	3.48377803	-3.97007319	1.22071865
0	2.76181895	-1.92975502	2.19299321
Н	2.39523484	-1.03712688	1.97833226
С	4.65770458	0.17495060	-0.78005272
Н	5.52347629	0.85068658	-0.86824776
Н	4.95338559	-0.64825672	-0.12219192
Н	4.46718982	-0.23964181	-1.77754521
Н	2.82702698	-4.55661828	1.87091823
Н	3.57841105	-4.45401071	0.24922242
Н	4.46268479	-3.91079377	1.70734884
С	-0.42989998	1.94421416	0.17719639
С	-1.50339553	0.98570914	0.18100476
С	-0.70719554	3.24062962	0.69703571
С	-1.35332889	-0.42559923	-0.19444839

С	-2.80369068	1.41592566	0.60306959
С	-1.96097750	3.60526341	1.14486826
Н	0.10135599	3.95490038	0.73898504
С	-2.56607841	-1.24735979	-0.46143402
С	-4.00477659	0.52964641	0.53739483
С	-3.02384082	2.69999645	1.07947974
Н	-2.11641845	4.60164200	1.54870880
С	-2.42376312	-2.51215069	-1.05083838
С	-3.84580861	-0.79916495	-0.09418737
Н	-4.02253795	2.97183496	1.40035709
С	-3.54409084	-3.30752491	-1.28123575
Н	-1.43368597	-2.85705106	-1.32594658
С	-4.96572022	-1.61035239	-0.31086588
С	-4.81750960	-2.85926456	-0.90848874
Н	-3.42635293	-4.28040413	-1.74917527
Н	-5.93970664	-1.24301815	-0.00598465
Н	-5.68768576	-3.48475736	-1.08381127
0	-0.25976484	-1.02679983	-0.28101469
0	-5.09886397	0.90377482	0.95901902

C':

Ν	-0.47715182	-1.70663290	-0.67592313
С	-1.28722531	-2.53470513	-1.43600950
0	-0.86685219	-3.41192698	-2.18301219
С	-2.77333860	-2.24163994	-1.25670860
Н	-3.13232485	-1.63592677	-2.09479508
Н	-3.30947468	-3.19992872	-1.29997450
С	-3.04892769	-1.57087992	0.07163856
Н	-2.71997274	-2.17956594	0.91432138
Pd	-1.45470231	-0.17569132	0.16197181
0	-2.57558725	1.46011835	0.96040570
0	-0.98330364	2.73558883	1.92986433
Н	-0.50316108	1.84745330	2.12983320
С	-4.39324335	-0.94061946	0.29160524
Н	-5.14202976	-1.74811034	0.23510834
Н	-4.46913825	-0.49068026	1.28492353
Н	-4.61925705	-0.19216706	-0.46862607
С	0.86082648	-1.99318628	-0.38736363

С	1.89423054	-1.01356099	-0.26423832
С	1.20990648	-3.35539102	-0.21967650
С	1.65231101	0.44445976	-0.26556656
С	3.23666614	-1.45828069	-0.08785654
С	2.51728210	-3.75619454	-0.00324223
Н	0.42579465	-4.09799899	-0.27772557
С	2.79739815	1.36719155	-0.48565330
С	4.39535885	-0.51170818	-0.08008934
С	3.54001799	-2.80904210	0.04583814
Н	2.73989841	-4.81087066	0.12726102
С	2.54807476	2.72071408	-0.75058151
С	4.12353503	0.91340295	-0.37869662
Н	4.57461020	-3.09727632	0.19023416
С	3.61099884	3.60437826	-0.92653834
Н	1.52240574	3.06508703	-0.81825195
С	5.18595789	1.81019528	-0.53572283
С	4.93115850	3.15059915	-0.81706610
Н	3.41221546	4.64915735	-1.14536086
Н	6.20003491	1.43872699	-0.43548699
Н	5.75665010	3.84364037	-0.94844688
0	0.54272308	0.96012370	-0.05459236
0	5.53890901	-0.91288431	0.12430897
0	-3.77256192	1.35050992	-1.81905657
С	-2.64670203	1.19947705	-2.28062556
0	-1.64329165	0.54090141	-1.74408293
С	-2.24502455	1.78819300	-3.63343596
Н	-3.11638107	2.24175000	-4.11013544
Н	-1.46896763	2.54796070	-3.49151645
Н	-1.82934679	1.01038209	-4.28128804
С	-0.33592414	-0.50515280	2.89660179
0	-1.08795212	-1.04975077	1.99410524
0	0.12479692	0.65119980	2.87270681
С	-0.00993748	-1.43373134	4.05290941
Н	0.68345775	-2.20798252	3.70639585
Н	0.45171112	-0.87241700	4.86676667
Н	-0.91572688	-1.93463212	4.40547962
С	-3.05149309	3.75873066	1.37787584
Н	-3.77880351	3.66784855	0.57050839
Н	-3.58756655	3.81873768	2.33240493

Н	-2.45720141	4.66823434	1.26626181
С	-2.15792301	2.55104555	1.40221770

D' :

Ν	-0.51218747	0.22356475	-1.34358519
С	-1.20145691	1.30214486	-1.85145006
0	-0.75376934	2.01739690	-2.75463814
С	-2.55228196	1.65436727	-1.23806318
Н	-3.26558544	1.71757044	-2.06863355
Н	-2.91726898	0.89642983	-0.54511688
С	-2.50815849	3.02713675	-0.56478320
Н	-2.07181442	3.75892435	-1.24763177
Pd	-1.01673882	-0.81445761	0.29888290
0	-1.34803618	-1.84537501	2.14084765
0	-3.58992699	-2.07967586	2.02952322
Н	-3.44833500	-1.76569858	1.07737723
С	-3.87071346	3.49991001	-0.07283271
Н	-4.29548504	2.78715510	0.64269755
Н	-3.78291507	4.47657483	0.41181892
Н	-4.56203196	3.59645714	-0.91696856
С	0.72211283	-0.11925507	-1.90687546
С	1.89291354	-0.32273680	-1.12092954
С	0.82841188	-0.25378280	-3.30977227
С	1.87572546	-0.22942831	0.33640810
С	3.13269954	-0.58679797	-1.77143255
С	2.03257124	-0.56950042	-3.91753420
Н	-0.06296651	-0.11403321	-3.90712925
С	3.14508986	-0.08141430	1.07767711
С	4.41250711	-0.67194411	-1.01021212
С	3.19346694	-0.72464698	-3.15184641
Н	2.07357535	-0.69028216	-4.99586801
С	3.12720005	0.23520296	2.44416840
С	4.37488562	-0.31802405	0.43210909
Н	4.14934136	-0.94457292	-3.61311599
С	4.32310945	0.33693408	3.15158452
Н	2.17707010	0.40344366	2.93799065
С	5.56758470	-0.23449550	1.15610101
С	5.54387539	0.09993596	2.50915236

Н	4.30451036	0.59655183	4.20551074
Н	6.50179739	-0.43226919	0.64195039
Н	6.47363601	0.17393816	3.06491466
0	0.82703948	-0.29245178	1.03165924
0	5.46653227	-0.97672838	-1.56317850
0	-1.02827582	5.07890249	0.45278733
С	-0.92263709	3.98559110	0.97421311
О	-1.60097708	2.88966913	0.57186878
С	-0.03567700	3.66610885	2.15398836
Н	0.60451781	4.52109396	2.37476287
Н	-0.65517100	3.44123653	3.02944006
Н	0.57353346	2.78144378	1.94617827
С	-2.92826523	-2.30415328	-1.33393728
0	-2.87442763	-1.38047683	-0.37855317
0	-1.94800162	-2.83284664	-1.83887880
С	-4.35375899	-2.63795636	-1.74294988
Н	-4.87107404	-1.73231239	-2.07571802
Н	-4.34941423	-3.37704154	-2.54574946
Н	-4.90934310	-3.03487394	-0.88612128
С	-2.50993400	-2.75284120	4.02926673
Н	-1.52744290	-2.73332078	4.50017948
Н	-3.22589868	-2.17770254	4.62450523
Н	-2.87720836	-3.78325965	3.97687440
С	-2.43626807	-2.18246605	2.64342240
7d :			
0 1 (charge, spi	in multiplicity)		
Ν	-0.88120920	0.14496596	-0.69716229
С	-2.21830538	0.33580129	-0.96479725
0	-2.77342218	1.42845021	-1.02413452
С	-2.97480999	-0.96614317	-1.22622665
Н	-2.94918050	-1.15057038	-2.30835920
Н	-2.48045708	-1.81708430	-0.74492910
С	-4.43051322	-0.88394118	-0.78183563
Н	-4.88666351	0.02325413	-1.18049534
Н	-0.53603488	-0.81561128	-0.66506420
С	-5.24755292	-2.11117210	-1.16562846
Н	-4.81519683	-3.02060723	-0.73442688
Н	-6.27584511	-2.00695724	-0.80811199
Н	-5.27298919	-2.22217670	-2.25500780

С	0.12438479	1.08787059	-0.47815547
С	1.45812409	0.63814438	-0.23692320
С	-0.14733647	2.47101661	-0.48946046
С	1.81212082	-0.80046686	-0.20946352
С	2.47077705	1.60869994	-0.01784264
С	0.86859973	3.39143595	-0.27134664
Н	-1.16109208	2.79584340	-0.67143611
С	3.22710984	-1.18701344	0.04805910
С	3.89171610	1.22308786	0.24000506
С	2.17652043	2.96929937	-0.03570899
Н	0.63480833	4.45190721	-0.28570121
С	3.56383759	-2.54643929	0.07456191
С	4.22682769	-0.22127853	0.26312679
Н	2.97807442	3.67820552	0.13579024
С	4.87936826	-2.93833596	0.31182697
Н	2.78429877	-3.28119371	-0.09246430
С	5.54653286	-0.62184745	0.50088093
С	5.87283694	-1.97554299	0.52516445
Н	5.13286127	-3.99409700	0.33093999
Н	6.30005793	0.14111557	0.66382200
Н	6.89779364	-2.28307889	0.70981062
0	0.97474565	-1.69802895	-0.39317585
0	4.75446829	2.07856261	0.42692164
0	-6.31802704	0.43893920	0.66385954
С	-5.38706043	-0.06132996	1.26447162
0	-4.39269762	-0.75654442	0.67120227
С	-5.17803432	0.00534414	2.75792680
Н	-6.00025065	0.55285806	3.21972731
Н	-5.12373620	-1.00504159	3.17573224
Н	-4.22938159	0.50430826	2.98111676

10. References

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
 J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X.
 Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
 Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.
 A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
 Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

2. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

3. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 299.

4. Hratchian, H. P.; Schlegel, H. B. in Theory and Applications of Computational Chemistry: The First

40 Years, Ed. Dykstra, C. E.; Frenking, G.; Kim, K. S.; Scuseria G., Elsevier: Amsterdam, 2005, 195–249.

5. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.

6. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.

11. NMR Spectra of New Compounds

