Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Enantioselective Total Synthesis of (+)-Methoxystemofoline and (+)-Isomethoxystemofoline

Pei-Qiang Huang,^{a,b,*} Su-Yu Huang,^a Long-Hui Gao,^a Zhong-Yi Mao,^a Zong Chang,^a Ai-E Wang^a

^a Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, and

Collaborative Innovation Centre of Chemistry for Energy Materials, College of Chemistry and

Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China.

^b State Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000, P.R. China.

E-mail: pqhuang@xmu.edu.cn

Contents (38 pages):

- Experimental procedures for the synthesis of compounds **2**, **3**, **7-10** (pp. 2-7)
- Table 1 and 2, ¹H and ¹³C NMR data for methoxystemofoline (2) and isomethoxystemofoline (3) (pp. 8-9)
- References (pp. 10)
- ¹H and ¹³C NMR spectra of compounds **2**, **3**, **5**~**7**, **9**~**25** (pp. 11-36)
- NOESY spectra of compounds *trans*-7 and (*Z*)-14 (pp. 37-38)
- X-ray structure of compound **20** (pp. 38)

General Methods. Melting points were uncorrected. Infrared spectra were measured using film KBr pellet techniques. ¹H NMR spectra were recorded in CDCl₃ with tetramethylsilane as an internal standard. Chemical shifts are expressed in δ (ppm) units downfield from TMS. Mass spectra were obtained using electrospray ionization and an ICR analyzer (ESI-MS) for high resolution mass spectra (HRMS). Silica gel (300-400 mesh) was used for flash column chromatography, eluting (unless otherwise stated) with ethyl acetate/hexane. Ether and THF were distilled over sodium benzophenone ketyl under N₂. Dichloromethane was distilled over calcium hydride under N₂.

(S)-2-(Benzyloxy)-N-(2-(*tert*-butyldimethylsilyloxy)ethyl)-4-hydroxybutanamide (9)

To a cooled solution (0 °C) of the known (S)- α -benzyloxy- γ -lactone¹ S-8 (9.77 g, 50.9 mmol) in methanol (230)mL) N_2 under added was 2-((tert-butyldimethylsilyl)oxy)ethanamine (13.36 g, 76.3 mmol) in methanol (30 mL). The reaction mixture was stirred at room temperature for 3 days. Then the solvent was removed under reduced pressure. The residue was purified by flash chromatography (EtOAc/PE = 1/1) to give hydroxy amide 9 (16.8 g, yield: 90%) as a white solid. M.p. 52-57 °C; $[\alpha]_D^{20}$ –45.2 (*c* 1.0, CHCl₃); IR (film) *v*_{max}: 3417, 2952, 2927, 2855, 1661, 1530, 1470, 1454, 1381, 1255, 1094, 836, 777, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 6H), 0.86 (s, 9H), 1.95-2.08 (m, 2H), 2.92 (br s, 1H), 3.34-3.47 (m, 2H), 3.65-3.71 (m, 2H), 3.75 (t, J = 5.6 Hz, 2H), 4.05 (t, J = 6.3 Hz, 1H), 4.55 (d, J = 11.4 Hz, 1H), 4.61 (d, J = 11.4 Hz, 1H), 7.09 (br s, 1H), 7.28-7.39 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ – 5.4 (2C), 18.2, 25.8 (3C), 35.5, 41.2, 59.6, 61.7, 72.8, 78.7, 128.0 (2C), 128.3, 128.7 (2C), 136.9, 172.7; HRMS calcd for C₁₉H₃₃NO₄Si [M+Na⁺]: 390.2071; found: 390.2075.

(4*S*)-4-(Benzyloxy)-1-[2-(*tert*-butyldimethylsilyloxy)ethyl]-5-oxopyrrolidin-2-yl acetate (10)

To a cooled (0 °C) suspension of Dess-Martin periodinane (7.94 g, 18.90 mmol) in anhydrous CH₂Cl₂ (50 mL), a solution of hydroxy amide 9 (5.31 g, 14.54 mmol) in CH₂Cl₂ (20 mL) was added. Then reaction mixture was warmed to room temperature and stirred for 2 h. The reaction was quenched with a saturated aqueous NaHCO₃ (30 mL) and a saturated aqueous Na₂S₂O₃ (30 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was diluted with MeOH (50 mL), and then silicon gel (2 g) was added. The suspension was refluxed at 75 °C for 2 h, then silicon gel was filtered and solvent was removed under reduced pressure to give hemiaminal which was used in the next step without purification. The hemiaminal and DMAP (50 mg) was dissolved in CH₂Cl₂ (70 mL) under N₂, and cooled down to 0 °C. Then Et₃N (6.07 mL, 43.6 mmol) and Ac₂O (3.42 mL, 36.4 mmol) were added successively. After being stirred at room temperature overnight, the reaction was quenched with a saturated aqueous NaHCO₃ (50 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/PE = 1/6) to give compound **10** (4.38 g, yield: 73% from **9**) as an inseparable diastereomeric mixture in a ratio of 57 : 43 (¹H NMR). Colorless oil. IR (film) v_{max}: 2953, 2929, 2856, 1716, 1453, 1423, 1362, 1237, 1192, 1102, 1010, 923, 836, 778, 736, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, data read from the diastereoisomeric mixture) $\delta_{\text{major diastereomer}}$: 0.03 (s, 6H), 0.86 (s, 9H), 1.94-2.01 (m, 1H), 2.08 (s, 3H), 2.57-2.69 (m, 1H), 3.60-3.81 (m, 4H), 4.02 (dd, J = 3.0, 8.3 Hz, 1H), 4.75 (d, J = 12.0 Hz 1H), 4.93 (d, J = 12.0 Hz, 1H), 6.21 (dd, J = 1.7, 6.4 Hz, 1H), 7.24-7.40 (m, 5H); $\delta_{\text{minor diastereomer}}$: 0.04 (s, 6H), 0.88 (s, 9H), 2.02 (s, 3H), 2.14-2.28 (m, 1H), 2.35 (dd, J = 7.8, 14.0 Hz, 1H), 3.10-3.20 (m, 2H), 3.60-3.81 (m, 2H), 4.32 (dd, J = 8.2, 8.2 Hz, 1H), 4.77 (d, J = 11.9 Hz, 1H), 5.01 (d, J = 11.9 Hz, 1H), 6.30 (d, J = 5.7 Hz, 1H), 7.24-7.40 (m, 5H); ¹³C NMR (100 MHz, CDCl₃ data read from the diastereoisomeric mixture) $\delta_{\text{major diastereomer}}$: -5.6 (2C), 18.0, 21.0, 25.7 (3C), 33.8, 42.9, 60.5, 72.0, 73.2, 83.1, 127.7, 127.9 (2C), 128.3 (2C), 137.5, 170.3, 172.6; $\delta_{\text{minor diastereomer}}$: -5.5 (2C), 18.0, 21.0, 25.7 (3C), 34.6, 43.2, 60.8, 72.2, 72.9, 83.0, 127.8, 127.9 (2C), 128.3 (2C), 137.5, 170.3, 174.3; HRMS calcd for C₂₁H₃₃NO₅Si [M+Na⁺]: 430.2020; found: 430.2023.

(3*S*,5*S*)-3-(Benzyloxy)-1-[2-(*tert*-butyldimethylsilyloxy)ethyl]-5-(2-oxopropyl)pyrr olidin-2-one (*cis*-7) and

(3*S*,5*R*)-3-(Benzyloxy)-1-[2-(*tert*-butyldimethylsilyloxy)ethyl]-5-(2-oxopropyl)pyr rolidin-2-one (*tran*-7)

To a cooled solution (-78 °C) of acetate **10** (8.06 g, 19.8 mmol) in CH₂Cl₂ (200 mL) under N₂ was added dropwise TMSOTf (1.8 mL, 9.9 mmol). After being stirred for 15 min at -78 °C, trimethyl(prop-1-en-2-yloxy)silane (6.6 mL, 39.6 mmol) was added dropwise into the reaction mixture. After being stirred for 2 h at -78 °C, the reaction was warmed slowly to room temperature and stirred overnight. The reaction was quenched with a saturated aqueous NaHCO₃ (30 mL) at 0-5 °C. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was used in the next

step without further purification. The crude partially O-desilvlation keto-lactam and imidazole (2.69 g, 39.6 mmol) was dissolved in CH₂Cl₂ (90 mL) and cooled down to 0 °C, then a solution of t-butyldimethylsilyl chloride (3.58g, 23.8 mmol) in CH₂Cl₂ (10 mL) was added. The reaction mixture was warmed to room temperature and stirred for 4 h. Then the reaction was quenched with a saturated aqueous solution of NaHCO₃ (30 mL) under an ice-bath. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/PE = 1/4) to give *cis*-7 (5.61 g, yield: 70% from 10) and *trans*-7 (1.52 g, yield: 20% from 10). *cis*-7: colorless oil. $[\alpha]_{D}^{20}$ -49.5 (*c* 1.0, CHCl₃); IR (film) v_{max} : 2953, 2929, 2857, 1697, 1454, 1421, 1376, 1255, 1098, 1027, 836, 778 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.02 (d, J = 2.5 Hz, 6H), 0.85 (s, 9H), 1.61 (td, J = 5.0, 13.7 Hz, 1H), 2.12 (s, 3H), 2.53 (td, J = 7.6, 13.7 Hz, 1H), 2.61 (dd, J = 9.8, 17.7 Hz, 1H), 3.03-3.15 (m, 2H), 3.60-3.77 (m, 3H), 3.97-4.07 (m, 2H), 4.70 (d, J = 11.9 Hz, 1H), 4.90 (d, J = 11.9 11.9 Hz, 1H), 7.23-7.40 (m, 5H); 13 C NMR (100 MHz, CDCl₃) δ – 5.5 (2C), 18.2, 25.8 (3C), 30.7, 33.6, 43.5, 48.1, 52.5, 61.3, 72.0, 75.4, 127.7, 127.9 (2C), 128.4 (2C), 137.9, 172.9, 206.1; HRMS calcd for C₂₂H₃₅NO₄Si [M+Na⁺]: 428.2228; found: 428.2229.

trans-**7**: colorless oil. $[\alpha]_D^{20}$ –57.5 (*c* 2.0, CHCl₃); IR (film) v_{max} : 2950, 2928, 2857, 1715, 1459, 1253, 1098, 836, 775 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 6H), 0.87 (s, 9H), 1.95 (ddd, J = 3.4, 7.6, 13.5 Hz, 1H), 2.13 (s, 3H), 2.23-2.32 (m, 1H), 2.40 (dd, J = 9.6, 17.4 Hz, 1H), 3.00 (dd, J = 3.4, 17.4 Hz, 1H), 3.04-3.12 (m, 1H), 3.61 (td, J = 4.8, 14.3 Hz, 1H), 3.69-3.80 (m, 2H), 4.12 (t, J = 7.6 Hz, 1H), 4.15-4.22 (m, 1H), 4.73 (d, J = 12.0 Hz, 1H), 4.93 (d, J = 12.0 Hz, 1H), 7.23-7.39 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ -5.5, -5.4, 18.2, 25.9 (3C), 30.6, 33.5, 43.6, 47.1, 52.4, 61.4, 71.9, 74.5, 127.7, 127.9 (2C), 128.4 (2C), 137.9, 172.9, 205.7; HRMS calcd for C₂₂H₃₅NO₄Si [M+Na⁺]: 428.2228; found: 428.2232.

Methoxystemofoline (2) and isomethoxystemofoline (3)

The mixture of thiocarbonate **25** (10.0 mg, 0.02 mmol) in P(OMe)₃ (1.0 mL, 8.5 mmol) was heated to 120 °C in a sealed tube for 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10 mL) and washed with saturated aqueous NaHCO₃ (5.0 mL). The organic phase was separated and the aqueous layer was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and the solvents and P(OMe)₃ were removed under reduced pressure. The residue was purified by preparative thin layer chromatography (silica gel, CH₂Cl₂/ MeOH = 20: 1) to provide methoxystemofoline (**2**) (2.6 mg, yield: 31%) and isomethoxystemofoline (**3**) (2.5 mg, yield: 30%).

Methoxystemofoline (**2**): colorless oil; $[\alpha]_D^{20}$ +71~85 (*c* 0.1, CH₃OH) {lit.³ $[\alpha]_D^{21.6}$ +75.6 (*c* 0.037, CH₃OH)}; IR (film) v_{max} : 2926, 2853, 1745, 1693, 1619, 1454, 1396, 1365, 1239, 1157, 1139, 1121, 1068, 1025, 1000, 968 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.39-1.32 (m, 1H), 1.44 (d, *J* = 6.7 Hz, 3H), 1.64-1.50 (m, 5H), 1.75-1.65 (m, 2H), 1.85-1.77 (m, 1H), 1.93-1.86 (m, 1H), 1.96 (d, *J* = 12.2 Hz, 1H), 2.03 (s, 3H), 2.68 (d, *J* = 6.0 Hz, 1H), 3.04-2.95 (m, 1H), 3.22-3.08 (m, 2H), 3.32 (s, 3H), 3.38 (t, *J* = 6.3 Hz, 2H), 3.46 (br s, 1H), 4.10 (s, 3H), 4.27 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 8.7, 16.2, 21.9, 26.7, 30.0, 31.7, 33.1, 36.3, 46.0, 47.5, 50.1, 58.5, 59.4, 60.8, 72.5, 78.7, 82.7, 98.6, 113.6, 128.8, 149.9, 163.3, 170.5; HRMS calcd for C₂₃H₃₁NO₆ [M+H⁺]: 418.2224; found: 418.2226.

Isomethoxystemofoline (**3**): colorless oil; $[\alpha]_D^{20}$ +220~226 (*c* 0.1, CH₃OH) {lit.² $[\alpha]_D^{25}$ +249 (*c* 0.29 CH₃OH)}; IR (film) v_{max} : 2922, 2851, 1745, 1619, 1458, 1396, 1366, 1140, 1117, 1058, 1007, 988, 966 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.35-1.31 (m, 1H), 1.37 (d, *J* = 6.5 Hz, 3H), 1.53-1.45 (m, 1H), 1.64-1.55 (m, 4H), 1.73-1.68 (m, 1H), 1.85-1.78 (m, 2H), 1.92-1.87 (m, 1H), 1.94 (d, *J* = 12.2 Hz, 1H), 2.06 (s, 3H), 2.69 (d, J = 6.0 Hz, 1H), 3.02-2.96 (m, 1H), 3.15-3.05 (m, 2H), 3.32 (s, 3H), 3.37 (t, J = 6.4 Hz, 2H), 3.45 (br s, 1H), 4.13 (s, 3H), 4.26 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 9.3, 18.5, 22.0, 26.8, 30.2, 31.9, 33.5, 34.7, 47.7, 47.8, 50.2, 58.8, 59.0, 61.1, 72.7, 78.7, 83.0, 98.8, 112.9, 128.1, 148.6, 163.0, 169.9; HRMS calcd for C₂₃H₃₁NO₆ [M+H⁺]: 418.2224; found: 418.2225.

1H NMR				
Natural product	Semi-synthetic	Our Synthetic	Our Synthetic	
reported by Xu ³	reported by Pyne ²	compound 2	compound 3	
(300 MHz, CDCl ₃)	(500 MHz, CDCl ₃)	(400 MHz, CDCl ₃)	(500 MHz, CDCl ₃)	
	4.26 (br s, 1H)	4.27 (br s, 1H)	4.26 (br s, 1H)	
4.15 (s, 3H)	4.13 (s, 3H)	4.10 (s, 3H)	4.13 (s, 3H)	
	3.45 (br s, 1H)	3.46 (br s, 1H)	3.45 (br s, 1H)	
	3.37 (t, J = 6.0 Hz,	3.38 (t, J = 6.3 Hz,	3.37 (t, J = 6.4 Hz,	
	2H)	2H)	2H)	
3.31 (s, 3H)	3.32 (s, 3H)	3.32 (s, 3H)	3.32 (s, 3H)	
	3.15-3.06 (m, 1H)	3.22-3.08 (m, 2H)	3.15-3.05 (m, 2H)	
	3.15-3.06 (m, 1H)			
	3.01-2.96 (m, 1H)	3.04-2.95 (m, 1H)	3.02-2.96 (m, 1H)	
2.61 (m , 1H)	2.69 (d, $J = 6.0$	2.68 (d, $J = 6.0$	2.69 (d, <i>J</i> = 6.0	
	Hz, 1H)	Hz, 1H)	Hz, 1H)	
2.03 (s, 3H)	2.07 (s, 3H)	2.03 (s, 3H)	2.06 (s, 3H)	
	1.94 (d, <i>J</i> = 11.5	1.96 (d, <i>J</i> = 12.2	1.94 (d, <i>J</i> = 12.2	
	Hz, 1H)	Hz, 1H)	Hz, 1H)	
	1.91-1.87 (m, 1H)	1.93-1.86 (m, 1H)	1.92-1.87 (m, 1H)	
	1.84-1.79 (m, 1H)	1.85-1.77 (m, 1H)	1.85-1.78 (m, 2H)	
	1.84-1.79 (m, 1H)			
	1.70 (d, <i>J</i> = 12.0 Hz, 1H)	1.75-1.65 (m, 2H)	1.73-1.68 (m, 1H)	
	1.56-1.62 (m, 2H)	1.64-1.50 (m, 5H)	1.64-1.55 (m, 4H)	
	1.56-1.62 (m, 2H)		1.53-1.45 (m, 1H)	
1.44 (d, <i>J</i> 6.7 Hz,	1.37 (d, $J = 6.0$	1.44 (d, $J = 6.7$	1.37 (d, $J = 6.5$	
3H)	Hz, 3H)	Hz, 3H)	Hz, 3H)	
	1.35-1.32 (m, 2H)	1.39-1.32 (m, 1H)	1.35-1.31 (m, 1H)	

 Table 1. ¹H NMR Data for methoxystemofoline (2) and isomethoxystemofoline (3)

13C NMR				
Natural product	Semi-synthetic	Our Synthetic	Our Synthetic	
reported by Xu ³	reported by Pyne ²	compound 2	compound 3	
(75 MHz, CDCl ₃)	(125 MHz, CDCl ₃)	(125 MHz, CDCl ₃)	(125 MHz, CDCl ₃)	
170.5 (s)	169.8 (C)	170.5	169.9	
163.5 (s)	163.0 (C)	163.3	163.0	
149.8 (s)	148.6 (C)	149.9	148.6	
128.3 (s)	128.0 (C)	128.8	128.1	
113.5 (s)	112.8 (C)	113.6	112.9	
98.8 (s)	98.7 (C)	98.6	98.8	
83.0 (s)	82.9 (C)	82.7	83.0	
78.6 (d)	78.7 (CH)	78.7	78.7	
72.4 (t)	72.7 (CH ₂)	72.5	72.7	
61.0 (d)	61.1 (CH)	60.8	61.1	
59.4 (q)	59.7 (CH ₃)	59.4	59.0	
58.4 (q)	58.8 (CH ₃)	58.5	58.8	
50.1 (d)	50.2 (CH)	50.1	50.2	
47.4 (d)	47.8 (CH)	47.5	47.8	
46.0 (t)	47.7 (CH ₂)	46.0	47.7	
36.2 (d)	34.7 (CH)	36.3	34.7	
33.0 (t)	33.5 (CH ₂)	33.1	33.5	
31.5 (t)	31.9 (CH ₂)	31.7	31.9	
30.0 (t)	30.2 (CH ₂)	30.0	30.2	
26.5 (t)	26.8 (CH ₂)	26.7	26.8	
21.9 (t)	22.0 (CH ₂)	21.9	22.0	
16.2 (q)	18.5 (CH ₃)	16.2	18.5	
8.7 (q)	9.3 (CH ₃)	8.7	9.3	

 Table 2. ¹³C NMR Data for methoxystemofoline (2) and isomethoxystemofoline (3)

Г

References:

- (1) Bandur, N. G.; Bru1ckner, D.; Hoffmann, R. W.; Koert, U. Org. Lett. 2006, 8, 3829-3831.
- (2) Sastraruji, K.; Sastraruji, T.; Pyne, S. G.; Ung, A. T.; Jatisatienr, A.; Lie, W. J. Nat. *Prod.* **2010**, *73*, 935-941.
- (3) Lin, H. W.; Xu, R. S. Acta Chim. Sinica 1991, 49, 1034-1037.

(4*S*)-4-(Benzyloxy)-1-[2-(*tert*-butyldimethylsilyloxy)ethyl]-5-oxopyrrolidin-2-yl acetate (10)

(3*S*,5*S*)-3-(Benzyloxy)-1-[2-(*tert*-butyldimethylsilyloxy)ethyl]-5-(2-oxopropyl)pyrr olidin-2-one (*cis*-7)

(3*S*,5*R*)-3-(Benzyloxy)-1-[2-(*tert*-butyldimethylsilyloxy)ethyl]-5-(2-oxopropyl)pyr rolidin-2-one (*tran-*7)

(1*R*,5*S*,7*S*)-7-(Benzyloxy)-1-bromo-8-[2-(*tert*-butyldimethylsilyloxy)ethyl]-8-azabi cyclo[3.2.1]octan-3-one (11)

(15,55,75)-1-Allyl-7-(benzyloxy)-8-[2-(*tert*-butyldimethylsilyloxy)ethyl]-8-azabicy

clo[3.2.1]octan-3-one (6)

(*R/S*)-2-{(1*S*,2*R/S*,5*S*,6*S*)-5-allyl-6-(benzyloxy)-8-[2-(*tert*-butyldimethylsilyloxy)et hyl]-3-oxo-8-azabicyclo[3.2.1]octan-2-yl}-2-hydroxypropanoate (12)

2-{(1*S*,5*S*,7*S*)-1-allyl-7-(benzyloxy)-8-[2-(*tert*-butyldimethylsilyloxy)ethyl]-3-oxo-8 -azabicyclo[3.2.1]octan-2-yl}-2-hydroxypropanoate (13)

(Z)-2-{(15,55,65)-5-allyl-6-(benzyloxy)-8-[2-(*tert*-butyldimethylsilyloxy)ethyl]-3-o xo-8-azabicyclo[3.2.1]octan-2-ylidene}propanoate [(Z)-14]

(*E*)-2-{(1*S*,5*S*,6*S*)-5-allyl-6-(benzyloxy)-8-[2-(*tert*-butyldimethylsilyloxy)ethyl]-3-o xo-8-azabicyclo[3.2.1]octan-2-ylidene}propanoate [(*E*)-14]

(Z)-2-{(15,55,65)-5-allyl-6-(benzyloxy)-8-(2-bromoethyl)-3-oxo-8-azabicyclo[3.2.1

(Z)-2-[(1R,4R,5S,7S,7aS)-7a-allyl-7-(benzyloxy)-9-oxohexahydro-1*H*-1,5-ethanop yrrolizin-8-ylidene]propanoate [(Z)-17]

(Z)-2-{(1R,4R,5S,7S,7aS)-7-(benzyloxy)-7a-[(E)-4'-methoxybut-2'-en-1-yl]-9-oxoh exahydro-1*H*-1,5-ethanopyrrolizin-8-ylidene}propanoate (18) and 2'(Z)-isomer

(*E*)-2-{(1*R*,4*R*,5*S*,7*S*,7*aS*)-7-(benzyloxy)-7a-[(*E*)-4'-methoxybut-2'-en-1-yl]-9-oxo hexahydro-1*H*-1,5-ethanopyrrolizin-8-ylidene}propanoate (19) and 2'(*Z*)-isomer

 $\label{eq:methodel} Methyl~(R)-2-\{(2R,2aR,2a^1S,5R,6S,7aS,8R)-2-hydroxy-2a^1-(4'-methoxybutyl)octa hydro-2,6-methanofuro[2,3,4-gh]pyrrolizin-8-yl\}propanoate~(20)$

 $Methyl (R)-2-\{(2S,2aR,2a^{1}S,5R,6S,7aS,8R)-2a^{1}-(4'-methoxybutyl)-2-(trimethylsily loxy)octahydro-2,6-methanofuro [2,3,4-gh] pyrrolizin-8-yl\} propanoate (21)$

 $(R)-2-\{(2S,2aR,2a^1S,5R,6S,7aS,8R)-2a^1-(4'-Methoxybutyl)-2-(trimethylsilyloxy) oc tahydro-2,6-methanofuro [2,3,4-gh] pyrrolizin-8-yl \} propanal (22)$

 $(S)-2-\{(2S,2aR,2a^1S,5R,6S,7aS,8R)-2a^1-(4'-Methoxybutyl)-2-(trimethylsilyloxy) oc tahydro-2,6-methanofuro [2,3,4-gh] pyrrolizin-8-yl \} propanal (5)$

Compound 23

Compound 24

33

Compound 25

Figure 1. NOESY spectrum and structure of compound *trans-7*.

Figure 2. NOESY spectrum and structure of compound (*Z*)-14.

X-ray structure of compound ${\bf 20}$

