Supporting Information

General Method

¹H and ¹³C NMR spectra were measured on Bruker AM-400 spectrometer using d-chloroform as solvent and tetramethylsilane (TMS, $\delta = 0$ ppm) as internal standard. High resolution mass spectra measurements were carried out using a Waters LCT Premier XE spectrometer. The UV/Vis spectra were recorded on a Nicolet CARY 100 spectrophotometer. The fluorescence spectra were recorded on Horiba Fluoromax 4. The fluorescence life time measurements were performed by using the time correlated single photon counting (TCSPC) technique following excitation by nanosecond flash lamp. Calculation: Ab initio calculations were performed at density functional theory (DFT) level employing Gaussian09 package. Long-range corrected hybrid functions, cam-B3LYP, together with polarized double zeta basis set 6-31G* was applied throughout calculations. Each molecule was first optimized at the ground state and the absorption spectroscopy was thereafter obtained through time dependent DFT (TD-DFT) calculations. The first excitation state was subsequently optimized by taking advantage of previous results. The quantum yield for S1, M1-M4 were measured by Quanta- ω F-3029 Integrating Sphere and calculated by the equation of $\Phi_{\rm F} = (Ec-Ea) / (La-Lc)$, in which Ec is the integrated luminescence of the solution caused by direct excitation, Ea is the integrated luminescence of the blank solvent, La is the integrated excitation profile of a blank solvent and Lc is the integrated excitation profile of the solution. Dioxane was pre-dried over sodium for 24h and then redistilled under argon atmosphere from sodium benzophenone ketyl immediately prior to use. Starting materials were obtained from commercial sources (J&K, Aldrich), and used without further purification.

Scheme S1. The structure of the reference molecules S2-S4 and phenazine unit S0.

Scheme S2. Synthetic routes for S1, M1-M4 and the reference compounds S2-S4

Synthesis

9-(4-bromophenyl)-14-phenyl-9,14-dihydrodibenzo[a,c]phenazine: In a 250ml three-neck flask, 18g (0.05 mol) N⁹,N¹⁰-diphenylphenanthrene-9,10-diamine, 42.4g (0.15 mol) 1-bromo-4-iodobenzene, 41.46g (0.3 mol) K₂CO₃, 1.8g (5 mmol) (CF₃SO₃)₂Cu, 80ml trichlorobenzene was added. The mixture stirred for 8h under refluxed. The trichlorobenzene was taken out by vacuum distillation. After cooling, added 150 ml DCM and stirred for 20 min, filtered the mixture. The combined organic layer was purified by column chromatography on silica (PE: DCM = 10:1) to give a light yellow solid 10.5g. Yield: 41 %. ¹H NMR (400 MHz, CDCl₃) δ = 8.80 (d, *J*=38.3, 2H), 8.08 (dd, *J*=21.3, 7.7, 2H), 7.79 – 7.73 (m, 1H), 7.72 – 7.62 (m, 3H), 7.60 – 7.50 (m, 2H), 7.35 (m, 2H), 7.06 (m, 4H), 6.96 (d, *J*=7.9, 2H), 6.86 – 6.78 (m, 3H). HRMS (ESI) (m/z): calcd for C₃₂H₂₁BrN₂: 513.0966 Found [M+H]⁺ 513.0972.

9-phenyl-14-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-9,14-dihydrodibenzo[a,c]phenazine (1a): In a 100ml three-neck flask. 7.7g (0.015 mol) 9-(4-bromophenyl)-14- phenyl-9,14- dihydrodibenzo[a,c] phenazine, 5.84g (0.023 mol) bis(pinacolato)diboron, 4.41g (0.045 mol) KAC, 0.55g (0.75 mmol) Pd(dppf)Cl₂ and 50 ml anhydrous dioxane was added. The mixture refluxed for 10h under N₂ atmosphere. After cooling, the mixture was poured into 150 ml water and extracted with DCM (80ml X 3). The combined organic layer was washed with water, dried with anhydrous MgSO₄. The resident was purified by column chromatography on silica (PE: DCM = 2:1) to give a white solid 5.21g. Yield: 62 %.¹H NMR (400 MHz, CDCl₃) δ = 8.74 (d, *J*=8.3, 2H), 8.06 (dd, *J*=26.1, 7.6, 2H), 7.81 – 7.71 (m, 2H), 7.64 (t, *J*=7.6, 2H), 7.51 (m, 4H), 7.35 (m, 2H), 7.08 – 6.88 (m, 6H), 6.78 (t, *J*=6.7, 1H), 1.26 (s, 12H). HRMS (ESI) (m/z): calcd for C₃₈H₃₃BN₂O₂: 561.2713 Found [M+H]⁺ 561.2711.

4-bromo-N-cyclohexylaniline: In a 250ml there-neck flask, 4g (0.04 mol) cyclohexanedione was dissolved in 50 ml acetic acid, and then slowly added 7g (0.04 mol) 4-bromoaniline in 30ml acetic acid. The mixture was stirred for 2h in room temperature. Then (0.46g x 5 0.06 mol) NaBH₄ was slowly put in at 0 °C. After 1h the mixture was poured into ice water, a white solid was precipitated. Filtered the mixture, the white residue was recrystallized by EtOH to give a white solid 7.3g. Yield: 71 % ¹H NMR (400 MHz, CDCl₃) δ = 7.24 (d, *J*=8.7, 2H), 6.48 (d, *J*=8.7, 2H), 3.57 (s,1H), 3.36 – 3.10 (m, 1H), 2.05 (d, *J*=10.0, 2H), 1.84 – 1.73 (m, 2H), 1.68 (dd, *J*=8.8, 3.8, 1H), 1.46 – 1.32 (m, 2H), 1.31 – 1.08 (m, 3H).

4-bromo-N-cyclohexyl-N-(p-tolyl)aniline: In a 100ml flask. 5.1g (0.02 mol) 4-bromo-N-cyclohexylaniline, 12.8g (0.1 mol) K₂CO₃, 8.72g (0.04 mol) 1-iodo-4-methylbenzene, 0.91g (4.8 mmol) CuI were refluxed in trichlorobenzene (40 ml) for 48h under N₂ atmosphere. The trichlorobenzene was taken out by vacuum distillation. After cooling, added 100ml DCM and stirred for 20min, filtered the mixture. Then the solvent was distilled under reduced pressure, and the crude product was purified by column chromatography on silica (PE : DCM = 8:1) to give a white solid 2.89g. Yield: 42 % ¹H NMR (400 MHz, CDCl₃) δ = 7.26 – 7.22 (m, 2H), 7.19 (d, *J*=8.0, 2H), 6.92 (d, *J*=8.2, 2H), 6.49 (d, *J*=9.1, 2H), 3.76 (tt, *J*=11.6, 3.3, 1H), 2.39 (s, 3H), 2.00 (d, *J*=11.6, 2H), 1.81 (d, *J*=13.5, 2H), 1.46 – 1.27 (m, 3H), 1.18 – 0.99 (m, 3H).

S2: In a 50 ml flask. 0.69g (2 mmol) 4-bromo-N-cyclohexyl-N-(p-tolyl)aniline, 0.38g (2.2 mmol) 1b, 2M K₂CO₃ 2ml, 19mg (0.0165 mmol) Pd(PPh₃)₄, 20ml THF were refluxed for 8h. After cooling the mixture were poured into water, and extracted with DCM (30ml X 3). The combined organic layer was washed with water, dried with anhydrous MgSO₄. The resident was purified by

column chromatography on silica (PE: DCM = 6:1) to give a white solid 0.59g. Yield: 75 % ¹H NMR (400 MHz, CDCl₃) δ = 8.07 (d, *J*=8.4, 1H), 7.91 (d, *J*=8.0, 1H), 7.82 (d, *J*=8.1, 1H), 7.55 – 7.41 (m, 4H), 7.34 (d, *J*=8.6, 2H), 7.25 (d, *J*=8.2, 2H), 7.05 (d, *J*=8.1, 2H), 6.75 (d, *J*=8.6, 2H), 3.92 (tt, *J*=11.5, 3.2, 1H), 2.42 (s, 3H), 2.12 (d, *J*=11.9, 2H), 1.86 (d, *J*=13.4, 2H), 1.68 (d, *J*=12.8, 1H), 1.53 – 1.39 (m, 2H), 1.21 (qd, *J*=12.6, 3.2, 2H), 1.07 (qt, *J*=13.0, 3.7, 1H). HRMS (ESI) (m/z): calcd for C₂₉H₂₉N: 392.2378 Found [M+H]⁺ 392.2383.

S3: The compound was synthesized using the same procedure as described above for S2 ¹H NMR (400 MHz, CDCl₃) δ = 8.03 (d, *J*=8.4, 1H), 7.94 (d, *J*=7.6, 1H), 7.89 (d, *J*=8.1, 1H), 7.68 (d, *J*=8.3, 2H), 7.61 – 7.42 (m, 8H), 7.24 (d, *J*=8.1, 2H), 7.02 (d, *J*=8.2, 2H), 6.74 (d, *J*=8.8, 2H), 3.90 (tt, *J*=11.6, 3.2, 1H), 2.42 (s, 3H), 2.09 (d, *J*=12.0, 2H), 1.85 (d, *J*=13.4, 2H), 1.68 (d, *J*=12.9, 1H), 1.53 – 1.38 (m, 2H), 1.19 (qd, *J*=12.6, 3.3, 2H), 1.13 – 0.98 (m, 1H). HRMS (ESI) (m/z): calcd for C₃₅H₃₃N: 468.2691 Found [M+H]⁺ 468.2687.

S4: The compound was synthesized using the same procedure as described above for S2 ¹H NMR (400 MHz, CDCl₃) $\delta = 8.44$ (s, 1H), 8.01 (d, *J*=8.4, 2H), 7.84 (d, *J*=8.7, 2H), 7.44 (t, *J*=7.4, 2H), 7.38 – 7.29 (m, 2H), 7.25 – 7.13 (m, 4H), 7.09 (d, *J*=8.1, 2H), 6.79 (d, *J*=8.5, 2H), 3.94 (t, *J*=11.4, 1H), 2.40 (s, 3H), 2.14 (d, *J*=12.5, 2H), 1.85 (d, *J*=12.9, 2H), 1.66 (d, *J*=12.4, 1H), 1.45 (dd, *J*=26.1, 12.9, 2H), 1.34 – 1.17 (m, 2H), 1.14 – 1.00 (m, 1H). HRMS (ESI) (m/z): calcd for C₃₃H₃₁N: 442.2535 Found [M+H]⁺ 442.2538.

S0: The compound was synthesized using the same procedure as described above for 9-(4-bromophenyl)-14-phenyl-9,14-dihydrodibenzo[a,c]phenazine. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.74$ (d, J = 8.3 Hz, 2H), 8.12 (d, J = 8.1 Hz, 2H), 7.75 (dd, J = 5.9, 3.5 Hz, 2H), 7.64 (d, J = 7.1 Hz, 2H), 7.55 (d, J = 7.9 Hz, 2H), 7.34 (dd, J = 5.9, 3.4 Hz, 2H), 7.09–6.93 (m, 8H), 6.78 (t, J = 8.1 Hz, 2H). HRMS ESI (m/z) [M+H]⁺: calcd. for C₃₂H₂₃N₂ 435.1861; Found, 435.1851.

N¹, N⁴-bis(4-bromophenyl)cyclohexane-1,4-diamine: In a 250ml there-neck flask, 6g (0.053 mol) 1,4-cyclohexanedione was dissolved in 100 ml acetic acid, then slowly added 18.4g (0.106 mol) 4-bromoaniline in 50 ml acetic acid. The mixture was stirred for 2h in room temperature. Then (1.2g x 5 0.159 mol) NaBH₄ was slowly put in at 0 °C. After 1h the mixture was poured into ice water, a white solid was precipitated. Filtered the mixture, the white residue was recrystallized by EtOH to give a white solid 15.2g. Yield: 68 % ¹H NMR (400 MHz, CDCl₃) δ = 7.09 (d, *J*=8.3, 4H), 6.61 (d, *J*=8.8, 4H), 4.82 (s, 2H), 3.63 (s, 2H), 1.94 (d, *J*=7.1, 4H), 1.45 (d, *J*=7.9, 4H).

N¹, N⁴-bis(4-bromophenyl)-N¹,N⁴-di-p-tolylcyclohexane-1,4-diamine: In a 250 ml flask. 10g (0.024 mol) N¹, N⁴-bis(4-bromophenyl)cyclohexane-1,4-diamine, 16.5g (0.12 mol) K₂CO₃, 20.6g (0.094 mol) 1-iodo-4-methylbenzene, 1.82g (9.6 mmol) CuI were refluxed in trichlorobenzene (80 ml) for 48h under N₂ atmosphere. The trichlorobenzene was taken out by vacuum distillation. After cooling, added 150 ml DCM and stirred for 20min, filtered the mixture. Then the solvent was distilled under reduced pressure, and the crude product was purified by column chromatography on silica (PE: DCM = 8:1) to give a white solid 5.22g. Yield: 36 % ¹H NMR (400 MHz, CDCl₃) δ = 7.25 – 7.13 (m, 8H), 6.89 (d, *J*=8.1, 4H), 6.41 (d, *J*=9.0, 4H), 3.63 (s, 2H), 2.23 (s, 6H), 2.04 (d, *J*=7.1, 4H), 1.31 (t, *J*=9.9, 4H).

S1: In a 50 ml flask. 0.6g (0.92 mmol) 4-bromo-N-cyclohexyl-N-(p-tolyl)aniline, 0.52g (0.92 mmol) 1a, 2M K₂CO₃ 2ml, 13.4mg (0.018 mmol) Pd(dppf)Cl₂, 20 ml THF were refluxed for 10h. After cooling the mixture were poured into water, and extracted with DCM (30ml x 3). The combined organic layer was washed with water, dried with anhydrous MgSO₄. The resident was purified by column chromatography on silica (PE: DCM = 6:1) to give a white solid 0.53g. Yield:

58 %¹H NMR (400 MHz, CDCl₃) δ = 8.77 (d, *J*=8.3, 2H), 8.22 – 8.11 (m, 2H), 7.87 – 7.47 (m, 6H), 7.42 – 7.12 (m, 8H), 7.03 (s, 6H), 6.89 (d, *J*=8.2, 2H), 6.80 (s, 1H), 6.64 (d, *J*=8.4, 2H), 3.80 (t, *J*=11.3, 1H), 2.36 (s, 3H), 2.01 (d, *J*=12.7, 2H), 1.79 (d, *J*=13.6, 2H), 1.43 – 1.35 (m, 3H), 1.12 (dd, *J*=12.0, 3.4, 2H), 1.04 – 0.96 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.85, 147.77, 146.54, 146.46, 144.32, 144.11, 138.62, 137.92, 134.85, 133.61, 129.87, 129.62, 129.15, 129.54, 129.48, 128.91, 128.54, 127.42, 127.37, 127.17, 127.05, 126.88, 125.74, 125.46, 125.24, 124.71, 124.19, 123.07, 122.71, 121.16, 117.00, 116.88, 58.32, 31.72, 27.3, 21.08 HRMS (ESI) (m/z): calcd for C₅₁H₄₃N₃: 698.3535 Found [M+H]⁺ 698.3541

M1: In a 50 ml flask, $1g (1.65 \text{ mmol}) \text{ N}^1 \text{.N}^4 \text{-bis}(4\text{-bromophenyl}) \text{-N}^1 \text{.N}^4 \text{-di-p-tolylcyclohexane}$ -1,4-diamine, 0.34g (2 mmol) 1b, 2M K₂CO₃ 2 ml, 19mg (0.0165 mmol) Pd(PPh₃)₄, 20 ml THF were refluxed for 8h. After cooling the mixture were poured into water, and extracted with DCM (30 ml X 3). The combined organic layer was washed with water, dried with anhydrous MgSO₄. The resident was recrystallized by hexane and use for next step. 0.52g (0.92 mmol) 1a, 2M K₂CO₃ 2ml, 13.4mg (0.018 mmol) Pd(dppf)Cl₂, 20ml THF were refluxed for 10h. After cooling the mixture were poured into water, and extracted with DCM (30 ml X 3). The combined organic layer was washed with water, dried with anhydrous MgSO₄. The resident was purified by column chromatography on silica (PE: DCM = 6:1) to give a white solid 0.63g. Yield: 38 %. ¹H NMR $(400 \text{ MHz, CDCl}_3) \delta = 8.74 \text{ (d, } J=8.3, 2\text{H}), 8.16 - 8.12 \text{ (m, 2H)}, 7.92 \text{ (s, 1H)}, 7.83 \text{ (t, } J=9.5, 3\text{H}),$ 7.75 (dd, J=9.1, 6.0, 2H), 7.70 - 7.61 (m, 3H), 7.59 - 7.37 (m, 6H), 7.37 - 7.31 (m, 2H), 7.24 -7.12 (m, 8H), 7.06 - 6.93 (m, 8H), 6.87 (d, J=8.1, 2H), 6.84 - 6.72 (m, 1H), 6.66 (d, J=8.7, 2H), 6.60 (d, J=8.5, 2H), 3.73 (d, J=15.1, 2H), 2.40 (s, 3H), 2.36 (s, 3H), 2.09 (s, 4H), 1.43 - 1.31 (m, 4H). ¹³C NMR (100MHz, CDCl₃) δ = 147.89, 147.69, 146.73, 146.29, 144.76, 141.82, 141.09, 138.36, 138.00, 137.95, 135.10, 134.11, 133.80, 133.63, 132.09, 131.18, 130.61, 130.19, 130.05, 129.86, 129.43, 128.77, 128.18, 127.95, 127.84, 127.74, 127.57, 127.35, 126.93, 126.58, 126.08, 125.29, 124.35, 122.99, 121.10, 118.01, 117.24, 116.89, 116.62, 55.86, 30.50, 21.02. HRMS (ESI) (m/z): calcd for C₇₄H₆₀N₄: 1005.4896 Found $[M+H]^+$ 1005.4905

M2: The compound was synthesized using the same procedure as described above for compound **M1**. Yield: 41 % ¹H NMR (400 MHz, CDCl₃) $\delta = 8.77$ (d, *J*=8.3, 2H), 8.19 – 8.14 (m, 2H), 8.01 (d, *J*=8.4, 1H), 7.94 (d, *J*=8.1, 1H), 7.88 (d, *J*=8.2, 1H), 7.78 (dd, *J*=9.0, 6.2, 2H), 7.71 – 7.63 (m, 4H), 7.62 – 7.43 (m, 10H), 7.42 – 7.34 (m, 2H), 7.29 – 7.13 (m, 7H), 7.08 – 6.95 (m, 9H), 6.90 (d, *J*=8.0, 2H), 6.85 – 6.73 (m, 1H), 6.65 (dd, *J*=20.8, 8.5, 4H), 3.76 (d, *J*=11.5, 2H), 2.43 (s, 3H), 2.39 (s, 3H), 2.12 (s, 4H), 1.48 – 1.32 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 147.96$, 147.73, 146.73, 146.30, 144.80, 144.70, 141.83, 141.02, 139.95, 138.51, 138.00, 135.26, 134.10, 133.83, 133.63, 131.64, 131.19, 130.37, 130.21, 130.05, 129.88, 129.45, 129.03, 128.77, 128.25, 127.57, 127.34, 127.14, 126.93, 126.58, 126.46, 126.12, 125.97, 125.74, 125.41, 124.57, 122.99, 121.10, 118.03, 117.25, 116.90, 116.34, 55.86, 30.47, 21.03. HRMS (ESI) (m/z): calcd for C₈₀H₆₄N₄: 1081.5209 Found [M+H]⁺ 1081.5206

M3: The compound was synthesized using the same procedure as described above for compound **M1**. Yield: 56 % ¹H NMR (400 MHz, CDCl₃) δ = 8.77 (d, *J*=8.2, 2H), 8.23 – 8.06 (m, 2H), 7.78 (s, 2H), 7.67 (t, *J*=7.1, 2H), 7.57 (t, *J*=8.7, 2H), 7.43 – 7.32 (m, 6H), 7.27 – 7.08 (m, 16H), 7.07 – 6.07 (m, 10H), 6.94 (d, *J*=7.9, 1H), 6.88 (d, *J*=7.8, 1H), 6.83 – 6.72 (m, 4H), 6.77 (dd, *J*=15.9, 7.7, 4H), 6.67 – 6.56 (m 2H), 3.85 (d, *J*=95.5, 1H), 2.39 (s, 3H), 2.33 (s, 3H), 1.70 (s, 4H), 1.49 –1.36 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ = 146.77, 145.68, 145.12, 143.77, 143.73, 142.11, 141.81, 140.79, 140.43, 136.98, 134.32, 133.60, 133.09, 132.58, 130.54, 129.08, 129.01, 128.77,

128.43, 128.16, 127.74, 127.00, 126.25, 126.11, 125.96, 125.58, 125.41, 124.33, 123.61, 123.27, 123.10, 121.96, 121.58, 120.07, 118.08, 117.24, 117.00, 116.22, 115.85, 29.44, 26.36, 19.88. HRMS (ESI) (m/z): calcd for $C_{86}H_{69}N_5$: 1172.5631 Found $[M+H]^+$ 1172.5630

M4: The compound was synthesized using the same procedure as described above for compound **M1**. Yield: 58 % ¹H NMR (400 MHz, CDCl₃) $\delta = 8.74$ (d, *J*=8.3, 2H), 8.43 (s, 1H), 8.13 (dd, *J*=12.5, 8.0, 2H), 8.01 (d, *J*=8.4, 2H), 7.83 – 7.70 (m, 4H), 7.64 (t, *J*=7.6, 2H), 7.54 (dd, *J*=11.8, 7.6, 2H), 7.48 – 7.38 (m, 2H), 7.37 – 7.28 (m, 4H), 7.22 – 7.12 (m, 6H), 7.09 (d, *J*=8.1, 2H), 7.00 (d, *J*=6.8, 6H), 6.89 (d, *J*=8.0, 2H), 6.74 (t, *J*=9.0, 3H), 6.63 (d, *J*=8.5, 2H), 3.79 (d, *J*=30.9, 2H), 2.41 (s, 3H), 2.34 (s, 3H), 2.15 (d, *J*=22.2, 4H), 1.47 – 1.39 (m, 4H).¹³C NMR (100 MHz, CDCl₃) $\delta = 147.93$, 147.73, 146.75, 146.29, 144.80, 144.70, 141.83, 141.03, 138.01, 135.50, 134.08, 133.64, 131.88, 131.45, 130.55, 130.24, 130.04, 129.86, 129.60, 129.43, 128.76, 128.24, 127.45, 127.33, 127.24, 127.13, 126.95, 126.58, 126.46, 125.95, 125.35, 125.29, 124.98, 124.95, 124.64, 124.56, 122.99, 118.03, 117.25, 116.89, 115.30, 55.93, 30.58, 21.07.HRMS (ESI) (m/z): calcd for C₇₈H₆₂N₄: 1055.5053 Found [M+H]⁺ 1055.5050

Absorption and fluorescence spectra

Figure S1 a) The absorption spectra of **S1** in cyclohexane at a concentration of 1×10^{-5} M. b) The emission spectra of **S1** in cyclohexane at a concentration of 1×10^{-5} M, excited at 325nm. c) The emission spectra of **S1** in solid state, excited at 325nm.

Figure S2 a) The absorption spectra of **S1** in different solvents (from cyclohexane to DMF) at a concentration of 1×10^{-5} M. b) The emission spectra of **S1** in different solvents (from cyclohexane to DMF) at a concentration of 1×10^{-5} M, excited at 325nm c) The fluorescence images of **S1** in different solvents under 365 nm UV-light irradiation. d) Temperature dependence of the emission spectra of **S1** in THF solution at a concentration of 1×10^{-5} M, excited at 325nm.

Figure S3. The calculated geometry of S0 non-planar structure in solid (left), coplanar structure in solution (right).

Table 51. The calculated absorbtion and emission of by in unreferred st	0 in different state.
--	------------------------------

	Aborption(nm)	Fluorescence(nm)
Phenazine	311.96	390.36
Planar phenazine	353.16	589.34

Figure S4. The emission spectra of phenazine-derivant (S0) in different state: solid (Black), 1 x 10^{-5} M cyclohexane solution (Red), excited at 325nm.

Figure S5 The fluorescence spectra of **S0** in different water fraction solution at a concentration of 1×10^{-5} M, excited at 325nm.

Figure S7 a) The normalized emission spectra of S2 - S4 in cyclohexane at a concentration of 1 x 10^{-5} M. b) the absorption spectra of acceptor (S1) *versus* the emission spectra of donor (S2 - S4) in cyclohexane at concentration of 1 x 10^{-5} M.

Figure S8 (a), (b) The normalized absorption spectra of acceptor S1 (left) versus the normalized fluorescence spectra of donor S2 and S4 (right) for M1 and M4 in cyclohexane at a concentration of 1×10^{-5} M. (c), (d) The time-resolved fluorescence of the donor emission *versus* M1 and M4 in cyclohexane at concentration of 1×10^{-5} M.

Figure S9 The normalized emission spectra of S2 (left), S3 (middle), S4 (right) in different solvent at concentration of 1×10^{-5} M.

Figure S10 The absorption spectra of acceptor (S1) *versus* the emission spectra of donor (S2 and S3) for compound M1 (left) and M2 (right) in different solvents at 1×10^{-5} M.

Figure S11 The absorption spectra of M1 - M4 in different solvent at 1×10^{-5} M.

Figure S12 (a) the fluorescence spectra of **M3** (left), **M4** (right) in different solvent excited at 325nm at 1 x 10^{-5} M. (b) the chromaticity coordinates (CIE) and the fluorescence images of **M3** (top), **M4** (bottom) in different solvent at a concentration of 1 x 10^{-5} M under 365nm UV-light.

	Solvent	λ_{ab} (nm)	λ_{em} (nm)	$\mathbf{Q}\mathbf{Y}, \Phi_{\mathrm{F}}$
S1	Cyclohexane	319	418, 588	0.18
	THF	320	464, 588	0.16
	DCM	323	487, 589	0.14
	EtOH	321	489, 591	0.15
	MeCN	320	521	0.13
	DMF	321	522	0.14
M1	Cyclohexane	318	426, 590	0.17
	THF	321	475, 591	0.14
	DCM	321	491, 591	0.11
	EtOH	320	492, 589	0.12
	MeCN	322	469	0.11
	DMF	323	517	0.15
M2	Cyclohexane	321	423, 589	0.19
	THF	322	453, 590	0.15
	DCM	325	455, 591	0.15
	EtOH	323	463, 589	0.12
	MeCN	324	475	0.16
	DMF	326	486	0.16
M3	Cyclohexane	322	419, 589	0.21
	THF	324	469, 590	0.16
	DCM	324	497, 593	0.14
	EtOH	325	498	0.12
	MeCN	326	518	0.12
	DMF	327	517	0.14
M4	Cyclohexane	321	430, 589	0.22
	THF	322	477, 591	0.16
	DCM	321	492,594	0.15
	EtOH	322	491	0.11
	MeCN	323	523	0.11
	DMF	325	523	0.13

Table S2 Photophysical property of **S1**, **M1-M4** in different solvent at a concentration of 1×10^{-5} M

Single Crystal

Crystals of phenazine (**S0**) were grown by slow evaporation from dichloromethane/ethanol mixture solutions and performed by X-ray analysis (Table S3). The three views of these compounds' single crystal structures are shown in Figure S13, together with the selected angles. The single crystal structures of phenazine exhibit non-planar conformations, in which the intersecting planes of the two aryl rings along the N1-N2 axis form a bay with bent angle (Θ_b) around 137° and the N,N' -diphenyl rings located at the upside of the bay with the upward angle of ~70° (Θ_1 and Θ_2 , Figure S13).

Figure S13. Single crystal structure and its three views of S0.

TableS3.CCDC.NO,crystaldataandstructurerefinementsofN,N'-disubstituted-dihydrophenazineand benzoannealated analogues.

	phenazine
CCDC.NO	837117
empirical formula	$C_{32}H_{22}N_2$
formula wt	434.52
T, k	133(2)
crystal system	Monoclinic
Space group	P2(1)/n
<i>a</i> , Å	14.6334(15)
b, Å	8.9414(9)
<i>c</i> , Å	17.7375(18)

α , deg	90.00
β , deg	105.381(2)
γ, deg	90.00
<i>V</i> , Å ³	2237.7(4)
Ζ	4
density, g/cm ³	1.290
μ (Mo K α), mm ⁻¹	0.075
θ range, deg	2.10-29.00
No. of reflns collected	18255
No. of independent reflns	5947
R(int)	0.0253
GOF	1.019
$R_1[I > 2\sigma(I)]$	0.0424
$wR_2[I > 2\sigma(I)]$	0.1174
R_1 (all data)	0.0560
wR_2 (all data)	0.1280

¹H NMR and HRMS Spectra of synthesized compounds

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 2 results within limits (up to 1 best isotopic matches for each mass) Elements Used: C: 0-51 H: 0-50 N: 0-3 H-TIAN ECUST institute of Fine Cherry 03-Jul-2014 20:49:40 1: TOF MS ES+ 2.37e+003 TH-HW-08 47 (1.528) Cm (47:48) 468.2687 100-469.2721 %--398.1870 413.1541 420.2636 470.2797 398.1870 413.1541 420.2636 443.1692 450.3838 454.2903 459.1459 470.2797 489.3318 497.4169 512.4990 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 Minimum: Maximum: -1.5100.0 30.0 50.0 mDa PPM DBE Mass i-FIT i-FIT (Norm) Formula Calc. Mass 468.2687 468.2691 -0.4 -0.9 19.5 13.7 0.0 C35 H34 N

Elemental Composition Report	rt		Page 1
Single Mass Analysis Tolerance = 30.0 mDa / DBE: mi Element prediction: Off Number of isotope peaks used for i	in = -1.5, max = 100.0 i-FIT = 2		
Monoisotopic Mass, Even Electron Ion 30 formula(e) evaluated with 2 results v Elements Used: C: 0-100 H: 0-70 N: 0-4 TIAN-H	is within limits (up to 1 closest results ECUST institute of	for each mass) Fine Chem	17-Dec-2013
TH-HW-03 21 (0.743) Cm (21:27)			20:16:04 1: TOF MS ES+ 7.620:002
100 % 	334 954.7260 985.4899 1004.	1081.5206 1082.5228 1080.5143 1080.5143 1084.5297 1084.5297 1159.5 1084.5297	5273 1189.7867
800 825 850 875 90 Minimum: Maximum: 30.	-1.5 -0 50.0 100.0	025 1050 1075 1100 1125 1150	1175 1200 1225
Mass Calc. Mass mDa	a PPM DBE i-	-FIT i-FIT (Norm) Formula	
1081.5206 1081.5209 -0.	.3 -0.3 50.5 15	5.0 0.0 C80 H65	N4

