Supporting information

An Electron-poor Di-Molybdenum Triple-decker with a puckered [B₄Ru₂] bridging ring is an *oblato-closo* Clustert

Bijan Mondal, Bijnaneswar Mondal, Koushik Pal, Babu Varghese and Sundargopal Ghosh*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India. Email: <u>sghosh@iitm.ac.in</u> Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai 600 036, India

Experimental Details

- I.1 Experimental Section
- I.2 Synthetic Section
- I.3 Crystal structure determination
- I.4 Computational Method

I. Supplementary Data

II.1	Table S1	Selected bond parameters for the compounds 2'-4'
		optimized at the BP86/def2-TZVP Level
II.2	Table S2	DFT calculated and experimental $^{11}\mathrm{B}$ chemical shifts δ
		(ppm) and IR (cm ⁻¹ , uncorrected) stretching values for 2'-4'
		at BP86/def2-TZVP
II.3	Table S3	DFT calculated energies of the HOMO and LUMO (eV),
		HOMO-LUMO gaps ($\Delta E = E_{LUMO} - E_{HOMO}$, eV) for the
		compounds 2'-4' and [(Cp*Mo) ₂ B ₄ H ₈]
II.4	Fig. S1	Molecular structure of 2
II.5	Fig. S2	Molecular structure of 3
II.6	Fig. S3	Molecular structure of 4
II.7	Fig. S4	Schematic representation of atomic deviations from the
		mean plane of $[Ru_2B_4]$ in 2 .
II.8	Fig. S5	Molecular structure of 5
II.9	Fig. S6	Comparison of the MO diagram of 2 with $[Cp_3Ni_2]^+$,
		[(CpM0) ₂ P ₆], [(CpRe) ₂ B ₆ H ₆] and [(CpTi) ₂ P ₆]
II.10	Fig. S7	Optimized geometry of 2' Complex
II.11	Fig. S8	Optimized geometry of 3'
II.12	Fig. S9	Optimized geometry of4'
II.13	Fig. S10	Optimized geometry of [(Cp*Mo) ₂ B ₄ H ₈]

Fig. S1 Molecular structure of **2**. Selected bond lengths (Å) and angles (deg): Mo1-Mo_1 2.7510(5), Mo1-Ru1 2.6625(4), Mo_1-Ru1 2.9529(4), Mo1-B1 2.261(4), Mo1-B2 2.276(4), Mo1-B1 2.261(4), Mo1-B2 2.133(5), Mo_1-B2 2.133(5), Ru1-Ru_1 2.8822(5), B1-B2 1.622(5), B2-B_2 1.679(7), B1-Ru1 2.180(4), B1-H1 1.080(19), B2-H2 1.224(19), B1-B2-B_1 118.5(2), B2-B_1-Ru1 136.9(3), B1-Ru1-Ru_1 93.73(10), B2-B1-Mo1 75.5(2), Mo1-B1-Ru1 88.41(15), B2-B1-Mo1 64.2(2), Mo1-B1-Mo_1 79.08(13), Ru1-B1-Mo1 73.66(12), B1-B2-Mo1 60.9(2), Mo1-B2-Mo1 77.15(15), B1-Mo1-B2 85.32(16), B1-Mo1-B1 100.48(13), B1-Mo1-Ru1 103.59(11), B2-Mo1-Ru1 94.58(11), B1-Mo1-Mo_1 53.79(11), B2-Mo1-Mo_1 53.75(12).

Fig. S2 Molecular structure of **3**. Selected bond lengths (Å) and angles (deg): B1-B2 1.63(3), B1-B_1 1.73(6), Mo1-Mo_1 2.9262(11), Mo1-B1 2.195(13), B_1-Mo1 2.211(14), Mo1-B2 2.222(14), B_2-Mo1 2.260(11), Mo1-B1 2.195(13), B1-H1 1.13(2), B2-H2 1.150(11), B2-H2A 1.156(11), B2-B1-B_1 120.6(10), B2-B1-Mo1 70.7(7), B1-B_1-Mo1 67.3(8), B2-B1-Mo1 68.8(7), B1-B_1-Mo1 66.4(11), Mo1-B1-Mo_1 83.2(5), B1-B2-Mo1 68.0(9), B1-B2-Mo1 66.4(7), Mo1-B2-Mo_1 81.5(4), B1-Mo1-B_1 46.3(15), B1 Mo1 B_2 82.8(10), B1-Mo1-B2 43.2(8), B1-Mo_1-B2 42.9(8), B1-Mo1-B2 81.6(9), B2-Mo_1-B2 98.5(4), B1-Mo1-Mo_1 48.6(4), B1-Mo 1-Mo1 48.1(3), B2-Mo1-Mo 1 49.8(3), B2-Mo 1-Mo1 48.7(3).

Fig. S3 Molecular structure of **4**. Selected bond lengths (Å) and angles (deg): Mo1-Mo2 2.9611(7), B1-B2 1.719(12), B2-B3 1.736(10), B3-W1 2.340(7), Mo1-B1 2.247(8), Mo1-B2 2.134(7), Mo1-B3 2.333(7), Mo2-B1 2.189(8), Mo2-B2 2.185(7), Mo2-B3 2.172(7), Mo1-W1 3.0004(6), Mo2-W1 2.9433(6), Mo2-Cl1 2.4246(15), W1-Cl1 2.5203(16), B3-H3 1.15(2), B1-H1D 1.13(2), B1-H1E 1.15(2), Mo2-H1E 1.77(7), B2-H2 1.15(2), B1-B2-B3 121.2(6), B2-B3-W1 131.8(5), Mo2-Cl1-W1 73.03(4), B2-B1-Mo2 66.7(4), B2-B1-Mo1 63.5(4), Mo2-B1-Mo1 83.7(3), B1-B2-Mo1 70.4(4), B3-B2-Mo1 73.4(4), B1-B2-Mo2 67.0(4), B3-B2-Mo2 66.1(3), Mo1-B2-Mo2 86.6(3), B2-B3-Mo2 66.9(3), B2-B3-Mo1 61.2(3), Mo2-B3-Mo1 82.1(2), Mo2-B3-W1 81.3(2), Mo1-B3-W1 79.9(2), Cl1-W1-Mo1 86.44(4), Mo2-W1-Mo1 59.752(14)

Fig. S4 Schematic representation of atomic deviations from the mean plane of [Ru₂B₄] in 2.

I.1 Experimental Section

General Considerations:

All the manipulations were conducted under an Ar atmosphere using standard Schlenk techniques. Solvent were distilled prior to use under Argon atmosphere. $[Cp*MoCl_4]$, $[Mo(CO)_5]$.thf and $[W(CO)_5]$.thf were prepared according to literature methods,¹ while other chemicals such as, $[LiBH_4]$ 2.0 M in THF, Cp*H, n-BuLi, $[Mo(CO)_6]$, $[W(CO)_6]$ and $[Ru_3(CO)_{12}]$ were obtained commercially (Aldrich) and used as received. MeI was purchased from Aldrich and freshly distilled prior to use. The external reference for the ¹¹B NMR, $[Bu_4N(B_3H_8)]$ was synthesized with the literature method.² Preparative thin layer chromatography (TLC) was carried on 250 mm dia aluminum supported silica gel TLC plates (MERCK TLC Plates). NMR spectra were recorded on 400 and 500 MHz Bruker FT-NMR spectrometer. The residual solvent protons were used as reference (δ , ppm, CDCl₃, 7.26), while a sealed tube containing $[Bu_4N(B_3H_8)]$ in $[D_6]$ benzene (δ_B , ppm, -30.07) was used as an external reference for the ¹¹B NMR. Infrared spectra were recorded on a Nicolet iS10 spectrometer. The photo-reactions described in this report were conducted in a Luzchem LZC-4 V photo reactor, with irradiation at 254–350 nm. MALDI-

TOF mass spectra were recorded on a Bruker Ultraflextreme by using 2,5-dihydroxybenzoic acid as a matrix and a groundsteel target plate and CH analyses were obtained on Perkin Elmer Instruments series II model 2400.

I.2 Synthetic Section

Preparation of $[(Cp*Mo)_2\{\mu-\eta^6:\eta^6-B_4H_4Ru_2(CO)_6\}]$ (2):

In a flame-dried Schlenk tube [Cp*MoCl₄], (0.1 g, 0.27 mmol) in 10 mL of toluene was treated with 5-fold excess of [LiBH₄.thf] (0.7 mL, 1.4 mmol) at -40°C and allowed to stir at room temperature for one hour. After removal of toluene, the residue was extracted into hexane and filtered through a frit using Celite. The brownish-green hexane extract was dried and taken in 10 mL of toluene and heated at 90 °C for 72 hours wth [Ru₃(CO)₁₂] (0.18 g, 0.28 mmol). The volatile components were removed under vacuum and the remaining residue was extracted into hexane and passed through celite. After removal of solvent, the residue was subjected to chromatographic work up using silica gel TLC plates. Elution with a hexane/CH₂Cl₂ (90:10 v/v) mixture yielded brown **2** (0.01 g, 4%).

2: MS(MALDI): m/z 908 [M+Na]⁺. isotope envelope $C_{26}H_{34}B_4O_6Mo_2Ru_2Na$ requires 908. ¹¹B NMR (22 °C, 128 MHz, [D₆]-benzene): $\delta = 91.3$ (br, 2B). ¹H NMR (22 °C, 400 MHz, [D₆]benzene): $\delta = 7.81$ (B-H_t), 1.91 (s, 30H, 2Cp*), ¹³C NMR (22 °C, 100 MHz, [D₆]-benzene): $\delta = 188.3$, 183 (CO), 97.0 (C_5Me_5), 14.1 (C_5Me_5). IR vbar/cm⁻¹: 2403 (B-H_t), 1799, 1743 (CO).

Preparation of [(Cp*MoCO)₂B₄H₆] (3):

In a flame-dried Schlenk tube [Cp*MoCl₄], (0.1 g, 0.27 mmol) in 10 mL of toluene was treated with 5-fold excess of [LiBH₄.thf] (0.7 mL, 1.4 mmol) at -40 °C and allowed to stir at room temperature for one hour. After removal of toluene, the residue was extracted into hexane and filtered through a frit using Celite. The brownish-green hexane extract was dried and taken in 10 mL of thf. The resulting solution was heated at 65 °C with previously made [Mo(CO)₅].thf for 24 hours. The solvent was evaporated in vacuo and residue was extracted into hexane and passed through Celite. After removal of solvent from the filtrate, the residue was subjected to chromatographic workup using silica gel TLC plates. Elution with a hexane/CH₂Cl₂ (80:20 v/v) mixture yielded **3** (0.06 g, 40%).

3: MS(MALDI): m/z 572 [M]⁺. isotope envelope $C_{22}H_{36}B_4O_2Mo_2$ requires 572. ¹¹B NMR (22 °C, 128 MHz, [D_6]-benzene): $\delta = 15.8$ (br, 2B), 63.7 (br, 2B). ¹H NMR (22 °C, 400 MHz, [D_6]-benzene): $\delta = 4.56$ (br, 4H, BH_t), 1.94 (s, 30H, 2Cp*), -9.81 (br, 2H, Mo–H–B). ¹³C NMR (22 °C, 100 MHz, [D_6]-benzene): $\delta = 185$ (CO), 102.3 (C_5Me_5), 10.3 (C_5Me_5). IR (hexane) ν /cm⁻¹: 2417w (BH_t), 1912 (CO). Elemental analysis (%) calcd for ¹²C₂₂¹H₃₆¹¹B₄¹⁶O₂⁹⁶Mo₂: C, 46.54; H, 6.39. Found: C, 46.28; H, 6.12.

Preparation of [(Cp*MoCO)(Cp*MoCl)(µ-H)B₃H₃W(CO)₄] (4):

In a flame-dried Schlenk tube [Cp*MoCl₄], (0.1 g, 0.27 mmol) in 10 mL of toluene was treated with 5-fold excess of [LiBH₄.thf] (0.7 mL, 1.4 mmol) at -40°C and allowed to stir at room temperature for one hour. After removal of toluene, the residue was extracted into hexane and filtered through a frit using Celite. The brownish-green hexane extract was dried in vacuo, extracted with 10 mL of thf and heated at 65°C with [W(CO)₅] thf for 24 hours. The solvent was evaporated in vacuo and residue was extracted into hexane and passed through Celite. After removal of solvent from the filtrate, the residue was subjected to chromatographic workup using silica gel TLC plates. Elution with a hexane/CH₂Cl₂ (80:20 v/v) mixture yielded 4 (0.025 g, 10%) along with 3 (0.01 g, 6%)

4: MS(MALDI): m/z 806 [M-2CO]⁺. isotope envelope $C_{23}H_{34}B_3O_3Cl_1Mo_2W_1$ requires 806. ¹¹B NMR (22 °C, 128 MHz, [D_6]-benzene): δ = 75.4 (br, 1B), 99.2 (br, 1B), 106.6 (br, 1B). ¹H NMR (22 °C, 400 MHz, [D_6]-benzene): δ = 6.1, (br, 3H, BH_t), 1.8 (s, 30H, 2Cp*), -8.04 (br, 1H, Mo-H–B). ¹³C NMR (22 °C, 100 MHz, [D_6]-benzene): δ = 193, 183 (CO), 103.5 (C_5Me_5), 10.2 (C_5Me_5). IR (hexane) ν /cm⁻¹: 2403w (BH_t), 2002, 1894, 1836 (CO). Elemental analysis (%) calcd for ¹²C₂₅¹H₃₄¹¹B₃¹⁶O₅^{35.5}Cl₁⁹⁶Mo₂¹⁸⁴W₁: C, 34.98; H, 3.99. Found: C, 35.19; H, 3.79.

Preparation of [(Cp*Mo)₂(CO)₄(μ₄-B)Ru₂(CO)₆(μ-H)] (5):

In a flame-dried Schlenk tube, a green solution of **3** (0.1 g, 0.17 mmol) and $Ru_3(CO)_{12}$ (0.11 g, 0.17 mmol) in toluene (15 mL) was thermolysed for 72 hours at 90°C temperature. The volatile components were removed under vacuum and the remaining residue was extracted into hexane and passed through celite. After removal of solvent, the residue was subjected to chromatographic work up using silica gel TLC plates. Elution with a hexane/CH₂Cl₂ (80:20 v/v) mixture yielded orange solid **5** (0.013 g, 8%).

5: MS(MALDI): m/z 962 [M]⁺. isotope envelope $C_{30}H_{31}B_1O_{10}Mo_2Ru_2$ requires 962. ¹¹B NMR (22 °C, 128 MHz, [D_6]-benzene): δ 128.4 (s, 1B). ¹H NMR (22 °C, 400 MHz, [D_6]-benzene): δ 2.04 (s, 30H, 2Cp*), -18.9 (s, 1H, Ru-H-Ru). ¹³C NMR (22 °C, 100 MHz, [D_6]-benzene): δ 196.1, 191.3 (CO), 99.7 (*C5*Me5), 11.6 (*C5Me5*). IR vbar/cm⁻¹: 2046, 2017, 1976 (CO). Elemental analysis (%) calcd for ¹²C₃₀¹H₃₁¹¹B₁₁₆O₁₀⁹⁶Mo₂¹⁰¹Ru₂ : C, 37.67; H, 3.26. Found: C, 37.75; H, 3.20.

I.3 Crystal structure determination

Suitable X-ray quality crystals of **2-4** and **5** were grown by slow diffusion of a hexane:CH₂Cl₂ solution. The crystal data for **2-4** and **5** were collected and integrated using a Bruker Axs kappa apex2 CCD diffractometer, with graphite monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation at 173 K. The structures were solved by heavy atom methods using SHELXS-97 or SIR92^{3a} and refined using SHELXL-97³.

Crystal data for **2**: $C_{26}H_{34}B_4O_6Mo_2Ru_2$, $M_r = 879.79$, Monoclinic space group C2/c, a = 17.5892(4) Å, b = 15.9899(4) Å, c = 11.2183(3) Å, $\beta = 102.02^\circ$, V = 3085.94 Å³, Z = 4, $\rho_{calcd} = 1.894$ g•cm⁻³, $\mu = 14.589$ mm⁻¹, F(000) = 1720, $R_1 = 0.0317$, wR²= 0.0872, 3019 independent reflections $[20 \le 72.47^\circ]$ and 192 parameters.

Crystal data for **3**: C₂₂H₃₆B₄O₂Mo₂, M_r = 587.84, Tetragonal space group *P*4₃2₁2, *a* = 9.004(3) Å, *b* = 9.004(3) Å, *c* = 31.305(10) Å, β = 90°, *V* = 2538.06 Å³, *Z* = 3, ρ_{calcd} = 2.826 g·cm⁻³, μ = 5.103 mm⁻¹, *F*(000) = 1978, R₁= 0.0371, wR²= 0.0952, 2237 independent reflections [2 θ ≤50°] and 145 parameters.

Crystal data for 4: $C_{25}H_{34}B_3O_5Cl_1Mo_2W_1$, $M_r = 858.13$, Monoclinic space group $P2_1/n$, a = 9.005(8) Å, b = 18.588(14) Å, c = 17.767(14) Å, $\beta = 99.38^{\circ}$, V = 2934.6 Å³, Z = 4, $\rho_{calcd} = 1.942$ g·cm⁻³, $\mu = 4.876$ mm⁻¹, F(000) = 1656, $R_1 = 0.0347$, wR²= 0.0686, 5173 independent reflections $[20 \le 50^{\circ}]$ and 350 parameters.

Crystal data for **5**: $C_{30}H_{31}B_1O_{10}Mo_2Ru_2$, $M_r = 955.37$, Orthorhombic space group *P*ccn, a = 17.2668(7) Å, b = 30.7845(13) Å, c = 12.5659(6) Å, $\beta = 90^\circ$, V = 6679.4 Å³, Z = 8, $\rho_{calcd} = 1.900$ g·cm⁻³, $\mu = 1.674$ mm⁻¹, F(000) = 3736, $R_1 = 0.0361$, wR²= 0.0816, 4726 independent reflections $[20 \le 46.36^\circ]$ and 416 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-1036041 (2), CCDC-1036042(3), CCDC-1036043(4) and CCDC-1036888 (5). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/data_request/cif

Fig. S5 Molecular structure of (**5**). Selected bond lengths (Å) and angles (deg): B1-Mo2 2.114(7), B1-Mo1 2.131(7), B1-Ru2 2.177(7), B1-Ru1 2.191(7), Mo1-Ru1 2.9782(8), Mo1-Ru2 3.0351(8), Mo2-Ru2 2.9858(7), Mo2-Ru1 3.0377(7), Ru1-Ru2 2.8293(7), Ru1-H1 1.81(6), Ru2-H1 1.62(6), Mo2-B1-Mo1 176.4(4), Mo2-B1-Ru2 88.2(3), Mo1-B1-Ru2 89.6(3), Mo2-B1-Ru1 89.7(3), Mo1-B1-Ru1 87.1(3), Ru2-B1-Ru1 80.7(2), B1-Mo1-Ru1 47.28(19), B1-Mo1-Ru2 45.83(19), Ru1-Mo1-Ru2 56.125(17), B1-Mo2-Ru2 46.79(19), B1-Mo2-Ru1 46.15(19), Ru2-Mo2-Ru1 56.022(16), B1-Ru1-Ru2 49.42(18), B1-Ru1-Mo1 45.61(19), Ru2-Ru1-Mo1 62.954(18), B1-Ru1-Mo2 44.10(19), Ru2-Ru1-Mo2 61.060(17), Mo1-Ru1-Mo2 89.691(19), B1-Ru2-Ru1 49.84(18), B1-Ru2-Mo2 45.04(19)

I.4 Computational Method

Geometry optimizations and electronic structure calculations were carried out on Gaussian09 (rev. C.01) program package⁴ using BP86 functional⁵ (composed of the Becke 1988 exchange functional and the Perdew 86 correlation functional) and def2-TZVP⁶ basis set from EMSL Basis Set Exchange Library. The 28 core electrons of molybdenum, ruthenium and tungsten were replaced by the quasi-relativistic effective core potential def2-ECP⁷. To save computing time all the calculations were carried out with the Cp analogue model compounds, instead of Cp*. The model compounds were fully optimized in gaseous state (no solvent effect) without any symmetry constraints. Vibrational analysis was carried out for all structures, and the absence of any imaginary frequency confirmed that all structures represent minima on the potential energy hypersurface. The NMR chemical shifts were calculated on the BP86/def2-TZVP optimized geometries using the gradient corrected hybrid functional hybrid Becke-Lee-Yang-Parr (B3LYP) functional.⁸ Computation of the NMR shielding tensors employed gauge-including atomic orbitals (GIAOs)⁹. The ¹¹B NMR chemical shifts were calculated relative to B₂H₆ (B3LYP B shielding constant 84.23 ppm) and converted to the usual [BF₃.OEt₂] scale using the experimental $\delta(^{11}B)$ value of B₂H₆, 16.6 ppm¹⁰ Population analysis was performed using natural bond orbital (NBO)^{11, 12} as implemented in Gaussian09.

II. Supplementary Data

		2'		3'		4'
	Exp.	Cal.	Exp.	Cal.	Exp.	Cal.
d(Mo-Mo)	2.751	2.748	2.926	2.947	2.961	2.997
d(B1-B2)	1.622	1.625	1.626	1.658	1.719	1.739
d(B2-B_2)	1.679	1.681	1.736	1.718	-	-
d(B2-B3)	-	-	-		1.736	1.734
d(B3-W1)	-	-	-	-	2.339	2.356
d(Ru-Ru)	2.882	3.06	-	-	-	-
d(Ru-B)	2.180	2.24	-	-	-	-

 Table S1. Selected bond parameters for the compounds 2'-4' optimized at the BP86/def2-TZVP

 Level.

Table S2. DFT calculated and experimental ¹¹B chemical shifts δ (ppm) and IR (cm⁻¹, uncorrected) stretching values for **2'-4'** at BP86/def2-TZVP.

Compound	2	2'	3	,		4'
¹¹ B NMR	Exp.	Cal.	Exp.	Cal.	Exp.	Cal.
B1	91.3	93.3	15.8	15.1	75.4	72.5
B2	91.3	87.5	63.7	67.4	106.6	110.5
B3	-	-	-	-	99.2	93.2
IR-values						
COt	1799,	1852	1912.7,	1916.3,	1894, 2002	1894.1, 1899.8,
	1743	1780	1869.3	1874.7		1937.5, 1993.1
CO _{br}	-	-	-	-	1836	1830.8

Compound	2'	3'	4'	[(Cp*Mo) ₂ B ₄ H ₈]
НОМО	-5.934	-4.515	-4.659	-3.409
LUMO	-5.039	-2.597	-3.342	-2.327
ΔΕ	0.859	1.918	1.317	1.082

Table S3. DFT calculated energies of the HOMO and LUMO (eV), HOMO-LUMO gaps ($\Delta E = E_{LUMO} - E_{HOMO}$, eV) for the compounds **2'-4'** and **[(Cp*Mo)₂B₄H₈].**

Fig. S6 Comparison of the MO diagram of 2 with $[Cp_3Ni_2]^+$, $[(CpMo)_2P_6]$, $[(CpRe)_2B_6H_6]$ and $[(CpTi)_2P_6]$.

Cartesian coordinates (xyz) for all the optimized geometries of 2'-4' and $[(Cp^*Mo)_2B_4H_8]$ calculated at BP86(def2-TZVP level.)

Fig. S7 Optimized geometry of 2' Complex.

Cartesian coordinates for the calculated structure of 2' (in Å).

Center	Ato	mic	Atomic	Coordin	iates	(Angstroms)
Number	N	umber	Туре	X	Y	Z
1	6	0	1.710715	-1.966580	1.59	02412
2	6	0	-1.180834	-1.491497	2.22	20377
3	6	0	-0.375443	-3.502299	0.50	00395
4	6	0	2.544379	-0.781206	-2.92	29109
5	6	0	3.012665	-1.329480	-1.69	99438
6	6	0	3.439381	-0.290452	-0.88	83747
7	6	0	3.243861	0.926713	-1.58	38248
8	6	0	2.690127	0.621042	-2.86	52235
9	5	0	-0.647631	-1.713168	-1.3	21272

10	1	0	-0.745233 -2.729336 -1.914038
11	5	0	-0.968407 -0.467622 -2.620754
12	1	0	-1.216725 -0.929161 -3.685411
13	8	0	2.729521 -2.272287 2.009732
14	8	0	-1.959942 -1.458642 3.066990
15	8	0	-0.575810 -4.604643 0.390098
16	42	0	1.028512 -0.000153 -1.283324
17	44	0	0.004382 -1.622421 0.709009
18	6	0	-0.664634 1.550894 2.414846
19	6	0	2.122186 1.012440 2.071872
20	6	0	0.883800 3.302154 0.898252
21	6	0	-3.494202 1.752466 -0.953700
22	6	0	-3.546022 1.108073 0.381393
23	6	0	-3.784857 -0.314277 0.208383
24	6	0	-3.883442 -0.574075 -1.193190
25	6	0	-3.709070 0.671787 -1.902656
26	5	0	-0.385793 1.956520 -1.007105
27	1	0	-0.497872 3.116310 -1.249615
28	5	0	-0.270931 1.114160 -2.501827
29	1	0	-0.333104 1.772232 -3.495914
30	8	0	-1.384488 1.754209 3.286768
31	8	0	3.056576 0.808810 2.687709
32	8	0	1.097082 4.410941 0.889746
33	42	0	-1.630160 0.232056 -0.806959
34	44	0	0.566543 1.384748 0.940384
35	1	0	2.154858 -1.325910 -3.766012
36	1	0	3.047079 -2.381340 -1.448329
37	1	0	3.864045 -0.393511 0.092022
38	1	0	3.504624 1.922873 -1.229082
39	1	0	2.458182 1.317800 -3.640261
40	1	0	-3.744993 0.800955 -2.968504
41	1	0	-3.353184 2.810828 -1.171191
42	1	0	-4.062160 -1.552774 -1.650066
43	1	0	-3.878700 -1.046396 0.999658
44	1	0	-3.439659 1.604337 1.298182

Fig. S8 Optimized geometry of 3'.

Cartesian coordinates for the calculated structure of 3' (in Å).

Cent	ter	Atomic	Atomic	Coord	linates	(Angstroms	5)
Num	ıber	Number	Type	X	Y	Ζ	
1	5	0	-0.072512	1.377660	-0.826	 047	
2	1	0	-0.143566	2.370040	-1.5064	440	
3	5	0	0.125222	-0.066156	1.7562	240	
4	6	0	-3.195245	1.219823	-0.846	938	
5	6	0	-3.163207	1.482471	0.5705	597	
6	6	0	-3.484045	0.260917	1.2555	522	
7	6	0	-3.717668	-0.760300	0.2693	340	
8	6	0	-3.540321	-0.159823	-1.037	186	
9	6	0	-3.834252	-0.813752	-2.355	966	
10	1	0	-3.192910	-0.413492	-3.15	2368	
11	1	0	-4.884100	-0.638031	-2.64	6892	

12	1	0	-3.676838	-1.899744	-2.318180
13	6	0	-3.094243	2.252976	-1.927616
14	1	0	-4.089017	2.687893	-2.128433
15	1	0	-2.720312	1.822574	-2.865504
16	1	0	-2.418540	3.069738	-1.644361
17	6	0	-2.990986	2.831043	1.202590
18	1	0	-2.243612	3.434228	0.670418
19	1	0	-2.667090	2.749643	2.248180
20	1	0	-3.947150	3.382934	1.188470
21	6	0 0	-3.663661	0.111185	2.738910
22	1	0 0	-2.958363	0.739480	3.299168
23	1	0	-3 516133	-0.927521	3 062555
24	1	0	-4 684415	0.327621	3 032739
25	6	0	-4 239832	-2 142134	0 540755
25	1	0	3 877422	2.112101	1 501300
20	1	0	2 020722	2.002120	0.220100
21	1	0	-3.330732	-2.033703	-0.239109
28	I C	0	-3.342/23	-2.1348/4	0.578507
29	0	0	-1.101481	-1.902070	-0.771954
30	1	U	-0.960498	-0.851205	1.0/1/1/
31	42	0	-1.4/115/	-0.132968	0.082/44
32	8	0	-1.129511	-2.942560	-1.308271
33	5	0	0.072508	1.377649	0.826063
34	1	0	0.143556	2.370021	1.506468
35	5	0	-0.125222	-0.066136	-1.756240
36	6	0	3.195247	1.219809	0.846955
37	6	0	3.163207	1.482482	-0.570574
38	6	0	3.484042	0.260940	-1.255522
39	6	0	3.717666	-0.760295	-0.269360
40	6	0	3.540323	-0.159841	1.037178
41	6	0	3.834251	-0.813798	2.355945
42	1	0	3.192923	-0.413538	3.152358
43	1	0	4.884104	-0.638103	2.646866
44	1	0	3.676814	-1.899786	2.318142
45	6	0	3.094247	2.252942	1.927653
46	1	0	4.089019	2.687861	2.128471
47	1	0	2.720324	1.822521	2.865535
48	1	0	2.418537	3.069705	1.644416
49	6	0	2.990986	2.831064	-1.202545
50	1	0	2.243637	3.434254	-0.670342
51	1	0	2.667057	2.749682	-2.248126
52	1	0	3.947158	3.382942	-1.188447
53	6	0	3.663654	0.111235	-2.738914
54	1	0	2.958359	0.739543	-3.299159
55	1	0	3.516122	-0.927465	-3.062578
56	1	0	4.684409	0.409685	-3.032739
57	6	0	4.239827	-2.142126	-0.540799
58	1	0	3.877422	-2.532098	-1.501444
59	1	0	3.938718	-2.853710	0.239048
	-	2			

60	1	0	5.342720 -2.134870 -0.578542
61	6	0	1.161474 -1.902074 0.771910
62	1	0	0.960500 -0.851182 -1.671727
63	42	0	1.471156 -0.132964 -0.082747
64	8	0	1.129537 -2.942554 1.308270
65	1	0	-0.402968 -0.129992 -2.924720
66	1	0	0.402968 -0.130023 2.924719

Fig. S9. Optimized geometry of 4'.

Cartesian coordinates for the calculated structure of 4' (in Å).

Center Number	Ato Ni	mic umber	Atomic Type	Coordin X	iates Y	(Angst Z	troms)
1	6	0	-4.225459	1.425546	0.7 4	13037	
2	1	0	-4.238896	1.967737	-0.2	10222	
3	1	0	-3.632200	2.007267	1.46	60197	

4	1	0	-5.261739	1.394509	1.121558
5	6	0	-3.710766	0.025432	0.584516
6	6	0	-3.170946	-0.785967	1.635150
7	6	0	-2.986904	-2.118127	1.113521
8	6	0	-3.392825	-2.121458	-0.264598
9	6	0	-3.842507	-0.790739	-0.594668
10	6	0	-3.005149	-0.382941	3.069251
11	1	0	-2.157914	-0.899470	3.539938
12	1	0	-3.913471	-0.635292	3.644138
13	1	0 0	-2.835421	0.695984	3.172177
14	6	Ő	-2 713382	-3 343712	1 931061
15	1	Ő	-2 155940	-3 110443	2 846305
16	1	0	-2 141556	-4 095546	1 371275
10	1	0	-2.111000	-3.805064	2 228800
10	6	0	3 538500	2 220780	1 128236
10	1	0	2 177112	2 002001	-1.128230
19	1	0	-3.4//143	-3.033031	-2.190232
20	1	0	-4.31/2/1	-5.818941	-0.955415
21	I C	0	-2./59/00	-4.083240	-0.912304
22	6	0	-4.550418	-0.408127	-1.862133
23	1	0	-4.186499	-0.984794	-2.723057
24	1	0	-4.425387	0.654686	-2.098590
25	1	0	-5.630905	-0.608245	-1.761417
26	6	0	2.584725	-2.859639	2.474851
27	1	0	1.989621	-2.291937	3.201820
28	1	0	3.520165	-3.169684	2.972935
29	1	0	2.024336	-3.767104	2.217653
30	6	0	2.913606	-2.041259	1.265465
31	6	0	3.139816	-2.548061	-0.060299
32	6	0	3.671275	-1.480045	-0.858731
33	6	0	3.808418	-0.321841	-0.011607
34	6	0	3.327708	-0.662195	1.295641
35	6	0	2.980652	-3.977511	-0.483518
36	1	0	2.891752	-4.072462	-1.573661
37	1	0	2.091136	-4.438830	-0.033407
38	1	0	3.860461	-4.563265	-0.168146
39	6	0	4.156928	-1.577123	-2.274885
40	1	0	4.035216	-0.625146	-2.808950
41	1	0	3.621207	-2.351344	-2.840376
42	1	0	5.230052	-1.833984	-2.294426
43	6	0	4.490381	0.947911	-0.419465
44	1	0	4.058810	1.369196	-1.339216
45	1	0	5.556525	0.746275	-0.616501
46	1	0	4.434278	1.713776	0.362060
47	6	Õ	3,444230	0.155889	2.544929
48	5 1	Ő	3.585450	1.220614	2.328816
49	1	n	4 311231	-0 186083	3 136055
50	1	ñ	2 550142	0.057128	3 175142
51	6	ñ	1 802762	2 759844	0 780525
U 1	0	v	1.002/02	2.70JUTT	0.100020

52	6	0	-0.151904	3.663682	-0.751502
53	6	0	-0.796222	2.421021	1.620122
54	6	0	-1.523257	1.530361	-1.166176
55	6	0	-1.206372	-1.078975	-2.060163
56	5	0	-0.070708	-2.431240	-0.562694
57	5	0	-0.075619	-1.807190	1.061046
58	5	0	0.198036	-0.122061	1.364548
59	8	0	2.652505	3.404761	1.248285
60	8	0	-0.388316	4.714939	-1.177551
61	8	0	-1.353472	2.798442	2.576239
62	8	0	-2.336307	1.881197	-1.941296
63	8	0	-1.176246	-1.353094	-3.197944
64	17	0	1.445081	0.812478	-2.000108
65	42	0	-1.520762	-0.719797	-0.142343
66	42	0	1.471809	-0.875024	-0.230521
67	74	0	0.182014	1.807500	0.012912
68	1	0	-0.283945	-3.594835	-0.786502
69	1	0	-0.125563	-2.590621	1.966807
70	1	0	0.295835	0.036084	2.557997
71	1	0	0.899947	-2.149060	-1.389486

Fig. S10. Optimized geometry of [(Cp*Mo)₂B₄H₈].

Cartesian coordinates for the calculated structure of $[(Cp^*Mo)_2B_4H_8]$. (in Å).

Center	Atomic		Atomic	Coordinates (Angstroms)		
Number	N	umber	Type	X	Y	Ζ
1	5	0	-0.003385	0.826520	1.410	 0044
2	1	0	-0.004919	1.429390	2.454	737
3	5	0	0.006282	-1.848277	-0.015	5916
4	6	0	-3.281565	0.855315	0.872	2114
5	6	0	-3.253558	-0.569455	1.080	0857
6	6	0	-3.376781	-1.207800	-0.20	1842
7	6	0	-3.465380	-0.177915	-1.21	6909
8	6	0	-3.424826	1.092646	-0.540	0112
9	6	0	-3.631301	2.430138	-1.191	1718

10	1	0	-3.142024 3.237883 -0.631489
11	1	0	-4.707942 2.665296 -1.245519
12	1	0	-3.237844 2.447736 -2.217413
13	6	0	-3.308325 1.892124 1.955090
14	1	0	-4.327997 1.999067 2.364537
15	1	0	-2.993295 2.875215 1.581275
16	1	0	-2.637314 1.625423 2.782742
17	6	0	-3.261770 -1.248588 2.417570
18	1	0	-2.629598 -0.715349 3.140031
19	1	0	-2.888405 -2.278571 2.350972
20	1	0	-4.287813 -1.286618 2.823728
21	6	0	-3.541545 -2.682281 -0.432531
22	1	Ő	-2.965889 -3.272675 0.293022
23	1	Ő	-3.210129 -2.976523 -1.437707
24	1	0	-4 602110 -2 970766 -0 334755
25	6	0	-3 752793 -0 398103 -2 674641
26	1	0	-3 291862 -1 324465 -3 043460
20	1	0	-3.371082 0.426661 -3.291709
28	1	0	
20	1	0	-1.360874 _0.00/822 _0.203600
29	1 2	0	-1.509874 -0.004822 -0.205099
31	1	0	0.003230 - 0.820748 1.409873
22	1	0	0.004039 - 1.429820 2.434430 0.006276 - 1.848225 - 0.015548
32 22	6	0	-0.000270 1.848333 -0.013348 2 281544 0.855006 0.871787
21	6	0	3.201344 - 0.00000 0.071707 2.052502 0.569700 1.091420
34 25	6	0	2 276700 1 207890 0 200859
26	6	0	3.370799 1.207809 -0.200838
30 27	0	0	5.4054/4 0.178041 -1.210575 2.454905 1.005224 0.540599
20	0	0	3.424892 -1.092334 -0.340388
38 20	0	0	5.051508 -2.429408 -1.195059 2.141005 -2.227510 -0.(22420
39	1	0	3.141995 -3.237510 -0.633429
40	1	0	4.708003 -2.664581 -1.246901
41	I C	0	3.238022 -2.446287 -2.218809
42	6	0	3.308187 -1.893426 1.954085
43	1	0	4.32/814 -2.00065/ 2.363569
44	1	0	2.993181 -2.876260 1.579577
45	1	0	2.637086 -1.627258 2.781840
46	6	0	3.261630 1.247041 2.418564
47	1	0	2.629536 0.713276 3.140706
48	1	0	2.888117 2.277010 2.352588
49	1	0	4.287670 1.284967 2.824740
50	6	0	3.541543 2.682520 -0.430599
51	1	0	2.965579 3.272440 0.295096
52	1	0	3.210464 2.977333 -1.435718
53	1	0	4.602050 2.971034 -0.332278
54	6	0	3.752920 0.399738 -2.674159
55	1	0	3.291928 1.326284 -3.042436
56	1	0	3.371295 -0.424693 -3.291726
57	1	0	4.840448 0.476247 -2.856809

58	1	0	1.014926 1	1.668787	-0.824765
59	42	0	1.369899	0.004921	-0.203567
60	1	0	-1.014816 -	1.668538	-0.825235
61	1	0	-0.013035	3.050273	0.098339
62	1	0	0.013010 -3	3.050240	0.097709
63	1	0	1.014822 -	1.652970	-0.838461
64	1	0	-1.014732	1.653192	-0.838240

References:

- a) R. S. Dhyal, S. Sahoo and S. Ghosh, *J. Organomet. Chem.*, 2008, **694**, 237; b) M. L. H Green, J. D. Hubert and P. Mountford, *J. Chem. Soc. Dalton. Trans.*, 1990, 3793; c) M. Kaushika, A. Singh and M. Kumar, *Eur. J. Chem.*, 2012, **3**, 367.
- 2 G. E. Ryschkewitsch and K. C. Nainan, *Inorg. Synth.*, 1974, 15, 113.
- 3 a) SHELXS-97, G. M. Sheldrick, University of Göttingen (Germany), 1997; b)
 SHELXL-97, G. M. Sheldrick, University of Göttingen, (Germany), 1997.
- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. 4 A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 5 a) H. L. Schmider and A. D. Becke, J. Chem. Phys., 1998, 108, 9624; b) J. P. Perdew, Phys.
 Rev. B 1986, 33, 8822.
- 6 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- 7 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta., 1990, 77, 123.

- 8 a) A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098; b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 1988, **37**, 785; c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.
- 9 a) F. London, J. Phys. Radium., 1937, 8, 397; b) R. McWeeny, Phys. Rev., 1962, 126, 1028;
 c) R. Ditchfield, Mol. Phys., 1974, 27, 789; d) J. L. Dodds, R. McWeeny and A. Sadlej, J. Mol. Phys., 1977, 34, 1779; e) K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.
- 10 T. P. Onak, H. L. Landesman, R. E. Williams and I. Shapiro, J. Phys. Chem., 1959, 63, 1533.
- 11 F. Weinhold and R. Landis, *Valency and bonding: A natural bond orbital donor-acceptor perspective;* Cambridge University Press: Cambridge; U.K, 2005.
- 12 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899.