Supplementary Information

"Anion clamp" allows flexible protein to impose coordination geometry on metal ions

Minji Wang^{*a*}, Tsz Pui Lai^{*a*}, Li Wang^{*b*,*a*}, Hongmin Zhang^{*c*,*a*}, Nan Yang^{*a*,*d*}, Peter J. Sadler^{*e*,*a*} and Hongzhe Sun^{*a*,*}

^aDepartment of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China, ^bDepartment of Chemistry, Central China Normal University, No. 152 Luo Yu Road, Wuhan 430079, Hubei, P.R. China, ^cDepartment of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, 1088 Xue Yuan Road, Nanshan District, Shenzhen 518055, P. R. China, ^dDepartment of Physiology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA. ^eDepartment of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. (E-mail: hsun@hku.hk)

Experimental Details

Apo-hTF was used as obtained from Sigma-Aldrich. The mono-ytterbium hTF (Yb-hTF) was prepared according to a similar procedure for terbium-bound hTF¹, buffered in a solution containing 0.01 M HEPES-NaOH pH 7.5 and 0.01 M NaHCO₃, and concentrated to 1 mM. The sitting-drop method was used for crystallization. The crystallization precipitant medium contained 0.13 M PIPES-NaOH pH 6.0, 8 mM disodium malonate, 17% PEG3350 (w/v) and 18% glycerol (v/v).

The mono-ferric Fe-hTF protein was prepared from apo-hTF and buffered in 0.01 M HEPES-NaOH pH 7.5 and 0.01 M NaHCO₃, concentrated to 1~1.5 mM. The crystallization condition was the same as for Yb-hTF. Protein crystals appeared after 2-7 days.

Diffraction data were collected at Shanghai Synchrotron Radiation Facility using 0.9793Å radiation. HKL2000 was used for data reduction and scaling. Molecular replacement and model refinement used (the Phenix suite²). For the calculation of N1-N2 opening angle (reference model: 1N84), the Superpose tool in the CCP4 suite was used.³

(a) Yb_C-hTF crystals

(b) Fe_C-hTF crystals

Figure S1 Photographs of Yb_C -hTF(a) and Fe_C -hTF(b) crystals.

Atom1	Atom2	Å, Fe-hTF	Å, Yb-hTF/A	Å, Yb-hTF/B
Asp240-Oδ1	Arg678-Nŋ2	3.01	2.46	2.44
Gln245-Ne2	Arg677-O	2.74	2.94	2.95
Arg308-Nŋ2	Asp376-Oδ1	2.78	3.05	3.07
Lys312-Nζ	Glu385-Oe1	2.78	2.94	2.95
Tyr314-O	Arg677-Nŋ1	(3.21)	2.86	2.86
Tyr317-Oŋ	Asp592-Oδ2	2.65	(3.24)	(3.23)

Table S1 Major hydrogen bonds between the N-lobe and C-lobe in Yb-hTF and Fe-hTF.

Figure S2 Superimposition of the fully-closed C-lobes of Bi_NFe_C -hTF (*cyan*, bound to Fe^{III} and a bicarbonate in its C-lobe) and Yb_C-hTF (*pink*) onto Fe_C-hTF (*green*). (rmsd 1.612 and 0.363 Å, respectively) The structures are shown as ribbons. Introduction of different metal ion (Yb^{III}) or anion (malonate) has only a minor effect on the secondary structure of the protein.

Figure S3 The anomalous peak (contoured at 5σ) in Fe_C-hTF before the addition of Fe to the map, shown as mesh. There is a dummy (grey ball) at Fe position.

Figure S4 The 2*F*o-*F*c map contoured at 3.0σ (shown as mesh) near the metal-binding pocket of Fe_C-hTF.

Figure S5 The anomalous peak (contoured at 5σ) in molecule 1 of Yb_C-hTF before the addition of Yb to the map, shown as mesh. There is a dummy (grey ball) at Yb position.

Figure S6 The 2*F*o-*F*c map contoured at 3.0σ (shown as mesh) near the metal-binding pocket of Yb_C-hTF (molecule 1).

References

- 1. L. Yuan, P. Du, K. Wang and X. G. Yang, J. Biol. Inorg. Chem., 2009, 14, 1243-1251.
- P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger and P. H. Zwart, *Acta Crystallogr D Biol Crystallogr*, 2010, 66, 213-221.
- 3. S. Bailey, Acta Crystallogr. Sect. D-Biol. Crystallogr., 1994, 50, 760-763.