Supporting Information

Non-volatile Organic Transistor Memory Devices Using the

Poly(4-vinylpyridine)-based Supramolecular Electrets

Y.-H. Chou, Y.-C. Chiu, W.-Y. Lee, and W.-C. Chen*

^aDepartment of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.

E-mail: chenwc@ntu.edu.tw

Experimental

Materials

Poly(4-vinylpyridine) (P4VP) (Mw~60000), Phenol, 2-Naphthol, and 2-Hydroxyanthracene were purchase from Aldich.

Sample preparation

The complexes of $P4VP(Phenol)_x$ ($P4VP(2-Naphthol)_x$ and $P4VP(2-Hydroxyanthracene)_x$) with different molar ratio x of Phenol (2-Naphthol and 2-Hydroxyanthracene) to the repeating unit of P4VP were prepared from chloroform solution. In each case, Phenol (2-Naphthol and 2-Hydroxyanthracene) and chloroform were first mixed together until a clear solution was obtained. P4VP was subsequently added, followed by mechanical stirring for about 12 h at room temperature.

Fabrication of the Pentacene Memory Devices.

The transistor-type memory devices based on a pentacene thin film were fabricated on a wafer with a thermally grown 300-nm thick SiO₂ dielectric on highly doped *n*-type Si as a gate electrode. The solution of P4VP(Phenol)_x, P4VP(2-Naphthol)_x, or P4VP(2-Hydroxyanthracene)_x in chloroform was spin-coated at 1000 rpm for 60 s on a wafer. Thereafter, the polymer thin films were dried under vacuum (10⁻⁶ torr) at 100 °C for 1 h to remove residue solvents. The thickness of the prepared thin film was estimated to be 65~70 nm. The thin film of pentacene was prepared by thermally deposition with a deposition rate of 0.3~0.4 nm s⁻¹ at 90 °C under vacuum (10⁻⁷ torr) to form a 50-nm-thick film. The top-contact source and drain electrodes were defined by 80 nm-thick gold through a regular shadow mask, and the channel length (L) and width (W) were 50 and 1000 µm, respectively. The current-voltage (*I–V*) characteristics of the devices were measured by using a Keithley 4200-SCS semiconductor parameter analyzer in a N₂-filled glove box.

Characterization

Atomic force microscopy (AFM) measurements were obtained with a NanoScope IIIa AFM at room temperature. Commercial silicon cantilevers with typical spring constants of 21-78 Nm⁻¹ was used to operate the AFM in tapping mode.

The morphology of the thin film was determined using a field emission scanning electron microscope (SEM, JEOL JSM-6330F). The FE-SEM images were taken using a microscope operated at an accelerating voltage of 10 kV. Before imaging, the samples were sputtered with Pt.Infrared spectra were obtained using a Bruker VECTOR22 FTIR spectrometer. Samples were prepared by casting one drop of the

chloroform solution (~10 mg/ml) directly on potassium bromide crystals. The FTIR measurements were taken at room temperature. The electrical characterization of the memory device was performed by a Keithley 4200-SCS semiconductor parameter analyzer in a glove box. For the capacitance measurement, metal-insulator-semiconductor (MIS) structure was fabricated by depositing gold electrodes on the polymer-coated n-type Si(300) wafers. The capacitance of the bilayer dielectrics was measured on the MIS structure using Keithley 4200-SCS equipped with a digital capacitance meter (model 4210-CVU).

Figure S1. FTIR spectra of (a, b) P4VP(Phenol)_x, (c,d) P4VP(2-Naphthol)_x and (e,f) P4VP(2-Hydroxyanthracene)_X: (a, c, e) 1450-1650cm⁻¹ region; (b, d, f) 950-1050 cm⁻¹ region, respectively.

Figure S2. X-ray diffraction diagrams of the pentacene thin film with supramolecular polymer as electrets

Figure S3. AFM topographic images of (a) P4VP(2-Hydroxyanthracene)_{0.3}, (b) P4VP(2-Hydroxyanthracene)_{0.5}, and (c) P4VP(2-Hydroxyanthracene)₁ on 3 μ m x 3 μ m area.

Figure. S4. AFM topographic images of Pentacene on P4VP surface with different supramolecular electrets: (a) P4VP, (b) P4VP(Phenol)_{*l*}, (c) P4VP(2-Naphthol)_{*l*}, (d) P4VP(2-Hydroxyanthracene)₁, (e) P4VP(2-Hydroxyanthracene)_{0.3} and (f) P4VP(2-Hydroxyanthracene)_{0.5}, on 3 μ m x 3 μ m area, respectively.

Figure S5. Shifts in transfer curves for Pentacene OFET memory device with (a) $P4VP(2-hydroxyanthracene)_{0.3}$, (b) $P4VP(2-hydroxyanthracene)_{0.5}$, (c) $P4VP(2-hydroxyanthracene)_{1,}$ (d) pure 2-hydroxyanthracene, and (e) P4VP-only as polymer electrets, respectively.

Figure S6. Shifts in transfer curves for Pentacene OFET memory device with (a) $P4VP(Phenol)_{1,}$ (b) $P4VP(2-Naphthol)_{1}$ and (c) $P4VP(2-Hydroxyanthracene)_{1}$ as polymer electrets.

Figure S7. Energy diagram of pentacene/supramolecular electrets and the schematic charge trapping mechanism. Note that the energy levels of P4VP, phenol, 2-naphthol and 2-hydroxyantracene were calculated by Gaussian 03 using density functional theory (DFT) method and Becke's three-parameter functional with the Lee, Yang, and Parr correlation functional method (B3LYP) with 6-31G.

Figure S8. Retention time testing of the OFET memory devices based on Pentacene thin film with (a) $P4VP(phenol)_1$, (b) $P4VP(naphthol)_1$, and (c) $P4VP(2-hydroxyanthracene)_1$ as polymer electrets, respectively.

Figure S9. Reversible current response to the WRER cycles of Pentacene OFET memory device with P4VP(2-Naphthol)₁ as electret. The drain current was measured at $V_d = 100V$. The writing, reading and erasing were at the gate voltages of -100, 0 and 100 V, respectively.