Remote rearrangement of metal center in a (η⁶-C₆Me₆)Ru(II) complex

Koichi Takano, Yousuke Ikeda, Shintaro Kodama and Youichi Ishii*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27

Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Table of Contents

General Considerations.	S2
Synthesis of $[(\eta^6-C_6Me_6)RuCl(Ph)(PMe_3)]$ (1).	S2
Synthesis of $[(\eta^6-C_6Me_6)Ru\{o-C_6H_4C(Ph)=CHPh\}(PMe_3)][BAr^F_4]$ (2a).	S3
Synthesis of $[(\eta^6-C_6Me_6)Ru\{o-C_6H_4C(Me)=CHPh\}(PMe_3)][BAr^F_4]$ (2b).	S3
Synthesis of $[(\eta^6-C_6Me_6)Ru\{\eta^3-CH_2C(Ph)CHPh\}(PMe_3)][BAr^F_4]$ (4).	S3
Figure S1. Full ¹ H NMR spectrum of 2a.	S4
Figure S2. ¹ H NMR spectra of 2a and mixture of $2a-d_4/d_1$ and $2a-d_5/d_0$	S5
Figure S3. Full ³¹ P{ ¹ H} NMR spectrum of 2b	S5
Figure S4. Full ¹ H NMR spectra of 2b	S6
Figure S5. Full ¹ H NMR spectra of 4	S6
Figure S6. ¹ H NMR spectrum of 4 and $4-d_1/d_4$.	S7
Table S1. X-ray Crystallographic Data for 2a and 4.	S8
References	S9

General Considerations. All manipulations were carried out under an argon atmosphere by using standard Schlenk techniques unless otherwise stated. 1,2-Dichloroethane ($C_2H_4Cl_2$) and dichloromethane ($C_1H_2Cl_2$) was dried and distilled over P_4O_{10} , degassed and stored under an argon atomosphere. The other solvents (anhydrous grade) and PhMgCl (2M in THF) were purchased from Sigma-Aldrich and purged with argon before use. Diphenylacetylene and 1-phenyl-1-propyne were also purchased from Sigma-Aldrich and used as receieved. [$(\eta^6-C_6Me_6)RuCl_2(PMe_3)$] and $NaBAr^F_4\cdot 2H_2O^2$ were synthesized according to the literature. 1H (500 MHz), $^{13}C\{^1H\}$ (126 MHz), and $^{31}P\{^1H\}$ (202 MHz) NMR spectra were recorded on a JEOL ECA-500 spectrometer. Chemical shifts are reported in δ , referenced to residual 1H and ^{13}C signals of deuterated solvents as internal standards or to the ^{31}P signal of PPh_3 (δ –5.65) as an external standard. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer by using KBr pellets. Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer. Amounts of the solvent molecules in the crystals were determined not only by elemental analyses but also by 1H NMR spectroscopy.

[(η⁶-C₆Me₆)RuCl(Ph)(PMe₃)] (1). [(η⁶-C₆Me₆)RuCl₂(PMe₃)] (299.7 mg, 0.730 mmol) was suspended in anhydrous THF (20 mL), and the suspension was cooled to -40 °C. A THF solution of PhMgCl (1.02 mL of 2 M solution, 2.04 mmol, *ca*. 2.8 equiv) was added dropwise to the suspension by using an airtight syringe. The reaction mixture was stirred at -40 °C for 15 min and warmed to room temperature, and stirring was continued for additional 30 min. Then a saturated aqueous NH₄Cl solution (0.15 mL) was added to quench unreacted Grignard reagent, and the solvent was removed in vacuo. The product was extracted with CH₂Cl₂ and filtered through a plug of Celite, and the plug was rinsed with CH₂Cl₂. Column chromatography on silica (4% THF–CH₂Cl₂) gave the desired complex as the first orange band. Recrystallization from CH₂Cl₂/hexane at -20 °C afforded pure 1 (247.3 mg, 0.547 mmol, 75% yield) as orange microcrystals. ¹H NMR (CDCl₃): δ 7.61 (d, $^3J_{\text{HH}} = 7.4\text{Hz}$, 1H, *o*-H of Ph), 6.97–6.94 (m, 2H, *o*-H and *m*-H of Ph), 6.85–6.80 (m, 2H, *m*-H and *p*-H of Ph), 1.91 (s, 18H, η⁶-C₆(CH₃)₆), 1.21 (d, $^2J_{\text{PH}} = 9.2$ Hz, 9H, P(CH₃)₃). ³¹P{¹H} NMR (CDCl₃): δ 3.81 (br, P(CH₃)₃). ¹³C{¹H} NMR data (CDCl₃): δ 167.7 (d, $^2J_{\text{PC}} = 24.0$

Hz, Ar), 140.1 (br, Ar) 139.8 (d, ${}^{3}J_{PC} = 10.8$ Hz, Ar), 126.9, 125.7, 121.0 (s, Ar), 97.6 (d, ${}^{2}J_{PC} = 2.4$ Hz, η^{6} - $C_{6}(CH_{3})_{6}$), 15.9 (d, ${}^{1}J_{PC} = 31.2$ Hz, $P(CH_{3})_{3}$), 15.8 (s, η^{6} - $C_{6}(CH_{3})_{6}$). Anal. Calcd for $C_{21}H_{32}ClPRu$: C, 55.80 H, 7.14. Found: C, 55.77; H, 7.19.

[(η⁶-C₆Me₆)Ru{o-C₆H₄C(Ph)=CHPh}(PMe₃)][BAr^F₄] (2a). A mixture of 1 (25.6 mg, 0.057 mmol), NaBAr^F₄·2H₂O (56.4 mg, 0.061 mmol) and diphenylacetylene (49.8 mg, 0.279 mmol) in C₂H₄Cl₂ (3 mL) was stirred at 25 °C for few minutes. The resulting dark red suspension was filtered through a plug of Celite, and the plug was rinsed with C₂H₄Cl₂. The combined filtrate was concentrated in vacuo and layered with hexane to give 2a (73.7 mg, 0.051 mmol, 89% yield) as dark red crystals. ³¹P{¹H} NMR (CDCl₃): δ -0.58 (s, P(CH₃)₃). ¹H NMR (CDCl₃): δ 7.71 (br, 8H, BAr^F₄), 7.52 (br, 4H, BAr^F₄), 7.49–6.72 (m, 14H, Ar), 1.72 (s, 18H, η⁶-C₆(CH₃)₆), 1.42 (d, ²J_{PH} = 9.2 Hz, 9H, P(CH₃)₃), -4.47 (d, ²J_{PH} = 13.7 Hz, 1H, C=CHPh). Selected ¹³C{¹H} NMR data (CDCl₃): δ 170.6 (s, o-C₆H₄C(Ph)=C), 103.8 (s, η⁶-C₆(CH₃)₆), 97.5 (br, C=CHPh), 15.8 (s, η⁶-C₆(CH₃)₆), 15.6 (d, ¹J_{PC} = 33.5 Hz, P(CH₃)₃). Anal. Calcd for C₆7H₅₄BF₂₄PRu (2a): C, 55.19; H, 3.73. Found: C, 54.85; H, 3.52.

[(η⁶-C₆Me₆)Ru{ σ -C₆H₄C(Me)=CHPh}(PMe₃)][BAr^F₄] (2b). This compound was synthesized from 1 (24.6 mg, 0.054 mmmol), NaBAr^F₄·2H₂O (56.1 mg, 0.061 mmol) and 1-phenyl-1-propyne (35.0 μl, 0.283 mmol) by a procedure similar to that for the synthesis of 2a except that the reaction was performed at 0 °C for 5 h and recrystallization was performed at -20 °C. Orange crystals (60.6 mg, 0.043 mmol, 80% yield). ³¹P{¹H} NMR (CDCl₃): δ -0.26 (s, P(CH₃)₃). ¹H NMR (CDCl₃): δ 7.70 (br, 8H, BAr^F₄), 7.51 (br, 4H, BAr^F₄), 7.44–7.13 (m, 9H, Ar), 2.47 (s, 3H, C(CH₃)=CHPh), 1.72 (s, 18H, η⁶-C₆(CH₃)₆), 1.35 (d, ²J_{PH} = 9.2 Hz, 9H, P(CH₃)₃), -4.24 (d, ²J_{PH} = 10.3 Hz, 1H, C=CHPh). Selected ¹³C{¹H} NMR data (CDCl₃, 0 °C): δ 167.2 (s, σ -C₆H₄C(CH₃)=C), 103.8 (s, η⁶-C₆(CH₃)₆), 79.8 (s, C=CHPh), 20.7 (s, σ -C₆H₄C(CH₃)=C), 16.4 (d, ¹J_{PC} = 33.6 Hz, P(CH₃)₃), 15.7 (s, η⁶-C₆(CH₃)₆). Anal. Calcd for C₆₂H₅₂BF₂₄PRu (2b): C, 53.35; H, 3.75. Found: C, 53.17; H, 3.57. [(η⁶-C₆Me₆)Ru{η³-CH₂C(Ph)CHPh}(PMe₃)][BAr^F₄] (4). A mixture of 1 (25.3 mg, 0.056 mmol), NaBAr^F₄·2H₂O (55.7 mg, 0.060 mmol) and 1-phenyl-1-propyne (34.1 μl, 0.276 mmol) in C₂H₄Cl₂

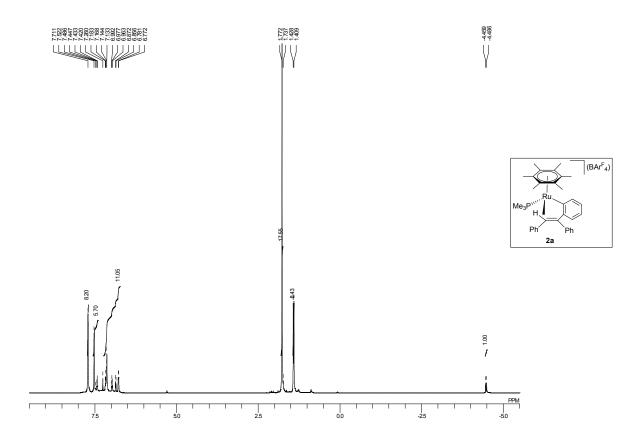


Figure S1. Full ¹H NMR spectrum of 2a (CDCl₃, 500.16 MHz)

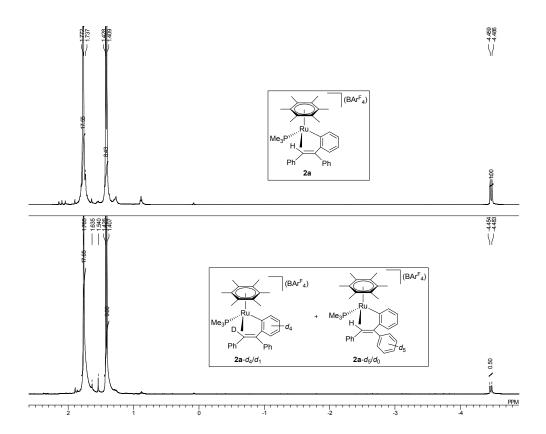


Figure S2. ¹H NMR spectra (CDCl₃, 500.16 MHz) of **2a** (up) and mixture of **2a**- d_4/d_1 and **2a**- d_5/d_0 (bottom)

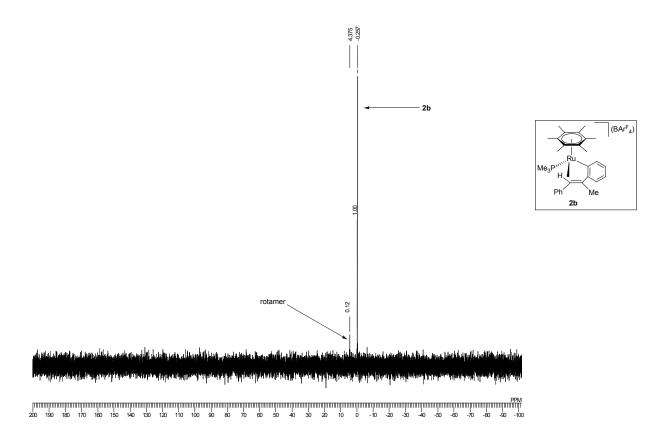


Figure S3. Full $^{31}P\{^{1}H\}$ NMR spectrum of 2b

(CDCl₃, 202.47 MHz)

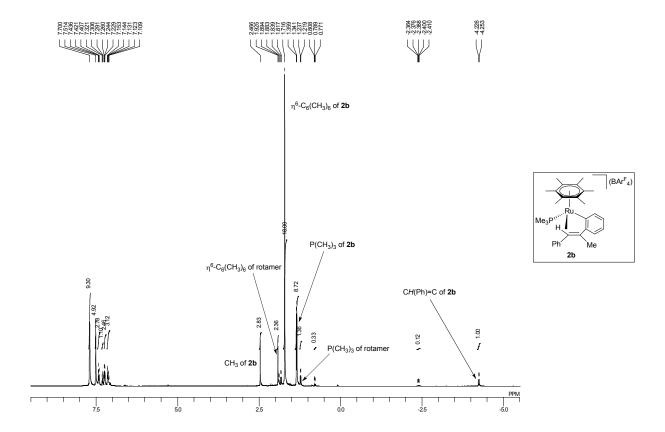


Figure S4. Full ¹H NMR spectra of 2b (CDCl₃, 500.16 MHz)

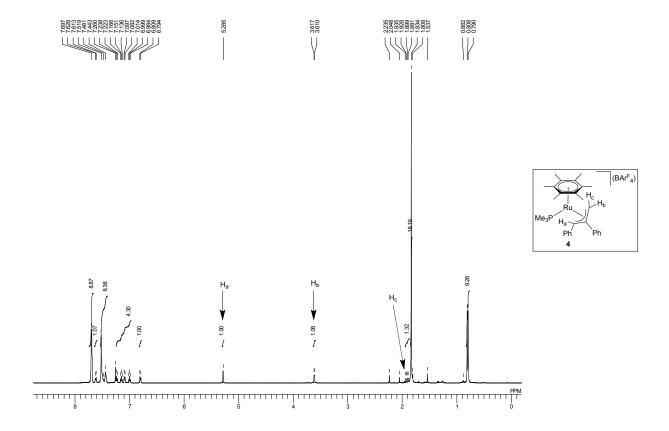
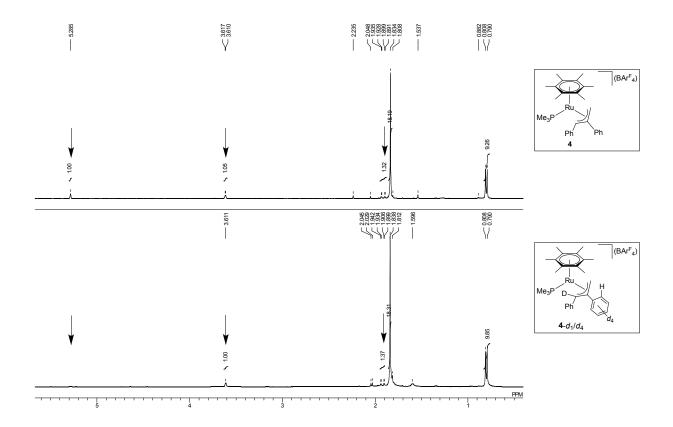



Figure S5. Full ¹H NMR spectra of 4 (CDCl₃, 500.16 MHz)

Figure S6. ¹H NMR spectra (CDCl₃, 500.16 MHz) of **4** (up) and **4**- d_1/d_4 (bottom)

X-ray Diffraction Studies. Diffraction data for **2a** and **4** were collected on a VariMax Saturn CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å). at -160 °C. Intensity data were corrected for Lorenz-polarization effects and for empirical absorption (REQAB).³ All calculations were performed using the *CrystalStructure*⁴ crystallographic software package except for refinements, which were performed using SHELXL-97.⁵ The positions of the non-hydrogen atoms were determined by direct methods (SIR-2008)⁶ and subsequent Fourier syntheses (DIRDIF-99).⁷ All non-hydrogen atoms were refined on F_o^2 anisotropically by full-matrix least-square techniques. All hydrogen atoms were placed at the calculated positions with fixed isotropic parameters. Details of the X-ray diffraction study are summarized in Table S1.

Table S1. X-ray Crystallographic Data for 2a and 4.

	2a	4
CCDC	1036838	1036845
formula	$C_{67}H_{54}BF_{24}PRu$	$C_{62}H_{52}BF_{24}PRu$
fw	1457.98	1395.91
crystal dimension	$0.23\times0.15\times0.10$	$0.18 \times 0.14 \times 0.14$
crystal system	triclinic	triclinic
space group	P-1 (#2)	P-1 (#2)
a, Å	12.696(2)	12.467(5)
b, Å	12.933(2)	14.291(6)
c, Å	19.631(3)	17.015(7)
α , deg	85.538(5)	82.854(11)
β , deg	79.980(5)	79.193(12)
γ, deg	85.472(6)	88.453(13)
V, Å ³	3157.7(9)	2955(2)
Z	2	2
$ ho_{ m calcd}, { m g cm}^{-3}$	1.533	1.569
F(000)	1472	1408
μ , cm ⁻¹	3.861	4.086
transmission factors	0.818 - 0.962	0.750 - 0.944
range	0.010 0.902	
index range	$-15 \le h \le 14$	$-14 \le h \le 16$
	$-16 \le k \le 13$	$-18 \le k \le 18$
	$-25 \le l \le 25$	$-21 \le l \le 22$
no. reflections total	26184	24322
unique (R _{int})	13950 (0.0438)	12995 (0.0763)
$I > 2\sigma(I)$	10106	8671
no. parameters	848	812
$RI(I > 2\sigma(I))^a$	0.0570	0.0756
wR2 (all data) ^b	0.1439	0.1911
GOF c	1.051	1.026
max diff peak / hole, e Å ⁻³	0.95/-1.03	2.49/-1.04

References

- (1) H Werner and H. Kletzin, J. Organomet. Chem., 1982, 228, 289–300.
- (2) (a) D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba and M. D. Smith, *Inorg. Chem.*, 2001, 40, 3810; (b) D. L. Reger, C. A. Little, J. J. S. Lamba and K. J. Brown, *Inorg. Synth.*, 2004, **34**, 5; (c) C. R. Smith, A. Zhang, D. J. Mans and T. V. BajanBabu, *Org. Synth.*, 2008, **85**, 248.
- (3) R. A. Jacobson, Private Communication to Rigaku Corp.; Rigaku Corp.; Tokyo, Japan, 1998.
- (4) CrystalStructure 4.0: Single Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000–2010.
- (5) G. M. Sheldrick, Acta Crystallogr., Sect A, 2008, 64, 112.
- (6) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi and R. Spagna, J. Appl. Crystallogr., 2007, 40, 609.
- (7) P. T. Beurskens, G. Beurskens, R. de Gelder, S. García-Granda, R. O. Gould, R. Israël and J. M. M. Smits, *The DIRDIF-99 program system*; Crystallography Laboratory, University of Nijmegen, The Netherlands, 1999.