Observation of Aliphatic C-H···X Hydrogen Bonds in Imidazolium Ionic Liquids

Alexander Khrizman, Hiu Yan Cheng, Gualberto Bottini, and Guillermo Moyna

Supporting Information

1. Synthesis

1.1. General

Deuterated 1-*n*-butyl-3-methylimidazolium chloride isotopologues **1a-1e** were prepared as described.⁸ Potassium hexafluorophosphate and sodium tetrafluoroborate were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA) and used as received. IR spectra were recorded on a Thermo Electron Nicolet Avatar 370 DTGS FT-IR spectrophotometer. Routine NMR experiments were performed on Bruker AVANCE 400 and AVANCE III 400 spectrometers operating at ¹H and ¹³C frequencies of 400.13 and 100.62 MHz, respectively, using CD₂Cl₂ as solvent. Chemical shifts (δ) are in ppm relative to the residual solvent signal (5.32 and 54.0 ppm for ¹H and ¹³C, respectively), and coupling constants (*J*) are reported in Hz. HR-MS spectra were recorded on a Thermo Scientific Exactive Orbitrap mass spectrometer using ASAP ionization.^{S1}

1.2. Preparation of 1-n-butyl-3-methylimidazolium hexafluorophosphate isotopologues.^{S2}

Potassium hexafluorophosphate (1.1 g, 6.0 mmol) was added to a solution of the appropriate 1*n*-butyl-3-methylimidazolium chloride isotopologue (1.0 g, 5.7 mmol) in distilled water (1.0 mL) in a 10 mL vial fitted with a teflon-lined cap. Following phase separation, the reaction was stirred vigorously for 3 h, diluted with dichloromethane (1 mL) and washed with distilled water (3×0.5 mL). The organic layer was further diluted with dichloromethane (5.0 mL), and the resulting solution was dried with MgSO₄. The solvent was then removed *in vacuo* to yield the desired hexafluorophosphate salts as colorless to pale yellow oils. A Mohr titration of the product indicated that it was free of chloride ion.^{S2}

1.2.1. [1",1",1"- d_3]-1-n-Butyl-3-methylimidazolium hexafluorophosphate (2*a*): Obtained from 1*a* in 88% yield. IR (NaCl plate, cm⁻¹): 3169, 3117, 2966, 2939, 2878, 1568, 1468, 1386, 1336, 1172, 1114, 840. ¹H NMR: δ 8.46 (1H, bdd, J = 2.0, J = 2.0, H2), 7.29 (1H, ABX, $J_{AX} = 2.0, J_{AB} = 1.7, H4$), 7.28 (1H, ABX, $J_{AX} = 2.0, J_{AB} = 1.7, H5$), 4.15 (3H, t, J = 7.4, H1"), 1.86 (2H, tt, J = 7.6, J = 7.4, H2'), 1.37 (2H, tq, J = 7.6, J = 7.4, H3'), 0.96 (3H, t, J = 7.4, H4'). ¹³C NMR: δ 136.2 (C2), 124.2 (C4), 122.8 (C5), 50.6 (C1'), 36.3 (hep, ¹ $J_{CD} = 21.9, C1$ "), 32.3 (C2'), 19.9 (C3'), 13.6 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₂D₃N₂ ([M-PF₆]⁺): 142.1419, found: 142.1416.

1.2.2. [1',1'- d_2]-1-n-Butyl-3-methylimidazolium hexafluorophosphate (**2b**): Obtained from **1b** in 91% yield. IR (NaCl plate, cm⁻¹): 3171, 3118, 2966, 2938, 2878, 1575, 1563, 1469, 1432, 1179, 1140, 1113, 841. ¹H NMR: δ 8.46 (1H, ddq, J = 2.0, J = 2.0, J = 0.6, H2), 7.29 (1H, ABX, $J_{Ax} = 2.0, J_{AB} = 1.7, H4$), 7.28 (1H, ABX, $J_{Ax} = 2.0, J_{AB} = 1.7, H5$), 3.91 (3H, d, J = 0.6, H1"), 1.84 (2H, bt, J = 7.5, H2'), 1.36 (2H, tq, J = 7.5, J = 7.4, H3'), 0.96 (3H, t, J = 7.4, H4'). ¹³C NMR: δ 136.2 (C2), 124.2 (C4), 122.8 (C5), 50.0 (quin, ¹ $J_{CD} = 21.8, C1$ '), 36.9 (C1"), 32.1 (C2'), 19.8 (C3'), 13.6 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₂D₃N₂ ([M-PF₆]⁺): 141.1352, found: 141.1352.

1.2.3. [2',2'- d_2]-1-n-Butyl-3-methylimidazolium hexafluorophosphate (2c): Obtained from 1c in 85% yield. IR (NaCl plate, cm⁻¹): 3172, 3124, 2965, 2937, 2878, 1576, 1463, 1432, 1385, 1336, 1171, 1113, 839. ¹H NMR: δ 8.46 (1H, ddq, J = 2.0, J = 2.0, J = 0.6, H2), 7.29 (1H, ABX, $J_{AX} = 2.0, J_{AB} = 1.7, H4$), 7.28 (1H, ABX, $J_{AX} = 2.0, J_{AB} = 1.7, H5$), 4.14 (2H, bs, H1'), 3.91 (3H, d, J = 0.6, H1"), 1.35 (2H, bq, J = 7.4, H3'), 0.96 (3H, t, J = 7.4, H4'). ¹³C NMR: δ 136.2 (C2), 124.2 (C4), 122.8 (C5), 50.4 (C1'), 36.9 (C1"), 31.6 (quin, ¹ $J_{CD} = 19.7, C2$ '), 19.7 (C3'), 13.5 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₂D₃N₂ ([M-PF₆]⁺): 141.1352, found: 141.1353.

1.2.4. [3',3'- d_2]-1-n-Butyl-3-methylimidazolium hexafluorophosphate (2d): Obtained from 1d in 88% yield. IR (NaCl plate, cm⁻¹): 3172, 3125, 2965, 2937, 2877, 1575, 1461, 1432, 1385, 1168, 1113, 841. ¹H NMR: δ 8.47 (1H, bdd, J = 1.9, J = 1.9, H2), 7.29 (1H, ABX, $J_{AX} = 1.9$, $J_{AB} = 1.8$, H4), 7.28 (1H, ABX, $J_{AX} = 1.9$, $J_{AB} = 1.8$, H5), 4.15 (2H, bt, J = 7.4, H1'), 3.92 (3H, bs, H1"), 1.83 (2H, tt, J = 7.4, ³ $J_{HD} = 1.1$, H2'), 0.94 (3H, t, ³ $J_{HD} = 1.1$, H4'). ¹³C NMR: δ 136.2 (C2), 124.2 (C4), 122.8 (C5), 50.6 (C1'), 36.9 (C1"), 32.1 (C2'), 19.2 (quin, ¹ $J_{CD} = 19.3$, C3'), 13.4 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₂D₃N₂ ([M-PF₆]⁺): 141.1352, found: 141.1353.

1.2.5. [4',4',4',-d₃]-1-n-Butyl-3-methylimidazolium hexafluorophosphate (2e): Obtained from 1e in 86% yield. IR (NaCl plate, cm⁻¹): 3171, 3125, 2939, 2872, 2225, 2079, 1575, 1462, 1432, 1390, 1340, 1168, 1114, 839. ¹H NMR: δ 8.46 (1H, bdd, J = 1.9, J = 1.9, H2), 7.29 (1H, ABX, $J_{AX} = 1.9, J_{AB} = 1.8$, H4), 7.28 (1H, ABX, $J_{AX} = 1.9, J_{AB} = 1.8$, H5), 4.15 (2H, t, J = 7.4, H1'), 3.91 (3H, s, H1''), 1.85 (2H, t, J = 7.7, J = 7.4, H2'), 1.34 (2H, tt, $J = 7.7, {}^{3}J_{HD} = 1.1, H3'$). ¹³C NMR: δ 136.2 (C2), 124.2 (C4), 122.8 (C5), 50.6 (C1''), 36.8 (C1'), 32.2 (C2'), 19.6 (C3'), 12.7 (hep, {}^{1}J_{CD} = 19.2, C4'). HR-MS (ASAP): m/z calcd for C₈H₁₂D₃N₂ ([M-PF₆]⁺): 142.1419, found: 142.1416.

1.3. Preparation of 1-n-butyl-3-methylimidazolium tetrafluoroborate isotopologues.^{S2}

Sodium tetrafluoroborate (0.8 g, 7.3 mmol) was added to a solution of the appropriate 1-*n*-butyl-3-methylimidazolium chloride isotopologue (1.2 g, 6.8 mmol) in distilled water (1.4 mL) in a 10 mL vial fitted with a teflon-lined cap. The mixture was stirred until phase separation occurred, shaken vigorously for an additional 10 min, and extracted with dichloromethane (2×1.5 mL). The combined organic layers were washed with a 4.5 M solution of sodium tetrafluoroborate (0.8 mL), dried with MgSO₄, and filtered through celite. The solvent was removed under reduced pressure to yield the desired tetrafluoroborate salts as colorless to pale yellow oils. A Mohr titration of the product indicated that it was free of chloride ion.^{S2}

1.3.1. [1",1",1",-d₃]-1-n-Butyl-3-methylimidazolium tetrafluoroborate (**3***a*): Obtained from **1a** in 91% yield. IR (NaCl plate, cm⁻¹): 3155, 3114, 2964, 2939, 2879, 1568, 1466, 1386, 1336, 1285, 1174, 1064. ¹H NMR: δ 8.74 (1H, bdd, J = 1.9, J = 1.9, H2), 7.32 (1H, dd, J = 1.9, J = 1.8, H4), 7.30 (1H, dd, J = 1.9, J = 1.8, H5), 4.17 (2H, t, J = 7.4, H1'), 1.85 (2H, tt, J = 7.6, J = 7.4, H2'), 1.36 (2H, tq, J = 7.6, J = 7.4, H3'), 0.95 (3H, t, J = 7.4, H4'). ¹³C NMR: δ 136.3 (C2), 123.6 (C4), 122.1 (C5), 49.9 (C1'), 35.6 (hep, ¹ $J_{CD} = 22.0$, C1"), 31.8 (C2'), 19.3 (C3'), 13.1 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₂D₃N₂ ([M-BF₄]⁺): 142.1419, found: 142.1411.

1.3.2. [1',1'-d₂]-1-*n*-Butyl-3-methylimidazolium tetrafluoroborate (**3b**): Obtained from **1b** in 89% yield. IR (NaCl plate, cm⁻¹): 3157, 3115, 2964, 2937, 2877, 1575, 1562, 1468, 1433, 1374, 1331, 1285, 1249, 1180. ¹H NMR: δ 8.75 (1H, bdd, J = 1.9, J = 1.9, H2), 7.32 (1H, dd, J = 1.9, J = 1.8, H4), 7.30 (1H, dd, J = 1.9, J = 1.8, H5), 3.93 (3H, bs, H1"), 1.84 (2H, bt, J = 7.6, H2'), 1.36 (2H, tq, J = 7.6, J =

7.4, H3'), 0.96 (3H, t, J = 7.4, H4'). ¹³C NMR: δ 136.9 (C2), 124.1 (C4), 122.6 (C5), 49.9 (quin, ¹ $J_{CD} = 21.8$, C1'), 36.8 (C1''), 32.2 (C2'), 19.8 (C3'), 13.6 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₃D₂N₂ ([M-BF₄]⁺): 141.1356, found: 141.1350.

1.3.3. [2',2'- d_2]-1-n-Butyl-3-methylimidazolium tetrafluoroborate (3c): Obtained from 1c in 90% yield. IR (NaCl plate, cm⁻¹): 3166, 3124, 2965, 2938, 2876, 1575, 1464, 1431, 1385, 1335, 1286, 1173, 1049. ¹H NMR: δ 8.74 (1H, bdd, J = 1.9, J = 1.9, H2), 7.32 (1H, dd, J = 1.9, J = 1.8, H4), 7.30 (1H, dd, J = 1.9, J = 1.8, H5), 4.16 (2H, bs, H1'), 3.93 (3H, s, H1"), 1.35 (2H, bq, J = 7.4, H3'), 0.95 (3H, t, J = 7.4, H4'). ¹³C NMR: δ 136.9 (C2), 124.1 (C4), 122.7 (C5), 50.3 (C1'), 36.8 (C1"), 31.6 (quin, ¹ $J_{CD} = 19.7, C2'$), 19.7 (C3'), 13.6 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₃D₂N₂ ([M-BF₄]⁺): 141.1356, found: 141.1351.

1.3.4. [3',3'- d_2]-1-n-Butyl-3-methylimidazolium tetrafluoroborate (3d): Obtained from 1d in 88% yield. IR (NaCl plate, cm⁻¹): 3157, 3132, 2964, 2935, 2874 1575, 1461, 1432, 1383, 1286, 1171, 1051. ¹H NMR: δ 8.74 (1H, bdd, J = 1.9, J = 1.9, H2), 7.32 (1H, dd, J = 1.9, J = 1.8, H4), 7.30 (1H, dd, J = 1.9, J = 1.8, H5), 4.17 (2H, bt, J = 7.4, H1'), 3.93 (3H, s, H1''), 1.84 (2H, tt, J = 7.4, ³ $J_{HD} = 1.1$, H2'), 0.94 (3H, t, ³ $J_{HD} = 1.1$, H4'). ¹³C NMR: δ 136.9 (C2), 124.1 (C4), 122.7 (C5), 50.4 (C1'), 36.8 (C1''), 32.2 (C2'), 19.2 (quin, ¹ $J_{CD} = 19.3$, C3'), 13.4 (C4'). HR-MS (ASAP): m/z calcd for C₈H₁₃D₂N₂ ([M-BF₄]⁺): 141.1356, found: 141.1352.

1.3.5. [4',4',4',-d₃]-1-n-Butyl-3-methylimidazolium tetrafluoroborate (3e): Obtained from 1e in 88% yield. IR (NaCl plate, cm⁻¹): 3164, 3122, 2937, 2870, 2222, 2077, 1574, 1462, 1432, 1339, 1286, 1170, 1061. ¹H NMR: δ 8.75 (1H, bdd, J = 1.9, J = 1.9, H2), 7.32 (1H, dd, J = 1.9, J = 1.8, H4), 7.30 (1H, dd, J = 1.9, J = 1.8, H5), 4.17 (2H, t, J = 7.4, H1'), 3.93 (3H, s, H1"), 1.85 (2H, tt, J = 7.7, J = 7.4, H2'), 1.34 (2H, tt, J = 7.7, ³ $J_{HD} = 1.1$, H3'). ¹³C NMR: δ 136.9 (C2), 124.1 (C4), 122.7 (C5), 50.5 (C1"), 36.8 (C1'), 32.3 (C2'), 19.6 (C3'), 12.7 (hep, ¹ $J_{CD} = 19.2$, C4'). HR-MS (ASAP): m/z calcd for C₈H₁₂D₃N₂ ([M-BF₄]⁺): 142.1419, found: 142.1415.

2. Isotope Effect on Nuclear Shielding Measurements

2.1. Sample preparation

All imidazolium isotopologues were dried under reduced pressure (< 1 x 10⁻³ mBar) at 50 °C with constant stirring and regular argon exchanges for 48 hours. The samples were then placed in an argon-filled glove box and allowed to equilibrate for 24 hours. After that time they were transferred to 5 mm NMR tubes, and these were subsequently fitted with 60 μ L coaxial inserts containing reference solutions. For hexafluorophosphate salts **2-2e**, the reference was 1M Na₂HPO₄ and trifluoroacetic acid in D₂O, while for tetrafluoroborate salts **3-3e** it was 1M NaBF₄ and trifluoroacetic acid in D₂O. In addition, systems containing **2e** and **2** or **3e** and **3** in the outer tube and coaxial insert, respectively, were prepared. All sample systems were tightly sealed and used in NMR measurements within two hours following preparation.

2.3. NMR experiments

NMR experiments were carried out at 30.0 °C on a Bruker Avance III 400 NMR spectrometer operating at ¹H, ¹¹B, ¹⁹F, and ³¹P frequencies of 400.13, 128.39, 376.50, and 161.98 MHz, respectively. ¹H, ¹¹B, ¹⁹F, and ³¹P spectra were referenced against the ¹H resonance of HDO, the ¹¹B resonance of 1M NaBF₄ in D₂O, the ¹⁹F resonance of 1M trifluoroacetic acid or 1M NaBF₄ in D₂O, and the ³¹P

resonance of 1M Na₂HPO₄ in D₂O, respectively. In all cases the reference signal was arbitrarily set to 0 ppm. Acquisition times, spectral widths, and data sizes were adjusted to obtain a minimum resolution of 0.2 Hz per point. The data was zero-filled to a final resolution of 0.1 Hz per point prior to Fourier transformation. For the samples that contained **2e** and **2** or **3e** and **3** in the outer tube and coaxial insert, respectively, field-frequency lock was achieved against the deuterium signal of the labeled imidazolium salt. The data recorded for three different samples of each isotopologue was averaged in the estimation of $\Delta(H,D)$ values, and the results are summarized in **Tables S1-S6** and **Tables S7-S12**.

3. References

- S1. C. N. McEwen, R. G. McKay and B. S. Larsen, Anal. Chem., 2005, 77, 7826.
- S2. X. Creary and E. D. Willis, Org. Synth., 2005, 82, 166.

Nuclei		- $\Lambda(UD) \perp cd$ (nnh)			
Nuclei	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{n},\mathbf{D}) \pm s.a.$ (ppb)
H-2	1428.5	1428.7	1428.6	1428.6 ± 0.1	-
H-4	1031.3	1031.5	1031.3	1031.4 ± 0.1	-
H-5	1016.4	1016.6	1016.5	1016.5 ± 0.1	-
H-1'	-276.8	-276.6	-276.7	-276.7 ± 0.1	-
H-2'	-1206.5	-1206.3	-1206.4	-1206.4 ± 0.1	-
Н-3'	-1425.0	-1424.8	-1424.9	-1424.9 ± 0.1	-
H-4'	-1600.8	-1600.6	-1600.7	-1600.7 ± 0.1	-
H - 1"	-384.0	-383.8	-383.9	-383.9 ± 0.1	-
³¹ P	-23411.3	-23411.4	-23410.9	-23411.2 ± 0.3	-
¹⁹ F	1422.4	1422.3	1422.4	1422.4 ± 0.1	-

Table S1. ¹H, ³¹P, and ¹⁹F chemical shifts for 2. Data for repeats obtained for three different samples and their averages are reported.

Nuclai –		$A(\mathbf{IID}) + ad(\mathbf{nnh})$			
INUCICI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{H},\mathbf{D}) = \text{s.u. (ppb)}$
Н-2	1427.9	1427.8	1427.9	1427.9 ± 0.1	1.7 ± 0.5
H-4	1030.0	1029.9	1030.1	1030.0 ± 0.1	3.5 ± 0.5
H-5	1015.2	1015.1	1015.2	1015.2 ± 0.1	3.2 ± 0.5
H-1'	-278.7	-278.8	-278.7	-278.7 ± 0.1	5.0 ± 0.5
H-2'	-1209.2	-1209.3	-1209.2	-1209.2 ± 0.1	7.0 ± 0.5
H-3'	-1435.4	-1435.6	-1435.5	-1435.5 ± 0.1	26.5 ± 0.5
H-4'	-	-	-	-	-
H-1"	-385.4	-385.5	-385.4	-385.4 ± 0.1	3.7 ± 0.5
³¹ P	-23411.9	-23411.6	-23411.7	-23411.7 ± 0.2	3.1 ± 3.1
¹⁹ F	1419.6	1419.7	1419.8	1419.7 ± 0.1	7.2 ± 0.5

Table S2. ¹H, ³¹P, and ¹⁹F chemical shift data for **2a**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **2** for all nuclei are reported.

Nuclai -		$A(\mathbf{IID}) + ad(\mathbf{nnh})$			
INUCICI	Repeat 1	Repeat 2	at 2 Repeat 3 Average \pm s.d	Average \pm s.d.	$\Delta(\mathbf{H},\mathbf{D}) = s.u.$ (ppb)
Н-2	1427.9	1428.4	1428.3	1428.2 ± 0.3	1.0 ± 1.0
H-4	1030.2	1030.7	1030.7	1030.5 ± 0.3	2.0 ± 1.0
H-5	1015.6	1016.1	1016.0	1015.9 ± 0.3	1.5 ± 1.0
H-1'	-278.4	-277.9	-278.0	-278.1 ± 0.3	3.5 ± 1.0
H-2'	-1213.5	-1213.0	-1213.1	-1213.2 ± 0.3	17.0 ± 1.0
H-3'	-	-	-	-	-
H-4'	-1608.8	-1608.3	-1608.3	-1608.5 ± 0.3	19.5 ± 1.0
H-1"	-384.9	-384.4	-384.5	-384.6 ± 0.3	1.7 ± 1.0
³¹ P	-23410.8	-23410.8	-23411.0	-23410.9 ± 0.1	-1.9 ± 2.5
¹⁹ F	1418.9	1419.1	1418.5	1418.8 ± 0.3	9.6 ± 1.1

Table S3. ¹H, ³¹P, and ¹⁹F chemical shift data for **2b**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **2** for all nuclei are reported.

Mualai		A(IID) + ad(nnh)			
INUCICI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{H},\mathbf{D}) = s.u.$ (ppb)
Н-2	1429.6	1429.1	1429.6	1429.4 ± 0.3	-2.0 ± 1.0
H-4	1031.9	1031.4	1031.9	1031.7 ± 0.3	-1.0 ± 1.0
H-5	1017.3	1016.8	1017.3	1017.1 ± 0.3	-1.5 ± 1.0
H-1'	-280.6	-281.1	-280.5	-280.7 ± 0.3	10.0 ± 1.0
H-2'	-	-	-	-	-
H-3'	-1429.1	-1429.6	-1429	-1429.2 ± 0.3	10.7 ± 1.0
H-4'	-1600.8	-1601.3	-1600.8	-1601.0 ± 0.3	0.7 ± 1.0
H-1"	-383.3	-384.1	-383.2	-383.5 ± 0.5	-1.0 ± 1.5
³¹ P	-23410.4	-23410.7	-23410.4	-23410.5 ± 0.2	-4.3 ± 3.1
¹⁹ F	1418.9	1418.8	1418.6	1418.8 ± 0.2	9.6 ± 0.8

Table S4. ¹H, ³¹P, and ¹⁹F chemical shift data for **2c**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **2** for all nuclei are reported.

Nuclei -		$-\Lambda(\mathbf{I},\mathbf{D}) + a d (\mathbf{n}\mathbf{n}\mathbf{h})$			
	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{n},\mathbf{D}) = \mathbf{s}.\mathbf{u}.$ (ppb)
Н-2	1428.8	1428.9	1429.1	1428.9 ± 0.2	-0.7 ± 0.7
H-4	1031.4	1031.5	1031.7	1031.5 ± 0.2	-0.2 ± 0.7
H-5	1016.8	1017.0	1017.1	1017.0 ± 0.2	-1.2 ± 0.7
H-1'	-	-	-	-	-
H-2'	-1211.7	-1211.4	-1211.3	-1211.5 ± 0.2	12.7 ± 0.7
H-3'	-1425.2	-1425.0	-1424.9	-1425.0 ± 0.2	0.2 ± 0.7
H-4'	-1600.5	-1600.3	1600.2	-1600.3 ± 0.2	-1.0 ± 0.7
H-1"	-383.5	-383.3	-383.2	-383.3 ± 0.2	-1.5 ± 0.7
³¹ P	23411.3	23411.5	23411.4	23411.4 ± 0.1	-1.2 ± 2.5
¹⁹ F	1418.9	1418.8	1418.5	1418.7 ± 0.2	9.8 ± 0.8

Table S5. ¹H, ³¹P, and ¹⁹F chemical shift data for **2d**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **2** for all nuclei are reported.

Nuclai –		$\Lambda(UD) + ad(nnh)$			
INUCICI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{H},\mathbf{D}) = \text{s.u. (ppb)}$
Н-2	1427.5	1427.5	1427.9	1427.6 ± 0.2	2.5 ± 0.7
H-4	1030.8	1030.7	1031.1	1030.9 ± 0.2	1.2 ± 0.7
H-5	1015.5	1015.4	1015.8	1015.6 ± 0.2	2.2 ± 0.7
H-1'	-277.1	-277.2	-276.8	-277.0 ± 0.2	0.7 ± 0.7
H-2'	-1207.1	-1207.1	-1206.7	-1207.0 ± 0.2	1.5 ± 0.7
H-3'	-1425.5	-1425.5	-1425.1	-1425.4 ± 0.2	1.2 ± 0.7
H-4'	-1601.2	-1601.2	-1600.8	-1601.1 ± 0.2	1.0 ± 0.7
H-1"	-	-	-	-	-
³¹ P	-23410.8	-23410.8	-23410.8	-23410.8 ± 0.0	-2.5 ± 1.9
¹⁹ F	1412.6	1412.7	1412.6	1412.6 ± 0.1	26.0 ± 0.5

Table S6. ¹H, ³¹P, and ¹⁹F chemical shift data for **2e**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **2** for all nuclei are reported.

Nuoloi		- $\Lambda(HD) \perp a d (nnh)$			
INUCICI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{H},\mathbf{D}) \pm s.a.$ (ppb)
H-2	1362.6	1362.5	1362.6	1362.6 ± 0.1	-
H-4	927.9	927.8	927.9	927.9 ± 0.1	-
H-5	907.0	906.9	907.0	907.0 ± 0.1	-
H-1'	-420.5	-420.6	-420.5	-420.5 ± 0.1	-
H-2'	-1375.5	-1375.6	-1375.4	-1375.5 ± 0.1	-
Н-3'	-1595.8	-1596.0	-1595.8	-1595.9 ± 0.1	-
H-4'	-1770.7	-1770.8	-1770.7	-1770.7 ± 0.1	-
H-1"	-531.2	-531.3	-531.1	-531.2 ± 0.1	-
$^{11}\mathbf{B}$	42.8	42.8	42.9	42.8 ± 0.1	-
¹⁹ F	-27941.0	-27940.9	-27940.9	-27940.9 ± 0.1	-

Table S7. ¹H, ¹¹B, and ¹⁹F chemical shifts for **3**. Data for repeats obtained for three different samples and their averages are reported.

Muelei		$A(\mathbf{IID}) + ad(\mathbf{nnh})$			
INUCICI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{n},\mathbf{D}) \pm s.a.$ (ppb)
Н-2	1362.8	1362.3	1362.9	1362.7 ± 0.3	-0.2 ± 1.0
H-4	928.3	927.8	927.4	927.8 ± 0.5	0.0 ± 1.5
H-5	907.4	906.9	906.5	906.9 ± 0.5	0.0 ± 1.5
H-1'	-420.4	-420.9	-421.3	-420.9 ± 0.5	0.7 ± 1.5
H-2'	-1375.8	-1376.3	-1376.7	-1376.3 ± 0.5	2.0 ± 1.5
H-3'	-1604.0	-1604.6	-1604.9	-1604.5 ± 0.5	21.5 ± 1.5
H-4'	-	-	-	-	-
H-1"	-530.5	-531.1	-531.5	-531.0 ± 0.5	-0.5 ± 1.5
¹¹ B	43.1	42.9	42.8	42.9 ± 0.2	0.8 ± 2.3
¹⁹ F	-27944.2	-27944.2	-27944.5	-27944.3 ± 0.2	9.0 ± 0.8

Table S8. ¹H, ¹¹B, and ¹⁹F chemical shift data for **3a**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **3** for all nuclei are reported.

Mualai		$- \Lambda(\mathbf{IID}) + a d (\mathbf{nnh})$			
INUCICI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{n}, \mathbf{D}) = s.a. (ppb)$
Н-2	1361.6	1361.4	1361.3	1361.4 ± 0.2	2.7 ± 0.7
H-4	927.3	927.0	926.9	927.1 ± 0.2	2.0 ± 0.7
H-5	906.5	906.3	906.2	906.3 ± 0.2	1.5 ± 0.7
H-1'	-421.4	-421.6	-421.7	-421.6 ± 0.2	2.5 ± 0.7
H-2'	-1381.7	-1381.9	-1381.9	-1381.8 ± 0.1	15.7 ± 0.5
H-3'	-	-	-	-	-
H-4'	-1777.8	-1778.0	-1778.1	-1778.0 ± 0.2	18.0 ± 0.7
H-1"	-531.3	-531.5	-531.7	-531.5 ± 0.2	0.7 ± 0.7
¹¹ B	42.6	42.6	42.6	42.6 ± 0.0	-1.6 ± 0.8
¹⁹ F	-27945.0	-27944.7	-27944.6	-27944.8 ± 0.2	10.1 ± 0.8

Table S9. ¹H, ¹¹B, and ¹⁹F chemical shift data for **3b**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **3** for all nuclei are reported.

Mualai		A(IID) + ad(nnh)			
INUCICI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{n},\mathbf{D}) \pm s.a.$ (ppb)
Н-2	1362.6	1362.1	1362.5	1362.4 ± 0.3	0.5 ± 1.0
H-4	928.4	927.9	928.3	928.2 ± 0.3	-0.7 ± 1.0
H-5	907.6	907.1	907.5	907.4 ± 0.3	-1.0 ± 1.0
H-1'	-424.3	-424.8	-424.4	-424.5 ± 0.3	10.0 ± 1.0
H-2'	-	-	-	-	-
H-3'	-1599.5	-1600.1	-1599.6	-1599.7 ± 0.3	9.7 ± 1.0
H-4'	-1770.2	-1770.7	-1770.3	-1770.4 ± 0.3	-0.7 ± 1.0
H - 1"	-530.2	-530.7	-530.4	-530.4 ± 0.3	-2.0 ± 1.0
¹¹ B	43.1	43.0	43.0	43.0 ± 0.1	1.6 ± 1.6
¹⁹ F	-27945.7	-27945.2	-27945.7	-27945.5 ± 0.3	12.2 ± 1.1

Table S10. ¹H, ¹¹B, and ¹⁹F chemical shift data for **3c**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **3** for all nuclei are reported.

Nuclei		$A(\mathbf{I},\mathbf{D}) + a d (\mathbf{m})$			
	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{H},\mathbf{D}) = \text{s.u. (ppb)}$
Н-2	1363.3	1363.4	1363.6	1363.4 ± 0.2	-2.2 ± 0.7
H-4	928.4	928.4	928.6	928.5 ± 0.1	-1.5 ± 0.5
H-5	907.8	907.9	908.1	907.9 ± 0.2	-2.5 ± 0.7
H-1'	-	-	-	-	-
H-2'	-1379.8	-1380.0	-1379.6	-1379.8 ± 0.2	10.7 ± 0.7
H-3'	-1595.4	-1595.2	-1595.1	-1595.2 ± 0.2	-1.5 ± 0.7
H-4'	-1769.9	-1769.8	-1769.6	-1769.8 ± 0.2	-2.5 ± 0.7
H-1"	-530.1	-530.0	-529.9	-530.0 ± 0.1	-3.0 ± 0.5
¹¹ B	43.1	43.0	43.3	43.1 ± 0.2	2.3 ± 2.3
¹⁹ F	-27950.8	-27950.7	-27950.9	-27950.8 ± 0.1	26.3 ± 0.5

Table S11. ¹H, ¹¹B, and ¹⁹F chemical shift data for **3d**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **3** for all nuclei are reported.

Nuclei		$-\Lambda(\mathbf{I},\mathbf{D}) + a d (\mathbf{n}\mathbf{n}\mathbf{h})$			
INUCIEI	Repeat 1	Repeat 2	Repeat 3	Average \pm s.d.	$\Delta(\mathbf{n},\mathbf{D}) \pm s.a.$ (ppb)
H-2	1361.2	1361.0	1361.2	1361.1 ± 0.1	3.5 ± 0.5
H-4	927.2	927.0	927.3	927.2 ± 0.2	1.7 ± 0.7
H-5	905.8	905.6	905.8	905.7 ± 0.1	3.0 ± 0.5
H-1'	-420.9	-421.1	-420.8	-420.9 ± 0.2	1.0 ± 0.7
H-2'	-1375.8	-1376.1	-1375.8	-1375.9 ± 0.2	1.0 ± 0.7
H-3'	-1596.0	-1596.4	-1596.0	-1596.1 ± 0.2	0.7 ± 0.7
H-4'	-1771.0	-1771.2	-1770.9	-1771.0 ± 0.2	0.7 ± 0.7
H-1"	-	-	-	-	-
¹¹ B	42.7	42.6	42.7	42.7 ± 0.1	-1.6 ± 1.6
¹⁹ F	-27955.5	-27955.1	-27955.5	-27955.4 ± 0.2	38.2 ± 0.8

Table S12. ¹H, ¹¹B, and ¹⁹F chemical shift data for **3e**. Data for repeats obtained for three different samples, their averages, and H/D isotope effects observed with respect to **3** for all nuclei are reported.