(83 pages)

Supporting Information For Rhodium(III)-catalyzed C–H activation and intermolecular annulation with terminal alkynes: from indoles to carbazoles

Jinlong Jia, $^{a,b+}$ Jingjing Shi, $^{a+}$ Jie Zhou, a,c Xuelei Liu,^{*a*} Yanling Song,^{*b*} H. Eric Xu*^{*a,d*} and Wei Yi*^{*a*}

^aVARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China. Fax: +86-21-20231000-1715; Tel: 86-21-20231000-1715

^bCollege of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P.R. China

^cSchool of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P.R. China

^dLaboratory of Structural Sciences, Program on Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA E-mail: yiwei.simm@simm.ac.cn, eric.xu@simm.ac.cn

⁺ J. Jia and J. Shi contributed equally to this work.

Table of contents

General methods and materials	S2
Preliminary optimization studies	S3
General procedure for C–H activation and intermolecular annulation	S4
General procedure for deprotection	S4
Procedure for the synthesis of 3ab <i>via</i> intermedicate 5	S5
Procedure for estimation of the reversibility of the C-H activation step	S6
Proposed mechanism	S7
Procedure for the synthesis of 6-7	S8
Characterizations of products 3aa-qa, 3ab-3as and 4-7	\$9-\$31
References	
¹ H and ¹³ C NMR spectra of products 3aa-3qa , 3ab-3as and 4-7	\$33-\$71
Crystal data and structure refinement for 3aa	\$72-\$83

General methods and materials:

[Cp*RhCl₂]₂ and AgSbF₆ were purchased from Adamas-beta and used without further $[Cp*Rh(MeCN)_3](SbF_6)_2$,¹ $[Cp*Rh(OAc)_2]_2^2$ purification. and substrates $1-(pyrimidin-2-yl)-1H-indoles^{3-5}$ were synthesized according to published procedures. Other chemicals were purchased from commercial suppliers and were dried and purified when necessary. The water used was re-distillated and ion-free. Melting points were determined on a WRS-1B digital instrument without correction. ¹H and ¹³C NMR spectra were recorded on Varian Mercury-Plus 400 NMR instruments (¹H 400 MHz; ¹³C 100 MHz or ¹³C 125 MHz) in CDCl₃. Abbreviations for data quoted are s, singlet; brs, broad singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet. Infrared Spectroscopy were recorded on Nicolet 6700 FT-IR spectrometer; Mass spectra and high-resolution mass spectra were measured on Thermo-DFS mass spectrometer. Thin-layer chromatographies were done on pre-coated silica gel 60 F254 plates (Merck). Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography.

Preliminary optimization studies:

Effects of directing group, Rh(III) species and reaction stoichiometry

Standard procedure: substrate A (0.10 mmol, 1.0 equiv), substrate B (0.12 mmol, 1.2 equiv), THF (2.0 mL), 12 h, under air. Isolated yields were given.

Table S1			
Entry	R	Catalyst system (mol %)	Yield (%)
1	Н	$[Cp*Rh^{III}(MeCN)_3](SbF_6)_2 (10)$	0
2	Me	$[Cp*Rh^{III}(MeCN)_3](SbF_6)_2 (10)$	0
3	Boc	[Cp*Rh ^{III} (MeCN) ₃](SbF ₆) ₂ (10)	0
4	CON(Me) ₂	[Cp*Rh ^{III} (MeCN) ₃](SbF ₆) ₂ (10)	0
5	2-Pyrimidyl	$[Cp*Rh^{III}(MeCN)_3](SbF_6)_2 (10)$	36
6 ^[a]	2-Pyrimidyl	[Cp*Rh ^{III} (MeCN) ₃](SbF ₆) ₂ (10)	51
7 ^[a]	2-Pyrimidyl	[Cp*Rh(OAc) ₂] ₂ (10)	0
8 ^[a]	2-Pyrimidyl	[Cp*RhCl ₂] ₂ (10)	0
9 ^[a]	2-Pyrimidyl	[Cp*RhCl ₂] ₂ (10)+Cu(OAc) ₂ (100)	0
10 ^[a]	2-Pyrimidyl	[Cp*RhCl ₂] ₂ (10)+AgOAc(100)	10

[a] A (0.10 mmol, 1.0 equiv) and B (0.22 mmol, 2.2 equiv) were used.

A survey of directing group revealed that the 2-pyrimidyl group was optimal for the reaction outcome (Table S1, entries 1-5). Screening of Rh(III) species showed that $[Cp*Rh^{III}(MeCN)_3](SbF_6)_2$ complex was the most effective (Table S1, entries 6-10). Investigation of reaction stoichiometry demonstrated that the ratio of 1: 2.2 was better than that of 1: 1.2 (Table S1, entries 5-6). Based on these results, we carried out further reaction optimization including solvent, reaction temperature, catalyst loading, and concentration. For more detailed information, please see Table 1 in the main text.

General procedure for C–H activation and intermolecular annulation:

The mixture of $[Cp*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 0.01mmol, 10 mol%), substrate A (0.10 mmol, 1.0 equiv), substrate B (0.22 mmol, 2.2 equiv) and dioxane (2.0 mL) were stirred at 80 °C for 12 h under air. The resulting mixture was cooled to room temperature, silica gel column directly to give the desired products **3aa-3qa** and **3ab-3as**.

Procedure for deprotection:

A suspension of **3aj** (44 mg, 0.1 mmol) and NaOEt (34 mg, 0.5 mmol) in dry DMSO (1.0 mL) under N₂ was stirred at 100 $^{\circ}$ C until consumption of the starting material (3 h). It was allowed to reach room temperature, diluted with EtOAc (10 mL) and washed brine. The combined organic phase was dried (Na₂SO₄). After evaporation of the solvents under reduced pressure, the crude product was purified on a silica gel column to afford the desired free-NH carbazole **4**.

Procedure for the synthesis of 3ab via intermedicate 5:

(I) C2-Alkenylated indole 5 was synthesized by the reported procedure⁶ with slight modifications. Briefly, a mixture of **1**a (0.3)mmol, 1.0 equiv), [Cp*Rh(CH₃CN)₃][SbF₆]₂ (5.00 mg, 0.006 mmol, 2.0 mol%), Cu(OAc)₂·H₂O (0.60 mmol, 2.0 equiv) and styrene (0.9 mmol, 3.0 equiv) was combined in a Schlenk tube followed by addition of THF (2.0 mL) under Ar. Then the reaction mixture was heated to 100 °C with stirring for 24 h. The resulting mixture was cooled to room temperature, silica gel column directly to give the desired intermedicate 5.

(II) The mixture of $[Cp*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 0.01 mmol, 10 mol%), 5 (0.10 mmol, 1.0 equiv), phenylacetylene (0.12 mmol, 1.2 equiv) and dioxane (2.0 mL) were stirred at 80 °C for 2 h under air. The resulting mixture was cooled to room temperature, silica gel column directly to give the desired product **3ab** with 18% yield.

Procedure for estimation of the reversibility of the C-H activation step:

The mixture of $[Cp*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 0.01mmol, 0.10 equiv), **1a** (0.10 mmol, 1.0 equiv) and Dioxane/D₂O (2.0 mL, 20:1) were stirred at 80 °C for 1 h under air. The resulting mixture was cooled to room temperature, concentrated under reduced pressure and analyzed by ¹H NMR without purification. C2- and C3-positions of indole core were deuterated 74% and 68% respectively.

Proposed mechanism:

Taken together these results and literature precedent, a plausible reaction mechanism is proposed as bellow:

C2-H activation (I) followed by C3-H activation (II) of indoles

First, the coordination of C2-position of *N*-2-pyrimidyl indole **1a** to a [Cp*Rh(III)] species is the key step for the regioselective C2–H bond cleavage of indole to form a five-membered rhodacycle **A**. This rhodacycle can coordinate one equivalent of terminal alkyne **2** to afford **B**. Subsequently, insertion of alkyne **2** into the Rh–C bond gives a seven-membered rhodacycle **C**, followed by the coordination and the regionselective alkyne insertion once again to give **D** and **E**, respectively. Then intermedicate **E** undergoes further coordination with the C3-position of indole core to provide the seven-membered rhodacycle **F**. Reductive elimination⁷ of **F** delivers the desired carbazoles **3** and the active Rh(III) catalyst.

Procedure for the synthesis of 6:

A mixture of **3aa** (0.1 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (0.005 mmol, 5.0 mol%), AgSbF₆(0.01 mmol, 10 mol%) and diethyl 2-diazomalonate (0.12 mmol, 1.2 equiv) was combined in a Schlenk tube followed by addition of EtOH (1.0 mL). Then the reaction mixture was heated to 80 °C with stirring for 6 h. The resulting mixture was cooled to room temperature, silica gel column directly to give the desired product **6**.

Procedure for the synthesis of 7:

A mixture of **3aa** (0.1 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (0.005 mmol, 5.0 mol%), AgSbF₆ (0.01 mmol, 10 mol%), Cu(OAc)₂ (0.1 mmol, 1.0 equiv) and methyl acrylate (0.12 mmol, 1.2 equiv) was combined in a Schlenk tube followed by addition of DMF (1.0 mL). Then the reaction mixture was heated to 80 °C with stirring for 8 h. It was allowed to reach room temperature, diluted with EtOAc (10 mL) and washed brine. The combined organic phase was dried (Na₂SO₄). After evaporation of the solvents under reduced pressure, the crude product was purified on a silica gel column to give the desired product **7**. Characterizations of products 3aa-3qa, 3ab-3as and 4-7:

(The data of yield, Mp, ¹H NMR, ¹³C NMR, IR and HRMS of each compound were given)

Yield 85%; Mp 180-181 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.18 (d, *J* = 1.4 Hz, 1H), 8.92 (d, *J* = 4.8 Hz, 2H), 8.81 (d, *J* = 8.4 Hz, 1H), 8.25 (d, *J* = 8.2 Hz, 2H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.22 (t, *J* = 4.8 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 4.02 (s, 3H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 159.0, 158.1, 146.1, 145.6, 140.1, 140.0, 138.1, 136.4, 130.1, 129.9, 129.6, 129.5, 128.8, 127.5, 126.8, 124.6, 123.2, 122.7, 122.1, 121.9, 116.7, 115.7, 114.0, 52.3, 52.2; IR (ATR): 2949, 1718, 1606, 1577, 1562, 1486, 1454, 1430, 1332, 1280, 1187, 1105, 848, 769; HRMS (EI) calcd for C₃₂H₂₃N₃O₄: 513.1689 ([M]⁺), found 513.1678 ([M]⁺).

Yield 31%; Mp 245-246 °C; ¹H NMR (400 MHz, CDCl₃) δ: 9.06 (d, *J* = 1.6 Hz, 1H), 9.02 (dd, *J* = 8.2, 1.0 Hz, 1H), 8.98 (d, *J* = 4.8 Hz, 2H), 8.25 (d, *J* = 8.2 Hz, 2H), 8.17 (d, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.59 – 7.50 (m,

3H), 7.34 (t, J = 4.8 Hz, 1H), 3.98 (s, 3H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 166.9, 158.4, 158.2, 146.5, 145.3, 141.1, 140.5, 139.8, 137.8, 130.7, 130.2, 130.1, 130.1, 129.3, 129.2, 127.6, 126.3, 125.0, 124.3, 120.2, 119.5, 117.8, 117.2, 113.0, 105.7, 52.2, 52.1; IR (ATR): 2950, 2225, 1714, 1606, 1569, 1423, 1409, 1276, 1191, 1110, 856, 769; HRMS (EI) calcd for C₃₃H₂₂N₄O₄: 538.1641 ([M]⁺), found 538.1641 ([M]⁺).

Yield 82%; Mp 210-211 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.02 (d, *J* = 1.2 Hz, 1H), 8.94 (d, *J* = 4.6 Hz, 2H), 8.29 (d, *J* = 8.4 Hz, 1H), 8.14 – 8.11 (m, 4H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 1.2 Hz, 1H), 7.41 (t, *J* = 8.2 Hz, 1H), 7.26 – 7.24 (m, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 3.99 (s, 3H), 3.95 (s, 3H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.4, 165.1, 156.7, 156.2, 152.6, 148.0, 144.0, 139.6, 137.9, 134.9, 134.9, 128.0, 127.1, 126.7, 126.1, 125.9, 125.9, 125.4, 122.3, 120.3, 115.1, 111.7, 110.4, 105.1, 101.4, 52.5, 50.1; IR (ATR): 3363, 2923, 2852, 1718, 1706, 1606, 1575, 1562, 1440, 1415, 1334, 1274, 1108, 848, 771; HRMS (EI) calcd for C₃₃H₂₅N₃O₅: 543.1794 ([M]⁺), found 543.1792 ([M]⁺).

Yield 88%; Mp 179-180 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.22 (s, 1H), 8.92 – 8.83 (m, 3H), 8.27 (d, J = 7.2 Hz, 2H), 8.17 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 7.6 Hz, 2H), 7.72 (d, J = 7.2 Hz, 2H), 7.49 (s, 1H), 7.27 – 7.12 (m, 2H), 6.96 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 166.9, 158.8, 158.1, 158.0 (d, J = 167.7 Hz), 145.9, 145.0, 140.8, 138.7, 136.5, 136.3, 130.1, 130.1, 129.9, 129.3, 129.0, 127.6, 125.5 (d, J = 9.6 Hz), 123.2, 122.0 (d, J = 3.6 Hz), 116.9 (d, J = 8.4 Hz), 116.7, 114.4, 114.2 (d, J = 24.1 Hz), 107.7 (d, J = 25.1 Hz), 52.3, 52.2; IR (ATR): 3359, 3187, 2921, 2850, 1722, 1658, 1633, 1432, 1276, 1187, 1101, 1018, 850, 771; HRMS (EI) calcd for C₃₂H₂₂FN₃O₄: 531.1594 ([M]⁺), found 531.1597 ([M]⁺).

Yield 86%; Mp 222-223 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.20 (d, J = 1.6 Hz, 1H), 8.92 (d, J = 4.8 Hz, 2H), 8.79 (d, J = 9.0 Hz, 1H), 8.28 (d, J = 8.2 Hz, 2H), 8.17 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 1.6 Hz, 1H), 7.41 (dd, J = 9.0, 2.0 Hz, 1H), 7.30 (d, J = 2.0 Hz, 1H), 7.25 (t, J = 4.8 Hz, 1H), 4.04 (s, 3H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 166.9, 158.7, 158.1,

145.9, 145.0, 140.5, 138.8, 138.3, 136.6, 130.2, 130.1, 129.9, 129.3, 129.0, 127.6, 127.5, 126.8, 125.9, 123.5, 121.6, 121.4, 116.9, 116.8, 114.3, 52.3, 52.2; IR (ATR): 2950, 2991, 2850, 1725, 1608, 1577, 1563, 1450, 1425, 1278, 1187, 1103, 846, 767; HRMS (EI) calcd for $C_{32}H_{22}CIN_3O_4$: 547.1299, 549.1269 ([M]⁺), found 547.1290, 549.1266 ([M]⁺).

Yield 79%; Mp 231-232 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.17 (d, *J* = 1.6 Hz, 1H), 8.89 (d, *J* = 4.8 Hz, 2H), 8.71 (d, *J* = 9.0 Hz, 1H), 8.26 (d, *J* = 8.2 Hz, 2H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.52 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.47 (d, *J* = 1.6 Hz, 1H), 7.44 (d, *J* = 2.0 Hz, 1H), 7.22 (t, *J* = 4.8 Hz, 1H), 4.02 (s, 3H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 167.0, 158.7, 158.2, 145.8, 145.0, 140.4, 138.8, 138.7, 136.6, 130.2, 130.1, 129.9, 129.5, 129.3, 129.0, 127.6, 126.4, 124.4, 123.6, 121.4, 117.3, 116.9, 115.1, 114.2, 52.3, 52.2; IR (ATR): 2950, 1720, 1608, 1579, 1562, 1481, 1448, 1425, 1407, 1282, 1214, 1189, 1112, 1016, 846, 767; HRMS (EI) calcd for C₃₂H₂₂BrN₃O₄: 591.0794, 593.0773 ([M]⁺), found 591.0787, 593.0776 ([M]⁺).

Yield 38%; Mp 279-280 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.13 (d, *J* = 1.4 Hz, 1H), 8.96 (d, *J* = 4.8 Hz, 2H), 8.88 (d, *J* = 8.8 Hz, 1H), 8.28 (d, *J* = 8.2 Hz, 2H), 8.16 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.75 – 7.66 (m, 3H), 7.62 (d, *J* = 1.2 Hz, 1H), 7.53 (d, *J* = 1.4 Hz, 1H), 7.32 (t, *J* = 4.8 Hz, 1H), 4.04 (s, 3H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.9, 166.7, 158.4, 145.5, 144.5, 141.9, 140.6, 139.6, 136.9, 130.3, 130.3, 130.2, 129.9, 129.3, 129.1, 127.6, 126.1, 124.8, 124.1, 121.1, 119.8, 117.7, 116.4, 114.1, 105.2, 52.3, 52.2; IR (ATR): 2952, 2223, 1727, 1606, 1573, 1484, 1454, 1427, 1274, 1187, 1103, 846, 767; HRMS (EI) calcd for C₃₃H₂₂N₄O₄: 583.1641 ([M]⁺), found 583.1640 ([M]⁺).

Yield 84%; Mp 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.21 (s, 1H), 8.91 (s, 2H), 8.72 (d, J = 8.0 Hz, 1H), 8.27 (d, J = 7.2 Hz, 2H), 8.16 (d, J = 7.2 Hz, 2H), 7.85 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 7.2 Hz, 2H), 7.47 (s, 1H), 7.30 – 7.08 (m, 3H), 4.04 (s, 3H), 3.98 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 159.0, 158.0, 146.2, 145.8, 140.3, 138.2, 137.9, 136.3, 131.5, 130.1, 129.9, 129.6, 129.5, 128.8, 128.1, 127.5, 124.7, 123.2, 122.6, 121.9, 116.4, 115.5, 114.1, 52.3, 52.1, 21.5; IR (ATR): 3355, 3954, 2923, 2852, 1714, 1606, 1579, 1477, 1430, 1324, 1272, 1213, 1178, 1105, 857, 775; HRMS (EI) calcd for C₃₃H₂₅N₃O₄: 527.1845 ([M]⁺), found 527.1845 ([M]⁺).

Yield 85%; Mp 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.23 (d, *J* = 1.6 Hz, 1H), 8.88 (d, *J* = 4.8 Hz, 2H), 8.77 (d, *J* = 9.2 Hz, 1H), 8.24 (d, *J* = 8.4 Hz, 2H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 1.6 Hz, 1H), 7.17 (t, *J* = 4.8 Hz, 1H), 7.06 (dd, *J* = 9.2, 2.6 Hz, 1H), 6.77 (d, *J* = 2.6 Hz, 1H), 4.00 (s, 3H), 3.96 (s, 3H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 167.0, 159.0, 158.0, 155.0, 146.1, 145.5, 140.6, 138.1, 136.2, 134.7, 130.1, 129.8, 129.6, 128.8, 127.5, 125.4, 123.0, 122.6, 116.9, 116.2, 114.9, 114.5, 105.1, 55.4, 52.3, 52.2, 29.7; IR (ATR): 3363, 3193, 2921, 2852, 1720, 1658, 1606, 1581, 1481, 1432, 1274, 1214, 1105, 1043, 852, 794; HRMS (EI) calcd for C₃₃H₂₅N₃O₅: 543.1794 ([M]⁺), found 543.1797 ([M]⁺).

Yield 71%; Mp 246-247 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.10 (d, *J* = 1.4 Hz, 1H), 8.91 (d, *J* = 4.8 Hz, 2H), 8.77 (d, *J* = 8.8 Hz, 1H), 8.27 (d, *J* = 8.2 Hz, 2H), 8.18 – 8.04 (m, 4H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 1.4 Hz, 1H), 7.27 – 7.20 (m, 1H), 4.01 (s, 3H), 3.95 (s, 3H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 167.0, 166.9, 158.6, 158.2, 145.8, 145.0, 142.7, 140.7, 138.7, 136.7, 130.2, 130.1, 129.9, 129.4, 129.0, 128.1, 127.6, 124.3, 123.9, 123.8, 123.7, 122.2, 117.3, 115.2, 114.1, 52.3, 52.2, 52.0; IR (ATR): 2950, 1720, 1606, 1583, 1563, 1482, 1454, 1427, 1309, 1276, 1103, 850, 767; HRMS (EI) calcd for C₃₄H₂₅N₃O₆: 571.1743 ([M]⁺), found 571.1740 ([M]⁺).

Yield 89%; Mp 197-198 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.18 (d, *J* = 1.2 Hz, 1H), 8.90 (d, *J* = 4.8 Hz, 2H), 8.60 (dd, *J* = 11.2, 2.2 Hz, 1H), 8.25 (d, *J* = 8.0 Hz, 2H), 8.15 (d, *J* = 8.2 Hz, 2H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 1.2 Hz, 1H), 7.23 – 7.19 (m, 2H), 6.83 (td, *J* = 8.8, 2.2 Hz, 1H), 4.03 (s, 3H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 167.0, 162.1 (d, *J* = 242.5 Hz), 158.8, 158.1, 145.9, 145.4, 140.7 (d, *J* = 13.0 Hz), 140.5 (d, *J* = 1.8 Hz), 137.8, 135.8, 130.1, 130.0, 129.7, 129.4, 128.9, 127.5, 123.4, 122.6 (d, *J* = 9.9 Hz), 122.2, 120.9, 116.8, 114.3, 110.0 (d, *J* = 23.8 Hz), 103.4 (d, *J* = 29.4 Hz), 52.3, 52.2; IR (ATR): 3396, 2918, 2805, 1718, 1644, 1604, 1577, 1563, 1430, 1280, 1186, 1101, 850, 808, 769; HRMS (EI) calcd for C₃₂H₂₂FN₃O₄: 531.1594 ([M]⁺), found 531.1589 ([M]⁺).

Yield 73%; Mp 192-193 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.13 (d, *J* = 1.6 Hz, 1H), 8.88 (d, *J* = 4.8 Hz, 2H), 8.85 (d, *J* = 1.6 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 2H), 8.11 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 1.6 Hz, 1H), 7.20 (t, *J* = 4.8 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.02 (dd, *J* = 8.4, 2.0 Hz, 1H), 3.98 (s, 3H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 167.0, 158.7, 158.2, 145.9, 145.2, 140.5, 140.3, 138.4, 136.2, 132.6, 130.1, 130.0, 129.8, 129.4, 129.0, 127.5, 123.5, 123.1, 122.6, 122.5, 122.0, 116.9, 116.0, 114.3, 52.3, 52.2; IR (ATR): 3357, 2923, 2852, 1720, 1658, 1631, 1604, 1577, 1428, 1280, 1186, 1108, 962, 769; HRMS (EI) calcd for C₃₂H₂₂ClN₃O₄: 547.1299, 549.1269 ([M]⁺), found 547.1303, 549.1298 ([M]⁺).

Yield 77%; Mp 199-200 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.11 (s, 1H), 8.99 (s, 1H), 8.86 (d, J = 4.0 Hz, 2H), 8.19 (d, J = 7.6 Hz, 2H), 8.10 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.42 (s, 1H), 7.23 – 7.02 (m, 3H), 3.98 (s, 3H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 167.0, 158.6, 158.1, 145.8, 145.2, 140.6, 140.1, 138.5, 136.3, 130.1, 130.0, 129.8, 129.4, 129.0, 127.5, 125.3, 123.5,

122.7, 122.0, 120.6, 118.9, 116.9, 114.3, 52.3, 52.2; IR (ATR): 3359, 3191, 2921, 2850, 1722, 1606, 1577, 1421, 1276, 1106, 815, 771; HRMS (EI) calcd for C₃₂H₂₂BrN₃O₄: 591.0794, 593.0773 ([M]⁺), found 591.0794, 593.0780 ([M]⁺).

Yield 86%; Mp 153-154 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.13 (s, 1H), 8.94 (d, J = 4.8 Hz, 2H), 8.61 (s, 1H), 8.25 (d, J = 8.0 Hz, 2H), 8.16 (d, J = 8.2 Hz, 2H), 7.85 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.48 (s, 1H), 7.42 – 7.30 (m, 2H), 6.94 (d, J = 8.0 Hz, 1H), 4.03 (s, 3H), 3.98 (s, 3H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 158.9, 158.1, 146.2, 145.7, 140.4, 140.1, 137.6, 137.2, 135.9, 130.3, 130.1, 129.9, 129.6, 129.5, 128.8, 127.5, 123.5, 123.1, 122.8, 122.2, 121.6, 116.6, 115.6, 113.9, 52.3, 52.1, 22.3; IR (ATR): 2923, 2852, 1720, 1606, 1577, 1563, 1432, 1276, 1187, 1110, 769; HRMS (EI) calcd for C₃₃H₂₅N₃O₄: 527.1845 ([M]⁺), found 527.1837 ([M]⁺).

Yield 81%; Mp 183- 184 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.15 (d, *J* = 1.6 Hz, 1H), 8.93 (d, *J* = 4.8 Hz, 2H), 8.44 (d, *J* = 2.4 Hz, 1H), 8.25 (d, *J* = 8.4 Hz, 2H), 8.16 (d, *J*

= 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 1.6 Hz, 1H), 7.25 – 7.20 (m, 2H), 6.73 (dd, J = 8.8, 2.4 Hz, 1H), 4.03 (s, 3H), 3.98 (s, 3H), 3.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 167.1, 167.1, 159.4, 159.0, 158.1, 146.2, 145.7, 141.5, 140.2, 136.9, 135.3, 130.1, 129.9, 129.5, 129.5, 128.7, 127.5, 123.2, 122.9, 122.5, 118.3, 116.6, 114.0, 110.0, 100.7, 55.7, 52.3, 52.2; IR (ATR): 2950, 2852, 1720, 1606, 1577, 1432, 1272, 1193, 1114, 852, 767; HRMS (EI) calcd for C₃₃H₂₅N₃O₅: 543.1794 ([M]⁺), found 543.1788 ([M]⁺).

Yield 69%; Mp 272-273 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.77 (d, *J* = 1.6 Hz, 1H), 9.25 (s, 1H), 8.99 (d, *J* = 4.8 Hz, 2H), 8.28 (d, *J* = 8.0 Hz, 2H), 8.19 (d, *J* = 8.0 Hz, 2H), 7.98 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.56 (s, 1H), 7.42 – 7.30 (m, 2H), 4.05 (s, 3H), 3.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.9, 166.8, 158.5, 158.4, 146.3, 145.4, 144.6, 142.0, 140.3, 139.1, 137.5, 130.2, 130.2, 129.6, 129.4, 129.3, 127.6, 123.9, 121.6, 121.0, 117.5, 117.3, 114.5, 112.2, 52.4, 52.2; IR (ATR): 2919, 1720, 1608, 1577, 1515, 1486, 1427, 1340, 1276, 1112, 854, 769; HRMS (EI) calcd for C₃₂H₂₂N₄O₆: 558.1539 ([M]⁺), found 558.1535 ([M]⁺).

Yield 62%; Mp 170-171 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.98 (d, *J* = 4.8 Hz, 2H), 8.31 (s, 1H), 8.26 (d, *J* = 8.0 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 2H), 7.79 – 7.75 (m, 4H), 7.46 (s, 1H), 7.36 (t, *J* = 4.8 Hz, 1H), 7.28 – 7.24 (d, *J* = 18.1 Hz, 2H), 7.04 (t, *J* = 7.6 Hz, 1H), 4.03 (s, 3H), 3.97 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 167.0, 158.8, 158.7, 145.9, 145.6, 142.3, 140.1, 138.1, 136.7, 130.1, 129.9, 129.6, 129.6, 129.5, 128.8, 127.4, 125.1, 123.6, 122.9, 122.5, 122.0, 120.0, 118.5, 110.2, 100.0, 52.3, 52.1, 21.1; IR (ATR): 3359, 2921, 2852, 1720, 1660, 1631, 1563, 1457, 1425, 1282, 1110, 775; HRMS (EI) calcd for C₃₃H₂₅N₃O₄: 527.1845 ([M]⁺), found 527.1853 ([M]⁺).

Yield 75%; Mp 166-167 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.14 (d, *J* = 1.6 Hz, 1H), 8.91 (d, *J* = 4.8 Hz, 2H), 8.82 (d, *J* = 8.4 Hz, 1H), 7.83 – 7.78 (m, 2H), 7.68 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.62 – 7.35 (m, 9H), 7.19 (t, *J* = 4.8 Hz, 1H), 7.14 – 7.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 158.0, 141.9, 141.1, 140.1, 139.9, 139.4, 137.3, 129.4, 128.8, 128.6, 127.7, 127.2, 126.3, 125.2, 123.6, 122.3, 122.0, 121.9, 116.4, 115.4, 113.3; IR (ATR): 2956, 2921, 2852, 1660, 1581, 1562, 1450, 1425, 1332, 800, 750; HRMS (EI) calcd for C₂₈H₁₉N₃: 397.1579 ([M]⁺), found 397.1569 ([M]⁺).

Yield 62%; Mp 186-187 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.07 (d, J = 1.6 Hz, 1H), 8.91 (d, J = 4.8 Hz, 2H), 8.80 (d, J = 8.4 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.60 – 7.52 (m, 4H), 7.49 – 7.43 (m, 3H), 7.38 (d, J = 1.6 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.21 (t, J = 4.8 Hz, 1H), 7.16 – 7.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.0, 158.1, 140.2, 140.1, 139.9, 139.4, 138.1, 136.1, 133.9, 133.4, 130.7, 128.9, 128.9, 128.8, 126.6, 124.7, 123.2, 122.4, 122.1, 121.8, 116.6, 115.6, 113.4; IR (ATR): 2923, 1579, 1563, 1496, 1452, 1421, 1332, 1089, 835, 752; HRMS (EI) calcd for C₂₈H₁₇Cl₂N₃: 465.0800, 467.0770, 469.0741 ([M]⁺), found 465.0810, 467.0782, 469.0751 ([M]⁺).

Yield 82%; Mp 162-163 °C; H NMR (400 MHz, CDCl₃) δ : 9.05 (d, J = 1.6 Hz, 1H), 8.91 (d, J = 4.8 Hz, 2H), 8.80 (d, J = 8.4 Hz, 1H), 7.78 – 7.70 (m, 2H), 7.63 – 7.58 (m, 2H), 7.48 – 7.42 (m, 1H), 7.39 (d, J = 1.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.29 – 7.23 (m, 3H), 7.21 – 7.10 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.6 (d, J =246.3 Hz), 162.5 (d, J = 246.1 Hz), 159.0, 158.1, 140.1, 139.9, 138.4, 137.9 (d, J =3.2 Hz), 136.9 (d, J = 3.5 Hz), 136.3, 131.0 (d, J = 8.0 Hz), 129.2 (d, J = 8.0 Hz), 126.5, 124.9, 123.4, 122.3, 122.0, 121.7, 116.5, 115.7 (d, J = 7.7 Hz), 115.5, 115.5 (d, J = 7.7 Hz), 113.3; IR (ATR): 3367, 2921, 2852, 1600, 1579, 1511, 1452, 1423, 1330, 1220, 1159, 833, 750; HRMS (EI) calcd for C₂₈H₁₇F₂N₃: 433.1391 ([M]⁺), found 433.1388 ([M]⁺).

Yield 58%; Mp 218-219 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.19 (s, 1H), 8.94 (d, J = 4.0 Hz, 2H), 8.85 (d, J = 8.2 Hz, 1H), 7.97 – 7.72 (m, 8H), 7.51 (t, J = 7.2 Hz, 1H), 7.41 (s, 1H), 7.26 (m, 2H), 7.16 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.8, 158.2, 145.9, 145.5, 140.2, 140.1, 137.3, 135.5, 132.7, 132.5, 130.2, 128.2, 127.3, 124.1, 122.9, 122.3, 121.7, 119.0, 118.8, 116.9, 115.9, 114.4, 111.9, 111.0; IR (ATR): 3359, 2921, 2852, 2223, 1741, 1658, 1633, 1602, 1577, 1562, 1452, 1425, 1403, 1334, 835, 756; HRMS (EI) calcd for C₃₀H₁₇N₅: 447.1484 ([M]⁺), found 447.1489 ([M]⁺).

Yield 88%; Mp 187-188 °C; H NMR (400 MHz, CDCl₃) δ : 9.25 (s, 1H), 8.96 (d, J = 4.8 Hz, 2H), 8.86 (d, J = 8.4 Hz, 1H), 8.47 (d, J = 8.4 Hz, 2H), 8.37 (d, J = 8.6 Hz,

2H), 7.93 (d, J = 8.6 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.48 (s, 1H), 7.31 – 7.27 (m, 2H), 7.16 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.8, 158.2, 147.9, 147.8, 147.4, 147.1, 140.2, 140.1, 136.9, 135.2, 130.4, 128.3, 127.4, 124.2, 124.0, 124.0, 123.1, 123.0, 122.4, 121.7, 117.0, 116.0, 114.8; IR (ATR): 1594, 1579, 1562, 1513, 1454, 1430, 1342, 1106, 844, 752; HRMS (EI) calcd for C₂₈H₁₇N₅O₄: 487.1281 ([M]⁺), found 487.1285 ([M]⁺).

Yield 81%; Mp 122-123 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.09 (d, *J* = 1.6 Hz, 1H), 8.91 (d, *J* = 4.8 Hz, 2H), 8.80 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 1.6 Hz, 1H), 7.46 – 7.35 (m, 4H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 4.8 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 2.54 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 158.0, 140.1, 139.8, 139.3, 139.1, 138.2, 137.4, 137.3, 136.9, 129.5, 129.2, 127.5, 126.1, 125.3, 123.6, 122.1, 122.0, 121.8, 116.3, 115.4, 112.9, 21.4, 21.2; IR (ATR): 2958, 2919, 2850, 1727, 1662, 1581, 1562, 1454, 1432, 1334, 1261, 1020, 821, 800, 752; HRMS (EI) calcd for C₃₀H₂₃N₃: 425.1892 ([M]⁺), found 425.1890 ([M]⁺).

Yield 63%; Mp 197-198 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.92 – 8.90 (m, 3H), 8.27 (d, *J* = 8.2 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 1.6 Hz, 1H), 7.42 – 7.34 (m, 3H), 7.28 – 7.19 (m, 5H), 6.62 (d, *J* = 7.9 Hz, 1H), 3.24 (s, 3H), 2.48 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.9, 158.2, 154.7, 142.6, 141.5, 140.0, 138.9, 138.2, 137.9, 136.8, 135.4, 129.4, 129.0, 127.4, 127.4, 127.1, 124.8, 121.8, 116.8, 114.3, 111.3, 107.0, 103.5, 54.8, 21.3, 21.1; IR (ATR): 2921, 1575, 1560, 1513, 1427, 1413, 1338, 1297, 1278, 1110, 813; HRMS (EI) calcd for C₃₁H₂₅N₃O: 455.1998 ([M]⁺), found 455.1992 ([M]⁺).

Yield 78%; Mp 158-159 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.14 (d, J = 1.2 Hz, 1H), 8.85 (d, J = 4.8 Hz, 2H), 8.75 (d, J = 9.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.46 (d, J = 1.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.12 (t, J = 4.8 Hz, 1H), 7.03 (dd, J = 9.0, 2.6 Hz, 1H), 6.85 (d, J = 2.6 Hz, 1H), 3.64 (s, 3H), 2.51 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 157.9, 154.9, 140.6, 139.6, 139.1, 138.0, 137.4, 137.2, 136.9, 134.5, 129.5, 129.4, 129.1, 127.5, 126.2, 123.2, 122.1, 116.6, 115.9, 114.1, 113.4, 105.3, 55.3, 21.4, 21.2; IR (ATR): 2921, 1579, 1558, 1475, 1450, 1427, 1330, 1290, 1218, 1045, 802; HRMS (EI) calcd for $C_{31}H_{25}N_3O$: 455.1998 ([M]⁺), found 455.1998 ([M]⁺).

Yield 71%; Mp 158-159 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.11 (d, *J* = 1.6 Hz, 1H), 8.88 (d, *J* = 4.8 Hz, 2H), 8.70 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 1.6 Hz, 1H), 7.39 (d, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.27 – 7.23 (m, 2H), 7.15 (t, *J* = 4.8 Hz, 1H), 2.55 (s, 3H), 2.45 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.2, 157.9, 140.3, 139.1, 138.3, 138.0, 137.3, 137.3, 136.8, 131.1, 129.4, 129.2, 129.1, 127.5, 127.4, 125.5, 123.5, 122.1, 122.1, 116.1, 115.2, 113.0, 21.5, 21.4, 21.2; IR (ATR): 2919, 2852, 1579, 1564, 1489, 1423, 1326, 1270, 1148, 1045, 809; HRMS (EI) calcd for C₃₁H₂₅N₃: 439.2048 ([M]⁺), found 439.2044 ([M]⁺).

Yield 65%; Mp 115-116 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.04 (d, J = 1.2 Hz, 1H), 8.88 (d, J = 4.8 Hz, 2H), 8.43 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 7.8 Hz, 2H), 7.44 (d, J = 1.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 2H), 7.32 – 7.27 (m, 3H),

7.16 (t, J = 4.8 Hz, 1H), 6.73 (dd, J = 8.8, 2.0 Hz, 1H), 3.92 (s, 3H), 2.52 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.2, 158.9, 158.0, 141.2, 140.2, 139.2, 138.3, 138.2, 137.3, 136.7, 136.3, 129.4, 129.2, 129.2, 127.5, 123.5, 122.4, 122.3, 119.1, 116.3, 113.0, 109.5, 100.7, 55.7, 21.4, 21.1; IR (ATR): 2921, 2852, 1619, 1598, 1579, 1562, 1515, 1467, 1427, 1340, 1276, 1193, 1160, 1141, 1043, 811; HRMS (EI) calcd for C₃₁H₂₅N₃O: 455.1998 ([M]⁺), found 455.2003 ([M]⁺).

Yield 61%; Mp 109-110 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.02 (s, 1H), 8.90 (d, J = 4.8 Hz, 2H), 8.58 (s, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.45 (s, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.30 (d, J = 7.8 Hz, 3H), 7.17 (t, J = 4.8 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 2.53 (m, 6H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 158.0, 140.2, 140.1, 139.2, 138.8, 138.3, 137.3, 136.9, 136.8, 136.3, 129.4, 129.2, 129.2, 127.5, 123.5, 123.2, 122.9, 122.2, 121.6, 116.3, 115.4, 112.8, 22.3, 21.4, 21.2; IR (ATR): 3359, 2919, 2850, 1658, 1631, 1575, 1562, 1513, 1423, 1324, 1265, 1141, 812; HRMS (EI) calcd for C₃₁H₂₅N₃: 439.2048 ([M]⁺), found 439.2040 ([M]⁺).

Yield 75%; Mp 143-144 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.08 (d, *J* = 1.2 Hz, 1H), 8.88 (d, *J* = 4.8 Hz, 3H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 7.8 Hz, 2H), 7.47 (d, *J* = 1.2 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 3H), 7.17 (t, *J* = 4.8 Hz, 1H), 7.08 (dd, *J* = 8.4, 1.8 Hz, 1H), 2.53 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.8, 158.1, 140.4, 140.3, 139.7, 138.9, 137.8, 137.6, 137.2, 137.1, 131.8, 129.5, 129.4, 129.1, 127.5, 123.9, 123.8, 122.5, 122.3, 121.5, 116.6, 115.8, 113.2, 21.4, 21.2; IR (ATR): 2917, 1646, 1595, 1579, 1560, 1515, 1484, 1432, 1390, 1326, 962, 808; HRMS (EI) calcd for C₃₀H₂₂ClN₃: 459.1502, 461.1473 [M]⁺), found 459.1494, 461.1497 ([M]⁺).

Yield 80%; Mp 128-129 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.07 (d, *J* = 1.2 Hz, 1H), 9.03 (d, *J* = 1.2 Hz, 1H), 8.89 (d, *J* = 4.8 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 1.2 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.18 (m, 3H), 2.52 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.8, 158.1, 140.5, 140.2, 139.8, 138.9, 137.8, 137.6, 137.3, 137.1, 129.5, 129.3, 129.1, 127.5, 125.0, 124.3, 123.8, 122.9, 121.5, 119.9, 118.6, 116.7, 113.2, 21.4, 21.2; IR (ATR): 3359, 2921, 2852, 1660, 1633, 1577, 1560, 1515, 1482, 1430, 1326, 1139, 954, 809; HRMS (EI) calcd for C₃₀H₂₂BrN₃: 503.0997, 505.0977 [M]⁺), found 503.0998, 505.0969 ([M]⁺).

Yield 55%; Mp 170-171 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.95 (d, *J* = 4.8 Hz, 2H), 8.24 (d, *J* = 1.6 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 1.6 Hz, 1H), 7.39 – 7.26 (m, 6H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 2.53 (s, 3H), 2.42 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.0, 158.6, 142.4, 139.9, 139.3, 138.9, 138.1, 137.6, 137.3, 136.9, 129.4, 129.2, 129.2, 129.0, 127.4, 125.9, 123.4, 123.3, 122.0, 121.8, 120.1, 118.1, 109.1, 21.4, 21.1, 21.0; IR (ATR): 3359, 2291, 2852, 1658, 1633, 1563, 1515, 1455, 1415, 1315, 1226, 1108, 815; HRMS (EI) calcd for C₃₁H₂₅N₃: 439.2048 [M]⁺), found 439.2046 ([M]⁺).

Yield 67%; Mp 132-133 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.11 (s, 1H), 8.91 (d, J = 4.8 Hz, 2H), 8.82 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 5.6 Hz, 2H), 7.55 – 7.33 (m, 8H), 7.24 – 7.11 (m, 3H), 2.52 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 158.0, 141.9, 141.1, 140.1, 139.9, 139.5, 138.3, 138.2, 137.4, 130.0, 128.7, 128.5, 128.4, 127.9, 126.4, 126.2, 125.3, 124.9, 123.6, 122.2, 122.0, 121.9, 116.4, 115.4, 113.2, 21.6, 21.6; IR (ATR): 3073, 2923, 2852, 1579, 1560, 1496, 1452, 0425, 1334, 1311, 1220, 875, 794; HRMS (EI) calcd for C₃₀H₂₃N₃: 425.1892 [M]⁺), found 425.1898 ([M]⁺).

Yield 61%; Mp 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.08 (s, 1H), 8.88 – 8.84 (m, 3H), 7.71 – 7.54 (m, 4H), 7.41 – 7.32 (m, 3H), 7.43 – 7.31 (m, 3H), 7.18 – 7.09 (m, 2H), 7.06 (d, J = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.0, 158.0, 141.1, 139.8, 139.5, 139.1, 137.2, 134.0, 133.1, 132.9, 132.0, 131.5, 130.0, 129.8, 129.4, 128.5, 127.0, 126.8, 126.6, 125.5, 125.1, 123.0, 122.3, 121.4, 116.4, 116.3, 115.7; IR (ATR): 2921, 2850, 1660, 1633, 1581, 1563, 1494, 1450, 1423, 1400, 1332, 1141, 800, 756; HRMS (EI) calcd for C₂₈H₁₇Cl₂N₃: 465.0800, 467.0770, 469.0741 [M]⁺), found 465.0800, 467.0792, 469.0764 ([M]⁺).

Yield 58%; Mp 236-237 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.12 (d, *J* = 1.6 Hz, 1H), 8.92 (d, *J* = 4.8 Hz, 2H), 8.81 (d, *J* = 8.2 Hz, 1H), 7.62 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.57 – 7.55 (m, 3H), 7.52 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.50 – 7.43 (m, 3H), 7.40 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.22 – 7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 158.0, 143.0, 141.3, 140.0, 139.8, 133.9, 132.0, 129.2, 126.9, 126.3, 126.1, 125.7, 125.2, 123.2, 123.1, 122.7, 122.1, 121.8, 120.6, 116.4, 115.5, 112.8; IR (ATR): 1592, 1575, 1560, 1523, 1490, 1452, 1421, 786, 748; HRMS (EI) calcd for C₂₄H₁₅N₃S₂: 409.0707 [M]⁺), found 409.0702 ([M]⁺).

Yield 69%; Mp 178-179 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.91 (d, *J* = 4.8 Hz, 2H), 8.82 (d, *J* = 8.4 Hz, 1H), 7.85 – 7.78 (m, 2H), 7.70 – 7.68 (m, 2H), 7.63 – 7.34 (m, 8H), 7.19 (t, *J* = 4.8 Hz, 1H), 7.14 – 7.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 158.0, 141.3, 141.1, 140.0, 139.9, 139.2, 137.3, 129.4, 128.8, 128.6, 127.7, 127.2, 126.3, 125.2, 122.3, 122.0, 121.9, 116.4, 115.5; IR (ATR): 2919, 1850, 1581, 1562, 1459, 1444, 1427, 1386, 1330, 800, 750; HRMS (EI) calcd for C₂₈H₁₇D₂N₃: 399.1705 [M]⁺), found 399.1707 ([M]⁺).

Yield 85 %; Mp 190-191 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.95 (brs, 1H), 7.54 – 7.50 (m, 4H), 7.46 (d, J = 0.8 Hz, 1H), 7.32 – 7.23 (m, 4H), 7.21 – 7.17 (dm, 3H), 7.09 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H), 2.33 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 140.9, 138.8, 138.8, 138.4, 138.4, 137.8, 137.3, 136.9, 129.5, 129.1, 129.1, 128.3, 127.3, 126.9, 123.1, 122.4, 120.7, 119.8, 110.1, 107.5, 21.6, 21.4, 21.1; IR (ATR): 3454, 3022, 2952, 2920, 2864, 1608, 1576, 1558, 1516, 1479, 1442, 1325, 1302, 820, 810. HRMS (EI) calcd for C₂₇H₂₃N: 361.1830 ([M]⁺), found 361.1833 ([M]⁺).

Yield 79%; Mp 89-90 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.87 (d, J = 4.8 Hz, 2H), 8.33 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 16.0 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.53 (d, J =7.3 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.33 – 7.16 (m, 5H), 7.05 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.3, 158.2, 138.8, 137.5, 137.4, 129.7, 129.4, 128.7, 127.6, 126.6, 123.6, 122.4, 120.7, 120.4, 117.3, 114.0, 105.3; IR (ATR): 3052, 2962, 1562, 1450, 1425, 1348, 1261, 1089, 1018, 802; HRMS (EI) calcd for C₂₀H₁₅N₃: 297.1266 ([M]⁺), found 297.1273 ([M]⁺).

Yield 62%; Mp 122-123 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (d, *J* = 4.8 Hz, 2H), 8.64 (d, *J* = 1.6 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 2H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 6.8 Hz, 1H), 7.48 (d, *J* = 1.6 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.16 (t, *J* = 7.8 Hz, 1H), 4.60 (s, 1H), 4.28 – 4.15 (m, 4H), 4.03 (s, 3H), 3.97 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.3, 167.0, 167.0, 159.2, 158.9, 145.8, 145.3, 142.4, 139.3, 138.5, 136.6, 130.1, 130.0, 129.7, 129.4, 129.0, 128.8, 127.5, 126.6, 123.6, 122.8, 122.7, 122.1, 119.9, 118.1, 111.6, 61.9, 55.7, 52.3, 52.2, 14.0; IR (ATR): 3361, 3191, 2921, 2852, 1724, 1564, 1413, 1280, 1189, 1112, 1020, 854, 773; HRMS (EI) calcd for C₃₉H₃₃N₃O₈: 671.2268 ([M]⁺), found 671.2269 ([M]⁺).

Yield 81%; Mp 102- 103 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.83 (d, *J* = 4.8 Hz, 2H), 8.37 (d, *J* = 1.4 Hz, 1H), 8.17 (d, *J* = 8.2 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 1.4 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.03 (t, *J* = 7.8 Hz, 1H), 6.21 (d, *J* = 15.8 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.2, 167.0, 167.0, 158.9, 158.9, 145.7, 145.3, 143.0, 142.0, 139.0, 138.8, 136.8, 130.1, 130.0, 129.8, 129.4, 129.0, 127.5, 126.2, 125.8, 123.9, 123.3, 122.1, 121.9, 121.3, 118.9, 116.7, 110.7, 52.3, 52.2, 51.5; IR (ATR): 2919, 2850, 1720, 1633, 1608, 1563, 1434, 1413, 1305, 1278, 1168, 1105, 852, 771; HRMS (EI) calcd for C₃₆H₂₇N₃O₆: 597.1900 ([M]⁺), found 597.1897 ([M]⁺).

References:

- 1 Y. Li, B. J. Li, W. H. Wang, W. P. Huang, X. S. Zhang, K. Chen and Z. J. Shi, *Angew. Chem., Int. Ed.*, 2011, **50**, 2115.
- P. M. Boyer, C. P. Roy, J. M. Bielski and J. S. Merola, *Inorg. Chim. Acta*, 1996, 245, 7.
- 3 L. Ackermann and A. V. Lygin, Org. Lett., 2011, 13, 3332.
- 4 J. Shi, B. Zhou, Y. Yang and Y. Li, Org. Biomol. Chem., 2012, 10, 8953.
- 5 C. Pan, H. Jin, P. Xu, X. Liu, Y. Cheng and C. Zhu, J. Org. Chem., 2013, 78, 9494.
- B. Li, J. Ma, W. Xie, H. Song, S. Xu and B. Wang, *Chem. –Eur. J.*, 2013, 19, 11863.
- (a) L. Yang, L. Zhao and C. J. Li, *Chem. Commun.*, 2010, 46, 4184; (b) J. Zheng and S. L. You, *Chem. Commun.*, 2014, 50, 8204; (c) S. Samala, P. Pallavi, R. Kumar, R. K. Arigela, G. Singh, R. S. Ampapathi, A. Priya, S. Datta, A. Patra and B. Kundu, *Chem. –Eur. J.*, 2014, 20, 17653.

¹H and ¹³C NMR spectra of products 3aa-3qa, 3ba-3sa and 4-7:

3aa

3ba $\int_{106}^{1006} \int_{106}^{1006} \int_{1006}^{1006} \int_{100}^{1006} \int_{100}^{100$

<3.98 <3.98

3da

3ea

3fa

-S38-

-S39-

3ia

3ja

3ka

3oa

3pa

3ab

3ac

3ad

9.19 8.96 8.89 8.84 8.84 8.84 8.84 8.84 7.75 7.75 7.49 7.749

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

-S53-

3ae

9.25 9.55

3ag

8.28 7.67 7.67 7.67 7.51 7.51 7.23 6.65 6.63 -3.24 2.48 8.92 3.09-I 3.164 3.134 2.954 1.004 1.98≰ 0.95√ 2.994 5.25Å 1.03-1 0.0 9.5 5.5 5.0 4.5 4.0 f1 (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 6.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0. 168.94 158.15 168.15 142.60 142.60 133.93 133.93 133.93 133.55 133.55 135.75 135.75 135.75 135.75 127.35 127.35 127.35 127.35 111.26 112.33 111.26 112.33 111.26 112.33 111.26 112.33 111.26 112.33 11 -54.75 <21.26 <21.13

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 C f1 (ppm)

3ah

3ai

3aj

-9.11 -9.11 -9.11 -9.11 -9.11 -7.158 -8.24 -7.758 -7.7558 -7.

/2.55 -2.45 ~2.34

3al

3am

9.07 9.07 9.03 9.03 9.03 9.03 9.03 9.03 7.156 7.156 7.156 7.156 7.157 7.1287 7.128 7.128 7.128 7.128 7.128 7.128 7.128 7.128 7.128 7

3an

-\$63-

3ap

3aq

3as

5

6

Crystal data and structure refinement for 3aa (CCDC: 1036782):

Computing details

Data collection: Bruker *APEX2*; cell refinement: Bruker *SAINT*; data reduction: Bruker *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: Bruker *SHELXTL*; software used to prepare material for publication: Bruker *SHELXTL*.

Crystal data

$C_{32}H_{23}N_3O_4$	F(000) = 1072
$M_r = 513.53$	$D_{\rm x} = 1.386 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.30 \text{ Mg m}^{-3}$ $D_{\rm m}$ measured by not measured
Monoclinic, $P2_1/c$	Mo <i>K</i> radiation, $= 0.71073$ Å
a = 27.800 (4) Å	Cell parameters from 6169 reflections
<i>b</i> = 8.1692 (14) Å	= 4.5–54.9 °
<i>c</i> = 10.9466 (18) Å	$= 0.09 \text{ mm}^{-1}$
= 98.172 (6)°	<i>T</i> = 296 K
-------------------------------	---
V = 2460.8 (7) Å ³	Prism, colorless
Z = 4	$0.3 \times 0.2 \times 0.05 \text{ mm}$

Data collection

Bruker APEX-II CCD diffractometer	5660 independent reflections
Radiation source: fine-focus sealed tube	3975 reflections with $I > 2$ (I)
graphite	$R_{\rm int} = 0.022$
and scans	$_{\rm max} = 27.6^{\circ}, _{\rm min} = 0.7^{\circ}$
Absorption correction: multi-scan <i>SADABS</i>	h = -36 31
$T_{\min} = 0.653, T_{\max} = 0.746$	<i>k</i> = -10 8
21239 measured reflections	<i>l</i> = -14 13

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2 (F^2)] = 0.043$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.123$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.02	$w = 1/[{}^{2}(F_{o}{}^{2}) + (0.0579P)^{2} + 0.4381P]$ where $P = (F_{o}{}^{2} + 2F_{c}{}^{2})/3$
5660 reflections	(/) _{max} < 0.001
354 parameters	$_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$_{\rm min}$ = -0.17 e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	у	Ζ.	$U_{\rm iso}*/U_{\rm eq}$
O2	-0.01038 (4)	0.41094 (17)	-0.22099 (11)	0.0653 (3)
O4	0.45312 (4)	0.45390 (15)	-0.19307 (10)	0.0563 (3)
03	0.48647 (4)	0.2820 (2)	-0.04748 (12)	0.0795 (4)
01	-0.03253 (4)	0.2247 (2)	-0.09118 (13)	0.0874 (5)
N1	0.25590 (4)	0.52710 (16)	0.44386 (10)	0.0439 (3)
N3	0.17873 (5)	0.6014 (2)	0.48261 (11)	0.0585 (4)
N2	0.24370 (5)	0.5754 (2)	0.64580 (12)	0.0631 (4)
C24	-0.05767 (7)	0.4022 (3)	-0.2931 (2)	0.0788 (6)
H24A	-0.0629	0.2940	-0.3267	0.118*
H24B	-0.0597	0.4802	-0.3592	0.118*
H24C	-0.0820	0.4263	-0.2417	0.118*
C23	-0.00232 (6)	0.3148 (2)	-0.12236 (15)	0.0537 (4)
C20	0.04793 (5)	0.3322 (2)	-0.05728 (13)	0.0462 (4)
C19	0.06138 (6)	0.2506 (2)	0.05293 (15)	0.0613 (5)
H19	0.0390	0.1846	0.0851	0.074*
C18	0.10781 (6)	0.2665 (2)	0.11533 (15)	0.0583 (5)

H18	0.1162	0.2120	0.1899	0.070*
C17	0.14239 (5)	0.3625 (2)	0.06902 (13)	0.0435 (3)
C3	0.19162 (5)	0.38882 (19)	0.13763 (13)	0.0433 (3)
C4	0.23259 (5)	0.38409 (19)	0.07685 (13)	0.0443 (4)
H4	0.2286	0.3580	-0.0067	0.053*
C5	0.27893 (5)	0.41700 (18)	0.13687 (13)	0.0407 (3)
C25	0.32188 (5)	0.39751 (18)	0.07100 (13)	0.0396 (3)
C30	0.35926 (6)	0.2920 (2)	0.11723 (13)	0.0471 (4)
H30	0.3564	0.2293	0.1868	0.056*
C29	0.40044 (5)	0.2791 (2)	0.06130 (13)	0.0464 (4)
H29	0.4251	0.2079	0.0935	0.056*
C28	0.40548 (5)	0.37107 (19)	-0.04267 (12)	0.0403 (3)
C31	0.45230 (5)	0.3618 (2)	-0.09271 (14)	0.0473 (4)
C32	0.49838 (6)	0.4582 (3)	-0.24321 (18)	0.0672 (5)
H32A	0.5235	0.5018	-0.1826	0.101*
H32B	0.4948	0.5263	-0.3154	0.101*
H32C	0.5070	0.3493	-0.2650	0.101*
C26	0.32605 (5)	0.48262 (19)	-0.03675 (13)	0.0440 (4)
H26	0.3006	0.5488	-0.0719	0.053*
C27	0.36748 (5)	0.47063 (19)	-0.09259 (13)	0.0440 (4)
H27	0.3698	0.5298	-0.1641	0.053*
C2	0.19652 (5)	0.4282 (2)	0.26263 (13)	0.0451 (4)
H2	0.1699	0.4257	0.3052	0.054*
C1	0.24221 (5)	0.47123 (19)	0.32187 (12)	0.0412 (3)
C12	0.30656 (5)	0.55879 (19)	0.45964 (13)	0.0422 (3)
C7	0.32432 (5)	0.52473 (18)	0.34857 (13)	0.0412 (3)
C6	0.28365 (5)	0.46625 (18)	0.26123 (13)	0.0401 (3)
C8	0.37312 (5)	0.5572 (2)	0.33978 (15)	0.0480 (4)
H8	0.3854	0.5371	0.2665	0.058*
С9	0.40266 (6)	0.6190 (2)	0.44055 (15)	0.0538 (4)
Н9	0.4352	0.6404	0.4355	0.065*
C10	0.38433 (6)	0.6498 (2)	0.54951 (15)	0.0541 (4)

H10	0.4050	0.6910	0.6167	0.065*
C11	0.33648 (6)	0.6215 (2)	0.56157 (14)	0.0494 (4)
H11	0.3246	0.6433	0.6351	0.059*
C13	0.22435 (5)	0.56886 (19)	0.52825 (13)	0.0433 (4)
C16	0.14992 (6)	0.6454 (3)	0.56508 (15)	0.0622 (5)
H16	0.1173	0.6664	0.5373	0.075*
C15	0.16618 (6)	0.6608 (2)	0.68730 (15)	0.0595 (5)
H15	0.1459	0.6938	0.7433	0.071*
C14	0.21352 (7)	0.6254 (3)	0.72315 (15)	0.0694 (5)
H14	0.2258	0.6363	0.8063	0.083*
C21	0.08212 (5)	0.4273 (2)	-0.10487 (14)	0.0484 (4)
H21	0.0736	0.4826	-0.1790	0.058*
C22	0.12881 (5)	0.4406 (2)	-0.04283 (14)	0.0492 (4)
H22	0.1515	0.5030	-0.0768	0.059*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0423 (6)	0.0863 (9)	0.0630 (8)	-0.0093 (6)	-0.0066 (5)	0.0063 (7)
O4	0.0425 (6)	0.0793 (8)	0.0494 (6)	0.0002 (6)	0.0140 (5)	0.0023 (6)
O3	0.0477 (7)	0.1137 (12)	0.0791 (9)	0.0314 (7)	0.0166 (6)	0.0196 (8)
01	0.0446 (7)	0.1260 (13)	0.0890 (10)	-0.0278 (8)	0.0009 (7)	0.0238 (9)
N1	0.0359 (6)	0.0613 (8)	0.0342 (6)	0.0012 (6)	0.0039 (5)	-0.0035 (6)
N3	0.0420 (8)	0.0936 (12)	0.0401 (7)	0.0109 (7)	0.0064 (6)	-0.0013 (7)
N2	0.0502 (8)	0.1011 (12)	0.0375 (7)	0.0108 (8)	0.0041 (6)	-0.0036 (7)
C24	0.0491 (11)	0.0966 (16)	0.0829 (14)	-0.0048 (10)	-0.0176 (10)	0.0045 (12)
C23	0.0386 (9)	0.0717 (12)	0.0514 (9)	-0.0055 (8)	0.0090 (7)	-0.0066 (8)

C20	0.0354 (8)	0.0597 (10)	0.0440 (8)	-0.0049 (7)	0.0081 (6)	-0.0074 (7)
C19	0.0449 (9)	0.0844 (13)	0.0550 (10)	-0.0195 (9)	0.0081 (8)	0.0085 (9)
C18	0.0485 (9)	0.0789 (13)	0.0466 (9)	-0.0111 (8)	0.0037 (7)	0.0129 (8)
C17	0.0372 (8)	0.0551 (9)	0.0386 (7)	-0.0023 (7)	0.0074 (6)	-0.0062 (7)
C3	0.0374 (8)	0.0526 (9)	0.0394 (7)	-0.0013 (6)	0.0036 (6)	-0.0010 (7)
C4	0.0414 (8)	0.0550 (9)	0.0364 (7)	-0.0007 (7)	0.0051 (6)	-0.0050 (7)
C5	0.0375 (8)	0.0465 (8)	0.0387 (7)	0.0019 (6)	0.0070 (6)	-0.0001 (6)
C25	0.0359 (7)	0.0464 (8)	0.0365 (7)	-0.0004 (6)	0.0051 (6)	-0.0058 (6)
C30	0.0482 (9)	0.0528 (9)	0.0409 (8)	0.0073 (7)	0.0087 (6)	0.0086 (7)
C29	0.0422 (8)	0.0517 (9)	0.0445 (8)	0.0124 (7)	0.0036 (6)	0.0028 (7)
C28	0.0358 (8)	0.0480 (8)	0.0363 (7)	0.0017 (6)	0.0028 (6)	-0.0076 (6)
C31	0.0379 (8)	0.0601 (10)	0.0438 (8)	0.0023 (7)	0.0055 (7)	-0.0088 (7)
C32	0.0471 (10)	0.0922 (15)	0.0665 (11)	-0.0136 (9)	0.0223 (8)	-0.0069 (10)
C26	0.0370 (8)	0.0539 (9)	0.0403 (8)	0.0100 (7)	0.0025 (6)	0.0039 (7)
C27	0.0419 (8)	0.0548 (9)	0.0356 (7)	0.0037 (7)	0.0062 (6)	0.0031 (7)
C2	0.0347 (8)	0.0618 (10)	0.0396 (8)	-0.0009 (7)	0.0074 (6)	-0.0010 (7)
C1	0.0377 (8)	0.0510 (9)	0.0351 (7)	0.0026 (6)	0.0059 (6)	-0.0007 (6)
C12	0.0364 (8)	0.0483 (9)	0.0409 (8)	0.0032 (6)	0.0027 (6)	0.0015 (6)
C7	0.0362 (8)	0.0469 (8)	0.0399 (7)	0.0023 (6)	0.0031 (6)	0.0010 (6)
C6	0.0358 (8)	0.0461 (8)	0.0383 (7)	0.0015 (6)	0.0049 (6)	0.0008 (6)
C8	0.0395 (8)	0.0549 (10)	0.0500 (9)	-0.0018 (7)	0.0076 (7)	-0.0025 (7)
C9	0.0370 (8)	0.0608	0.0623	-0.0049	0.0023 (7)	-0.0037

		(11)	(10)	(7)		(8)
C10	0.0443 (9)	0.0623 (11)	0.0520 (9)	-0.0019 (8)	-0.0052 (7)	-0.0064 (8)
C11	0.0446 (9)	0.0603 (10)	0.0414 (8)	0.0024 (7)	-0.0008 (6)	-0.0039 (7)
C13	0.0415 (8)	0.0533 (9)	0.0354 (7)	0.0021 (7)	0.0067 (6)	0.0013 (6)
C16	0.0432 (9)	0.0961 (14)	0.0484 (9)	0.0124 (9)	0.0109 (7)	-0.0004 (9)
C15	0.0541 (10)	0.0837 (13)	0.0436 (9)	0.0095 (9)	0.0173 (7)	-0.0025 (8)
C14	0.0619 (11)	0.1114 (17)	0.0351 (8)	0.0102 (11)	0.0073 (8)	-0.0062 (9)
C21	0.0410 (8)	0.0633 (10)	0.0402 (8)	-0.0065 (7)	0.0037 (6)	0.0006 (7)
C22	0.0396 (8)	0.0654 (11)	0.0431 (8)	-0.0123 (7)	0.0073 (6)	0.0009 (7)

Geometric parameters (Å, 9

O2—C23	1.328 (2)	С30—Н30	0.9300
O2—C24	1.436 (2)	C29—C28	1.387 (2)
O4—C31	1.3346 (19)	С29—Н29	0.9300
O4—C32	1.4428 (19)	C28—C27	1.383 (2)
O3—C31	1.1992 (19)	C28—C31	1.484 (2)
O1—C23	1.202 (2)	С32—Н32А	0.9600
N1—C13	1.4033 (18)	С32—Н32В	0.9600
N1—C1	1.4113 (18)	С32—Н32С	0.9600
N1—C12	1.4181 (18)	C26—C27	1.382 (2)
N3—C13	1.3223 (19)	С26—Н26	0.9300
N3—C16	1.3385 (19)	С27—Н27	0.9300
N2—C13	1.3234 (19)	C2—C1	1.387 (2)
N2	1.337 (2)	С2—Н2	0.9300
C24—H24A	0.9600	C1—C6	1.4096 (19)
C24—H24B	0.9600	C12—C11	1.391 (2)
C24—H24C	0.9600	С12—С7	1.404 (2)

C23—C20	1.482 (2)	C7—C8	1.399 (2)
C20—C19	1.382 (2)	C7—C6	1.454 (2)
C20—C21	1.386 (2)	C8—C9	1.375 (2)
C19—C18	1.378 (2)	С8—Н8	0.9300
С19—Н19	0.9300	C9—C10	1.385 (2)
C18—C17	1.391 (2)	С9—Н9	0.9300
C18—H18	0.9300	C10—C11	1.375 (2)
C17—C22	1.384 (2)	С10—Н10	0.9300
C17—C3	1.480 (2)	C11—H11	0.9300
C3—C2	1.393 (2)	C16—C15	1.356 (2)
С3—С4	1.399 (2)	C16—H16	0.9300
C4—C5	1.387 (2)	C15—C14	1.350 (2)
С4—Н4	0.9300	С15—Н15	0.9300
С5—С6	1.408 (2)	C14—H14	0.9300
C5—C25	1.4886 (19)	C21—C22	1.381 (2)
C25—C26	1.388 (2)	C21—H21	0.9300
C25—C30	1.389 (2)	С22—Н22	0.9300
C30—C29	1.377 (2)		
C23—O2—C24	116.92 (14)	O4—C32—H32C	109.5
C31—O4—C32	116.40 (13)	H32A—C32—H32 C	109.5
C13—N1—C1	126.29 (12)	H32B—C32—H32 C	109.5
C13—N1—C12	125.33 (12)	C27—C26—C25	121.05 (14)
C1—N1—C12	107.68 (11)	C27—C26—H26	119.5
C13—N3—C16	115.66 (13)	C25—C26—H26	119.5
C13—N2—C14	115.03 (14)	C26—C27—C28	120.32 (14)
O2—C24—H24A	109.5	С26—С27—Н27	119.8
O2—C24—H24B	109.5	С28—С27—Н27	119.8
H24A—C24—H24 B	109.5	C1—C2—C3	118.23 (13)
O2—C24—H24C	109.5	C1—C2—H2	120.9

H24A—C24—H24 C	109.5	C3—C2—H2	120.9
H24B—C24—H24 C	109.5	C2—C1—C6	121.87 (13)
O1—C23—O2	123.30 (15)	C2—C1—N1	129.06 (13)
O1—C23—C20	124.80 (17)	C6—C1—N1	109.06 (12)
O2—C23—C20	111.89 (14)	C11—C12—C7	121.59 (14)
C19—C20—C21	118.93 (14)	C11—C12—N1	129.43 (14)
C19—C20—C23	119.54 (14)	C7—C12—N1	108.90 (12)
C21—C20—C23	121.53 (15)	C8—C7—C12	119.08 (13)
C18—C19—C20	120.35 (15)	C8—C7—C6	133.48 (14)
С18—С19—Н19	119.8	С12—С7—С6	107.36 (12)
С20—С19—Н19	119.8	C5—C6—C1	119.57 (13)
C19—C18—C17	121.32 (15)	C5—C6—C7	133.39 (13)
C19—C18—H18	119.3	C1—C6—C7	106.98 (12)
C17—C18—H18	119.3	C9—C8—C7	119.28 (15)
C22—C17—C18	117.79 (14)	С9—С8—Н8	120.4
C22—C17—C3	119.88 (13)	С7—С8—Н8	120.4
C18—C17—C3	122.27 (14)	C8—C9—C10	120.44 (15)
C2—C3—C4	120.06 (13)	С8—С9—Н9	119.8
C2—C3—C17	119.08 (13)	С10—С9—Н9	119.8
C4—C3—C17	120.75 (13)	C11—C10—C9	122.12 (15)
C5—C4—C3	122.26 (13)	C11—C10—H10	118.9
С5—С4—Н4	118.9	С9—С10—Н10	118.9
С3—С4—Н4	118.9	C10-C11-C12	117.48 (15)
C4—C5—C6	117.79 (13)	C10—C11—H11	121.3
C4—C5—C25	120.33 (13)	C12—C11—H11	121.3
C6—C5—C25	121.87 (13)	N3—C13—N2	126.49 (14)
C26—C25—C30	118.16 (13)	N3—C13—N1	117.12 (13)
C26—C25—C5	121.85 (13)	N2—C13—N1	116.38 (13)
C30—C25—C5	119.99 (13)	N3—C16—C15	122.87 (16)
C29—C30—C25	120.77 (14)	N3—C16—H16	118.6
С29—С30—Н30	119.6	C15—C16—H16	118.6

С25—С30—Н30	119.6	C14—C15—C16	116.20 (15)
C30—C29—C28	120.70 (14)	C14—C15—H15	121.9
С30—С29—Н29	119.6	C16—C15—H15	121.9
С28—С29—Н29	119.6	N2-C14-C15	123.68 (16)
C27—C28—C29	118.83 (13)	N2-C14-H14	118.2
C27—C28—C31	123.03 (14)	C15—C14—H14	118.2
C29—C28—C31	118.10 (13)	C22—C21—C20	120.40 (15)
O3—C31—O4	122.75 (14)	C22—C21—H21	119.8
O3—C31—C28	124.07 (15)	C20—C21—H21	119.8
O4—C31—C28	113.18 (13)	C21—C22—C17	121.19 (14)
O4—C32—H32A	109.5	C21—C22—H22	119.4
O4—C32—H32B	109.5	С17—С22—Н22	119.4
H32A—C32—H32 B	109.5		
C24—O2—C23— O1	-0.9 (3)	C12—N1—C1—C 6	0.45 (16)
C24—O2—C23— C20	178.76 (15)	C13—N1—C12— C11	6.4 (3)
O1—C23—C20— C19	-5.4 (3)	C1—N1—C12—C 11	177.24 (16)
O2—C23—C20— C19	174.94 (16)	C13—N1—C12— C7	-170.30 (14)
01—C23—C20— C21	174.00 (18)	C1—N1—C12—C 7	0.55 (17)
02—C23—C20— C21	-5.7 (2)	C11—C12—C7— C8	-1.0 (2)
C21—C20—C19 —C18	1.2 (3)	N1—C12—C7—C 8	175.95 (14)
C23—C20—C19 —C18	-179.37 (17)	C11—C12—C7— C6	-178.30 (14)
C20—C19—C18 —C17	-0.8 (3)	N1—C12—C7—C 6	-1.31 (17)
C19—C18—C17 —C22	-0.7 (3)	C4—C5—C6—C1	3.6 (2)

C19—C18—C17 —C3	176.57 (16)	C25—C5—C6—C 1	-175.36 (14)
C22—C17—C3— C2	130.93 (17)	C4—C5—C6—C7	-173.15 (16)
C18—C17—C3— C2	-46.2 (2)	C25—C5—C6—C 7	7.9 (3)
C22—C17—C3— C4	-45.3 (2)	C2—C1—C6—C5	0.3 (2)
C18—C17—C3— C4	137.57 (17)	N1—C1—C6—C5	-178.80 (13)
C2—C3—C4—C5	0.2 (2)	C2—C1—C6—C7	177.81 (14)
C17—C3—C4—C 5	176.39 (14)	N1—C1—C6—C7	-1.24 (17)
C3—C4—C5—C6	-3.9 (2)	C8—C7—C6—C5	1.9 (3)
C3—C4—C5—C2 5	175.09 (14)	C12—C7—C6—C 5	178.64 (16)
C4—C5—C25—C 26	58.1 (2)	C8—C7—C6—C1	-175.13 (17)
C6—C5—C25—C 26	-122.95 (17)	C12—C7—C6—C 1	1.56 (17)
C4—C5—C25—C 30	-122.01 (16)	C12—C7—C8—C 9	1.0 (2)
C6—C5—C25—C 30	57.0 (2)	C6—C7—C8—C9	177.42 (17)
C26—C25—C30 —C29	3.5 (2)	C7—C8—C9—C1 0	-0.3 (3)
C5—C25—C30— C29	-176.45 (14)	C8—C9—C10—C 11	-0.4 (3)
C25—C30—C29 —C28	-0.1 (2)	C9—C10—C11— C12	0.4 (3)
C30—C29—C28 —C27	-2.9 (2)	C7—C12—C11— C10	0.3 (2)
C30—C29—C28 —C31	175.16 (14)	N1—C12—C11— C10	-176.01 (15)
C32—O4—C31— O3	-2.2 (2)	C16—N3—C13— N2	0.1 (3)
C32—O4—C31—	176.76 (13)	C16—N3—C13—	-178.15 (16)

C28		N1	
C27—C28—C31 —O3	176.46 (16)	C14—N2—C13— N3	-2.3 (3)
C29—C28—C31 —O3	-1.5 (2)	C14—N2—C13— N1	176.03 (17)
C27—C28—C31 —O4	-2.5 (2)	C1—N1—C13—N 3	-19.3 (2)
C29—C28—C31 —O4	179.54 (14)	C12—N1—C13— N3	149.89 (15)
C30—C25—C26 —C27	-3.9 (2)	C1—N1—C13—N 2	162.28 (16)
C5—C25—C26— C27	176.03 (14)	C12—N1—C13— N2	-28.6 (2)
C25—C26—C27 —C28	0.9 (2)	C13—N3—C16— C15	1.8 (3)
C29—C28—C27 —C26	2.5 (2)	N3—C16—C15— C14	-1.5 (3)
C31—C28—C27 —C26	-175.48 (14)	C13—N2—C14— C15	2.6 (3)
C4—C3—C2—C1	3.7 (2)	C16—C15—C14 —N2	-0.9 (3)
C17—C3—C2—C 1	-172.52 (14)	C19—C20—C21 —C22	-0.2 (2)
C3—C2—C1—C6	-3.9 (2)	C23—C20—C21 —C22	-179.55 (15)
C3—C2—C1—N1	174.90 (15)	C20—C21—C22 —C17	-1.4 (2)
C13—N1—C1—C 2	-7.8 (3)	C18—C17—C22 —C21	1.7 (2)
C12—N1—C1—C 2	-178.51 (16)	C3—C17—C22— C21	-175.55 (14)
C13—N1—C1—C 6	171.19 (14)		