Supporting Information:

Diversity-Oriented Synthesis of Acyclic Nucleosides via Ring-Opening of Vinyl Cyclopropanes with Purines

Hong-Ying Niu,^{*a,b} Cong Du,^a Ming-Sheng Xie,^a Yong Wang,^a Qian Zhang,^a Gui-Rong Qu,^a and Hai-Ming Guo^{*a}

^a Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China

^b School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.

E-mail: niu_hy@163.com; guohm518@hotmail.com

Contents

1.	General information	S2
2.	General procedure for the 1,5-ring-opening reaction of Pd ₂ (dba) ₃ ·CHCl ₃	S2
3.	General procedure for the 1,3-ring-opening reaction of AlCl ₃	S2
4.	General procedure for the 1,3-ring-opening reaction of MgI ₂	S3
5.	Hydrogenation of adduct 3aa and 5aa	83
6.	Proposed mechanism for Pd-catalyzed ring-opening reaction	S4
7.	Control experiment and proposed mechanism for Al-catalyzed ring-opening reaction	S5
8.	Control experiment and proposed mechanism for Mg-catalyzed ring-opening reaction.	
9.	Characterization of compounds	S6
10.	References	.S21
11.	Copies of ¹ H NMR and ¹³ C NMR spectra	.S22

1. General information:

All reactions were carried out in oven-dried Schlenk tube filled nitrogen, and monitored by thin layer chromatography (TLC). All reagents were reagent grade quality and purchased from commercial sources unless otherwise indicated. Anhydrous dioxane was freshly distilled from sodium/ benzophenone before used. NMR spectra were recorded with a 400 MHz spectrometer for ¹H NMR, 100 MHz for ¹³C NMR. Chemical shifts δ are given in ppm relative to tetramethylsilane as internal standard. Multiplicities are reported as follows: singlet(s), doublet(d), doublet of doublets(dd), triplet(t), quartet(q), multiplet(m). High resolution mass spectra were taken with a 3000 mass spectrometer, using Waters Q-TofMS/MS system. For column chromatography silica gel (200-300 mesh) was used as the stationary phase. **1c**¹, **1d**-**f**², **1g**-**h**³, **1m**⁴, **2a**-**e**⁵ were synthesized following reported methods.

2. General procedure for the 1,5-ring-opening reaction of Pd₂(dba)₃·CHCl₃:

Scheme S1 General procedure for the 1,5-ring-opening reaction of Pd₂(dba)₃•CHCl.

To an oven-dried Schlenk tube equipped with a magnetic stir bar, was added 2-vinylcyclopropane-1,1-dicarboxylic acid diethyl ester **2a** (0.1 mmol, 21.2 mg), 6-chloropurine **1a** (0.15 mmol, 23.2 mg), Pd₂(dba)₃·CHCl₃ (5.2 mg, 5 mol%), DIOP (5.0 mg, 10 mol%). The Schlenk tube sealed with threaded stopper was evacuated and backfilled with N_2 (this process was repeated for 3 times), and then dioxane (2.0 mL) were added via syringe. The mixture stirred at 30 °C for **18 h**, it was then filtered through Celite and concentrated under vacuum. The resulted residue was purified by flash chromatography over silica gel (ethyl acetate / petroleum ether) to give the desired product **3aa** (82 %).

3. General procedure for the 1,3-ring-opening reaction of AlCl₃:

Scheme S2 General procedure for the 1,3-ring-opening reaction of AlCl₃.

To an oven-dried Schlenk tube equipped with a magnetic stir bar, was added 2-vinylcyclopropane-1,1-dicarboxylic acid diethyl ester **2a** (0.3 mmol, 63.6 mg), 6-chloropurine **1a** (0.1 mmol, 15.5 mg), AlCl₃ (0.1 mmol, 13.4 mg). The Schlenk tube sealed with threaded stopper was evacuated and backfilled with N_2 (this process was repeated for 3 times), and then dioxane (2.0 mL) were added via syringe. The mixture stirred at 85 °C for **18 h**, it was then filtered through Celite and the organic phase was washed with cooled water. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The resulted residue was purified by flash chromatography over silica gel (ethyl acetate / petroleum ether) to give the desired product **5aa** (79 %).

4. General procedure for the 1,3-ring-opening reaction of MgI₂:

Scheme S3 General procedure for the 1,3-ring-opening reaction of MgI₂.

To an oven-dried Schlenk tube equipped with a magnetic stir bar, was added 2-vinylcyclopropane-1,1-dicarboxylic acid diethyl ester **2a** (0.5 mmol, 106.1 mg), 6-chloropurine **1a** (0.1 mmol, 15.5 mg), MgI₂ (2.8 mg, 10 mol%). The Schlenk tube sealed with threaded stopper was evacuated and backfilled with N_2 (this process was repeated for 3 times), and then dioxane (2.0 mL) were added via syringe. The mixture stirred at 85 °C for **18 h**, it was then filtered through Celite and the organic phase was washed with cooled water. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The resulted residue was purified by flash chromatography over silica gel (ethyl acetate / petroleum ether) to give the desired product **6aa** (72 %).

5. Hydrogenation of adduct 3aa and 5aa.

Scheme S4 Hydrogenation of adduct 3aa.

To a solution of acyclic nucleoside analogue **3aa** (110.0 mg, 0.3 mmol) in MeOH (10.0 mL) at 0 °C, NaBH₄ (68.0 mg, 1.8 mmol) was added. After **3aa** was consumed (determined by TLC), saturated NH₄Cl aq. (10.0 mL) was added. The aqueous phase was extracted with CH₂Cl₂ (10.0 mL×3) and the combined organic phases were dried and concentrated. The residue was purified by silica gel flash chromatography (CH₂Cl₂/MeOH) to afford product **7aa** (53 %).

Scheme S5 Hydrogenation of adduct 5aa.

To a solution of acyclic nucleoside analogue **5aa** (110.0 mg, 0.3 mmol) in MeOH (10.0 mL) at 0 °C, NaBH₄ (68.0 mg, 1.8 mmol) was added. After **5aa** was consumed (determined by TLC), saturated NH₄Cl aq. (10.0 mL) was added. The aqueous phase was extracted with CH₂Cl₂ (10.0 mL×3) and the combined organic phases were dried and concentrated. The residue was purified by silica gel flash chromatography (CH₂Cl₂/MeOH) to afford product **8aa** (47 %).

6. Proposed mechanism for Pd-catalyzed ring-opening reaction

A possible catalytic cycle for the palladium-catalyzed 1,5-ring-opening of vinyl cyclopropane **2a** with 6-chloro-purine **1a** was shown in Scheme S6. Initially, palladium (0) coordinated with the vinyl cyclopropane **2a** to genarate the zwitterionic π -allylpalladium complex **A** by cleavage of the three-membered ring. Subsequently, the proton transfer from the 6-chloro-purine **1a** to intermediate **A** afforded nucleophilic anions **C** and **D**. The anion **C** attacked the less substituted carbon of the π -allyl moiety in intermediate **B** will produce the 1,5-ring-opening N9-adduct **3aa**. Meanwhile, the nucleophilic addition between anion **D** with less substituted carbon of intermediate **B** will generate 1,5-ring-opening N7 adduct **4aa**. If the anions **C** or **D** attacted the more substituted carbon of the intermediate **B**, the 1,3-ring-opening N9 adduct **5aa** and N7 adduct **6aa** will be obtained, respectively.

Scheme S6 The proposed mechanism for the palladium-catalyzed ring-opening reaction

7. Control experiment and proposed mechanism for Al-catalyzed ring-opening reaction

The control experiment with 6-nitro-benzoimidazole **1s** as a nucleophilie was carried out in the presence of AlCl₃, and the 1,3-ring-opening products were afforded in 82% total yield, in which the ratio of the N1 to N3 adducts was 45:37 (Scheme S7a). Thus, we proposed that the N3 in purine participated in the coordination with aluminium and resulted in the high regioselectivity.⁶ As shown in Scheme S7b, the bidentate vinyl cyclopropane **2a** and N3 in 6-chloro-purine **1a** coordinated with aluminium to form complex **E**. Thus, the N9 position was close to vinyl cyclopropane **2a** to proceed with 1,3-ring-opening reaction to generate the 1,3-ring-opening N9-adduct **5aa**.

Scheme S7 (a) The control experiment; (b) The proposed mechanism for the aluminium-catalyzed ring-opening reaction.

8. Control experiment and proposed mechanism for Mg-catalyzed ring-opening reaction

The control experiments with 6-chloro-benzoimidazole 1t as nucleophiles was explored, and the corresponding 1,3-ring-opening products were obtained in a poor ratio of N1 to N3 adducts

(Scheme 8a). Thus, we proposed that the N3 in purine also participated in the coordination with magnesium and resulted in the high regioselectivity.⁷ As shown in Scheme 8b, the bidentate vinyl cyclopropane **2a** and bidentate N3, N9 in 6-chloro-purine **1a** coordinated with magnesium to form an octahedral geometry as the intermediate **F**. Thus, the N7 position could attack vinyl cyclopropane **2a** to afford the N7-adduct **6aa**.

Scheme S8 (a) The control experiment; (b) The proposed mechanism for the magnesium-catalyzed ring-opening reaction

9. Characterization of compounds

(E)-Diethyl 2-(4-(6-chloro-9H-purin-9-yl)but-2-en-1-yl)malonate (3aa)

Colorless oil; 82% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.12 (s, 1H), 5.88-5.75 (m, 2H), 4.84 (d, J = 5.2 Hz, 2H), 4.21-4.14 (m, 4H), 3.42 (t, J = 7.2 Hz, 1H), 2.68 (t, J = 6.4 Hz, 2H), 1.24 (t, J = 6.8 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.3, 151.7, 151.4, 150.7, 144.7, 132.7, 131.3, 125.5, 61.4, 51.0, 45.4, 31.0, 13.9 ppm. HRMS: calcd for C₁₆H₁₉ClN₄O₄Na [M+Na]⁺ 389.0987, found 389.0987.

(E)-Dimethyl 2-(4-(6-chloro-9H-purin-9-yl)but-2-en-1-yl)malonate (3ab)

Colorless oil; 82% yield.

¹**H NMR** (400 MHz, DMSO): δ 8.78 (s, 1H), 8.63 (s, 1H), 5.83-5.76 (m, 1H), 5.67-5.60 (m, 1H), 4.85 (d, J = 6.0 Hz, 2H), 3.63 (t, J = 7.6 Hz, 1H), 3.58 (s, 6H), 2.49 (m, 2H) ppm. ¹³**C NMR** (100 MHz, DMSO): δ 169.3, 152.1, 152.0, 149.5, 147.6, 131.2, 131.1, 127.1, 52.8, 50.8, 45.6, 31.3 ppm. HRMS: calcd for C₁₄H₁₅ClN₄O₄Na [M+Na]⁺ 361.0674, found 361.0677.

(E)-Diisopropyl 2-(4-(6-chloro-9H-purin-9-yl)but-2-en-1-yl)malonate (3ac)

Colorless oil; 75% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.12 (s, 1H), 5.88-5.74 (m, 2H), 5.07-4.98 (m, 2H), 4.83 (d, J = 5.6 Hz, 2H), 3.34 (t, J = 7.2 Hz, 1H), 2.65 (t, J = 6.4 Hz, 2H), 1.21 (t, J = 3.2 Hz, 12H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.0, 152.0, 151.6, 151.0, 144.8, 133.1, 131.6, 125.4, 69.2, 51.5, 45.6, 31.1, 21.6, 21.5 ppm. HRMS: calcd for C₁₈H₂₃ClN₄O₄Na [M+Na]⁺ 417.1300, found 417.1301.

(E)- Di-tert-butyl 2-(4-(6-chloro-9H-purin-9-yl)but-2-en-1-yl)malonate (3ad)

Colorless oil; 56% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.13 (s, 1H), 5.87-5.74 (m, 2H), 4.84 (d, J = 5.2 Hz, 2H), 3.22 (t, J = 7.2 Hz, 1H), 2.59 (t, J = 6.4 Hz, 2H), 1.42 (s, 18H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 167.9, 152.0, 151.0, 144.8, 133.4, 125.0, 81.8, 53.1, 45.7, 31.2, 27.9 ppm. HRMS: calcd for C₂₀H₂₇ClN₄O₄Na [M+Na]⁺ 445.1613, found 445.1606.

(E)-Bis(2,2,2-trifluoroethyl) 2-(4-(6-chloro-9H-purin-9-yl)but-2-en-1-yl)malonate (3ae)

Colorless oil; 37% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.09 (s, 1H), 5.88-5.72 (m, 2H), 4.85 (d, J = 5.6 Hz, 2H), 4.53 (q, J = 8.0 Hz, 4H), 3.67 (t, J = 7.2 Hz, 1H), 2.76 (t, J = 6.8 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 166.1, 152.1, 151.2, 144.7, 130.6, 127.2, 61.3, 60.9, 50.3, 45.4, 31.0 ppm. HRMS: calcd for C₁₆H₁₃ClF₆N₄O₄Na [M+Na]⁺ 497.0422, found 497.0412.

(E)-Dimethyl 2-(4-(6-iodo-9H-purin-9-yl)but-2-en-1-yl)malonate (3bb)

Colorless oil; 63% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.63 (s, 1H), 8.12 (s, 1H), 5.80 (q, J = 5.3 Hz, 2H), 4.81 (d, J = 4.6 Hz, 2H), 3.72 (s, 6H), 3.46 (t, J = 7.2 Hz, 1H), 2.68 (t, J = 6.2 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.9, 152.0, 147.8, 144.1, 138.6, 132.6, 125.8, 122.1, 52.7, 50.9, 45.6, 31.2 ppm. HRMS: calcd for C₁₄H₁₅IN₄O₄Na [M+Na]⁺ 453.0030, found 453.0032.

(E)-Diethyl 2-(4-(6-(propylthio)-9H-purin-9-yl)but-2-en-1-yl)malonate (3ca)

Colorless oil; 92% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.69 (s, 1H), 7.91 (s, 1H), 5.81-5.71 (m, 2H), 4.77 (d, J = 4.4 Hz, 2H), 4.22-4.10 (m, 4H), 3.41-3.34 (m, 3H), 2.66 (t, J = 6.4 Hz, 2H), 1.86-1.77 (m, 2H), 1.22 (t, J = 7.2 Hz, 6H) , 1.07 (t, J = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.5, 161.6, 151.9, 148.1, 142.0, 131.9, 131.3, 126.3, 61.6, 51.3, 45.0, 31.2, 30.6, 22.9, 14.0, 13.4 ppm. HRMS: calcd for C₁₉H₂₆N₄O₄SNa [M+Na]⁺ 429.1567, found 429.1569.

(E)-Diethyl 2-(4-(2-chloro-6-(pyrrolidin-1-yl)-9H-purin-9-yl)but-2-en-1-yl)malonate (3da)

Colorless oil; 67% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.63 (s, 1H), 5.77-5.69 (m, 2H), 4.68 (s, 2H), 4.17-4.16 (m, 6H), 3.74 (s, 2H), 3.39 (t, *J* = 7.2 Hz, 1H), 2.64 (t, *J* = 6.4 Hz, 2H), 2.06-1.97 (m, 4H), 1.23 (t, *J* = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.6, 154.2, 153.3, 151.1, 138.6, 131.4, 126.7, 119.0, 61.5, 51.4, 48.9, 47.7, 44.8, 31.2, 26.1, 24.1, 14.0 ppm. HRMS: calcd for C₂₀H₂₆ClN₅O₄Na [M+Na]⁺ 458.1566, found 458.1563.

(E)-Diethyl 2-(4-(2-chloro-6-(piperidin-1-yl)-9H-purin-9-yl)but-2-en-1-yl)malonate (3ea)

Colorless oil; 89% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.63 (s, 1H), 5.78-5.66 (m, 2H), 4.66 (d, J = 4.8 Hz, 2H), 4.23-4.141(m, 4H), 3.39 (t, J = 7.2 Hz, 1H), 2.65 (t, J = 6.4 Hz, 2H), 1.70 (s, 6H), 1.23 (t, J = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.6, 154.0, 153.9, 151.8, 137.8, 131.4, 126.6, 118.5, 61.5, 51.3, 44.8, 31.2, 26.1, 24.6, 14.0 ppm. HRMS: calcd for C₂₁H₂₈ClN₅O₄Na [M+Na]⁺ 472.1722, found 472.1728.

(E)-Diethyl 2-(4-(2-chloro-6-morpholino-9H-purin-9-yl)but-2-en-1-yl)malonate (3fa)

Colorless oil; 89% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.66 (s, 1H), 5.73 (dd, J = 7.6, 5.0 Hz, 2H), 4.68 (d, J = 4.3 Hz,

2H), 4.22-4.15 (m, 8H), 3.82 (t, J = 4.8 Hz, 4H), 3.40 (t, J = 7.2 Hz, 1H), 2.70-2.60 (m, 2H), 1.24 (t, J = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.6, 154.0, 153.9, 152.0, 138.4, 131.7, 126.5, 118.7, 66.9, 61.6, 51.4, 44.9, 31.2, 14.1 ppm. HRMS: calcd for C₂₀H₂₆ClN₅O₅Na [M+Na]⁺ 474.1515, found 474.1518.

(E)-Dimethyl 2-(4-(6-phenyl-9H-purin-9-yl)but-2-en-1-yl)malonate (3gb)

Colorless oil; 67% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 9.02 (s, 1H), 8.77 (d, *J* = 7.6 Hz, 2H), 8.10 (s, 1H), 7.60-7.51 (m, 3H), 5.87-5.75 (m, 2H), 4.86 (d, *J* = 4.4 Hz, 2H), 3.71 (s, 6H), 3.47 (t, *J* = 7.2 Hz, 1H), 2.69 (t, *J* = 6.4 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.9, 154.9, 152.4, 152.2, 143.9, 135.6, 131.8, 131.0, 131.0, 129.7, 128.6, 126.5, 52.7, 51.0, 45.0, 31.3 ppm. HRMS: calcd for C₂₀H₂₀N₄O₄Na [M+Na]⁺ 403.1377, found 403.1371.

(E)-Diethyl 2-(4-(6-(phenanthren-9-yl)-9H-purin-9-yl)but-2-en-1-yl)malonate (3ha)

Colorless oil; 69% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 9.17 (s, 1H), 8.77 (dd, J = 19.6, 8.4 Hz, 2H), 8.27 (s, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.11 (s, 1H), 7.98 (d, J = 7.6 Hz, 1H), 7.75-7.55 (m, 4H), 5.92-5.83 (m, 2H), 4.92 (d, J = 3.2 Hz, 2H), 4.23-4.14 (m, 4H), 3.45 (t, J = 7.2 Hz, 1H), 2.71 (t, J = 5.6 Hz, 2H), 1.24 (t, J = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.5, 158.0, 152.3, 151.9, 144.4, 132.9, 132.3, 131.3, 131.1, 130.9, 129.6, 129.6, 128.5, 127.7, 126.8, 126.8, 126.7, 126.5, 126.2, 122.9, 122.6, 61.6, 51.3, 45.2, 31.2, 14.1 ppm. HRMS: calcd for C₃₀H₂₈N₄O₄Na [M+Na]⁺ 531.2003, found 531.2002.

(E)-Diethyl 2-(4-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)but-2-en-1-yl) malonate (3ia)

Colorless oil; 94% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.53 (s, 1H), 5.84-5.73 (m, 2H), 4.87 (d, *J* = 4.0 Hz, 2H), 4.21-4.13 (m, 4H), 3.58 (s, 3H), 3.42-3.38 (m, 4H), 2.66 (t, *J* = 6.4 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.6, 155.2, 151.7, 148.8, 140.5, 132.2, 126.8, 106.8, 61.6, 51.3, 48.3, 31.2, 29.8, 28.0, 14.1 ppm. HRMS: calcd for C₁₈H₂₄N₄O₆Na [M+Na⁺] 415.1588, found 415.1587.

(E)-Dimethyl 2-(4-(2-chloro-1H-benzo[d]imidazol-1-yl)but-2-en-1-yl)malonate (3jb)

Yellow oil; 68% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 7.71-7.69 (m, 1H), 7.30-7.26 (m, 3H), 5.71-5.56 (m, 2H), 4.76 (d, J = 5.2 Hz, 2H), 3.66 (s, 6H), 3.41 (t, J = 7.2 Hz, 1H), 2.64 (t, J = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.9, 141.7, 140.3, 134.8, 130.2, 126.1, 123.2, 122.7, 119.5, 109.6, 52.5, 51.1, 45.8, 31.2 ppm. HRMS: calcd for C₁₆H₁₇ClN₂O₄Na [M+Na]⁺ 359.0769, found 359.0763. (*E*)-Diethyl 2-(4-(4-nitro-1*H*-imidazol-1-yl)but-2-en-1-yl)malonate (3ka)

Yellow oil; 75% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.00 (s, 1H), 7.58 (s, 1H), 5.79-5.68 (m, 2H), 4.91 (d, J = 4.4 Hz, 2H), 4.22-4.14 (m, 4H), 3.39 (t, J = 6.4 Hz, 1H), 2.65 (t, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.5, 140.7, 133.5, 132.7, 125.9, 61.6, 51.2, 49.4, 31.1, 14.0 ppm. HRMS: calcd for C₁₄H₁₉N₃O₆Na [M+Na]⁺ 348.1166, found 348.1174.

(E)-Diethyl 2-(4-(6-chloro-7H-purin-7-yl)but-2-en-1-yl)malonate (4aa)

Colorless oil; 2% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.26 (s, 1H), 5.72-5.70 (m, 2H), 5.02 (d, J = 5.2 Hz, 2H), 4.27-4.18 (m, 4H), 3.50 (t, J = 7.2 Hz, 1H), 2.86 (t, J = 6.4 Hz, 2H), 1.28 (t, J = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.7, 151.9, 151.7, 150.9, 145.3, 131.6, 130.9, 125.3, 61.8, 51.1, 40.9, 26.8, 14.1 ppm. HRMS: calcd for C₁₆H₁₉ClN₄O₄Na [M+Na]⁺ 389.0988, found 389.0987.

Diethyl 2-(2-(6-chloro-9H-purin-9-yl)but-3-en-1-yl)malonate (5aa)

Colorless oil; 79% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.12 (s, 1H), 6.23-6.22 (m, 1H), 5.38 (d, *J* = 10.4 Hz, 1H), 5.32-5.28 (m, 2H), 4.23-4.03 (m, 4H), 3.20 (t, *J* = 7.4 Hz, 1H), 2.73 (t, *J* = 8.0 Hz, 2H), 1.26-1.17 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.1, 168.1, 151.8, 151.5, 151.0, 143.8, 134.1, 131.6, 119.6, 61.9, 61.8, 56.5, 48.6, 32.6, 13.9, 13.8 ppm. HRMS: calcd for C₁₆H₁₉ClN₄O₄Na [M+Na]⁺ 389.0987, found 389.0978.

Dimethyl 2-(2-(6-chloro-9H-purin-9-yl)but-3-en-1-yl)malonate (5ab)

Colorless oil; 87% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.12 (s,1H), 6.23-6.14 (m, 1H), 5.38 (d, *J* = 10.4 Hz, 1H), 5.32-5.28 (m, 2H), 3.73 (s, 3H), 3.63 (s, 3H), 3.24 (t, *J* = 7.2 Hz, 1H), 2.75 (t, *J* = 7.6 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.5, 168.5, 151.9, 151.5, 151.2, 143.8, 134.0, 131.7, 119.8, 56.5, 52.9, 52.9, 48.3, 32.8 ppm. HRMS: calcd for C₁₄H₁₆ClN₄O₄Na [M+Na]⁺ 361.0674, found 361.0664.

Diisopropyl 2-(2-(6-chloro-9H-purin-9-yl)but-3-en-1-yl)malonate (5ac)

Colorless oil; 67% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.13 (s, 1H), 6.23-6.14 (m, 1H), 5.37 (dd, J = 10.4, 0.7 Hz, 1H), 5.31-5.27 (m, 2H), 5.10-5.00 (m, 1H), 4.98-4.89 (m, 1H), 3.11 (t, J = 7.2 Hz, 1H), 2.70 (t, J = 7.2 Hz, 2H), 1.24-1.14 (m, 12H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 167.8, 167.7, 151.9, 151.5, 151.2, 143.8, 134.2, 131.7, 119.7, 69.7, 69.6, 56.6, 49.0, 32.6, 21.6, 21.5, 21.5, 21.4 ppm. HRMS: calcd for C₁₈H₂₃ClN₄O₄Na [M+Na]⁺ 417.1300, found 417.1292.

Di-tert-butyl 2-(2-(6-chloro-9*H*-purin-9-yl)but-3-en-1-yl)malonate (5ad)

Colorless oil; 63% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.13 (s, 1H), 6.23-6.14 (m, 1H), 5.36 (d, *J* = 10.0 Hz, 1H), 5.30-5.26 (m, 2H), 2.99 (t, *J* = 7.2 Hz, 1H), 2.62 (t, *J* = 7.6 Hz, 2H), 1.45 (s, 9H), 1.39 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 167.6, 167.5, 151.9,151.6, 151.2, 143.8, 134.4, 131.8, 119.5, 82.4, 82.4, 56.6, 50.5, 32.8, 27.8, 27.8 ppm. HRMS: calcd for C₂₀H₂₇ClN₄O₄Na [M+Na]⁺ 445.1613, found 445.1605.

Dimethyl 2-(2-(6-iodo-9H-purin-9-yl)but-3-en-1-yl)malonate (5bb)

Colorless oil; 44% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.62 (s, 1H), 8.12 (s, 1H), 6.22-6.14 (m, 1H), 5.39-5.24 (m, 3H), 3.73 (s, 3H), 3.63 (s, 3H), 3.23 (t, J = 7.4 Hz, 1H), 2.74 (t, J = 7.4 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.6, 168.5, 152.0, 147.8, 143.1, 138.7, 134.0, 122.4, 119.8, 56.6, 53.0, 52.9, 48.3, 32.8 ppm. HRMS: calcd for C₁₄H₁₅IN₄O₄Na [M+Na]⁺ 453.0030, found 453.0029. Diethyl 2-(2-(6-ethoxy-9H-purin-9-yl)but-3-en-1-yl)malonate (5la)

Colorless oil; 48% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.50 (s, 1H), 7.90 (s, 1H), 6.22-6.13 (m, 1H), 5.33-5.21 (m, 3H), 4.66 (q, J = 7.2 Hz, 2H), 4.22-4.03 (m, 4H), 3.17 (t, J = 7.2 Hz, 1H), 2.70 (t, J = 7.4 Hz, 2H), 1.51 (t, J = 7.2 Hz, 3H), 1.21 (dt, J = 19.9, 7.1 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.4, 168.3, 160.9, 152.1, 151.8, 140.6, 134.8, 121.6, 118.8, 63.1, 61.9, 61.9, 55.8, 48.6, 32.9, 14.5, 14.0, 13.9 ppm. HRMS: calcd for C₁₈H₂₄N₄O₅Na [M+Na]⁺ 399.1639, found 399.1642.

Diethyl 2-(2-(2-chloro-6-(piperidin-1-yl)-9H-purin-9-yl)but-3-en-1-yl)malonate (5ea)

Colorless oil; 89% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.66 (s, 1H), 6.15-6.06 (m, 1H), 5.32-5.21 (m, 2H), 5.19-5.15 (m, 1H), 4.28-4.01 (m, 8H), 3.16 (dd, *J* = 8.0, 6.4 Hz, 1H), 2.70-2.51 (m, 2H), 1.72-1.69 (m, 6H), 1.26 (t, *J* = 7.4 Hz, 3H), 1.19 (t, *J* = 7.4 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.4, 168.3, 154.0, 153.8, 151.9, 136.5, 135.0, 118.5, 61.9, 61.8, 54.7, 48.6, 33.1, 26.1, 24.6, 13.9, 13.9 ppm. HRMS: calcd for C₂₁H₂₈ClN₅O₄Na [M+ Na⁺] 472.1722, found 472.1713.

Diethyl 2-(2-(6-cyclopentyl-9H-purin-9-yl)but-3-en-1-yl)malonate (5ma)

Colorless oil; 62% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.87 (s, 1H), 8.00 (s, 1H), 6.24-6.15 (m, 1H), 5.35-5.25 (m, 3H), 4.22-4.14 (m, 2H), 4.11-3.99 (m, 2H), 3.93-3.84 (m, 1H), 3.22 (t, *J* = 7.2 Hz, 1H), 2.79-2.67 (m, 2H), 2.17-1.76 (m, 8H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.4, 168.3, 166.4, 152.5, 150.4, 142.0, 134.8, 132.3, 119.0, 61.9, 61.8, 55.7, 48.8, 42.6, 32.8, 32.8, 26.3, 14.0, 13.9 ppm. HRMS: calcd for C₂₁H₂₈N₄O₄Na [M+Na]⁺ 423.2003, found 423.1996.

Diethyl 2-(2-(6-(phenanthren-9-yl)-9H-purin-9-yl)but-3-en-1-yl)malonate (5ha)

Colorless oil; 82% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 9.16 (s, 1H), 8.77 (dd, J = 20.0, 8.0 Hz, 2H), 8.29-8.25 (m, 2H), 8.12 (s, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.73-7.56 (m, 4H), 6.32-6.24 (m, 1H), 5.44-5.35 (m, 3H), 4.27-4.07 (m, 4H), 3.33 (t, J = 7.2 Hz, 1H), 2.88-2.76 (m, 2H), 1.29-1.20 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.4, 168.3, 158.2, 152.3, 151.9, 143.3, 143.3, 134.6, 132.9, 131.3, 131.2, 131.2, 131.0, 131.0, 129.6, 127.8, 126.8, 126.8, 126.7, 126.5, 122.9, 122.6, 119.4, 62.0, 61.9, 56.0, 48.8, 32.8, 14.0, 14.0 ppm. HRMS: calcd for C₃₀H₂₉N₄O₄ [M+H]⁺ 509.2183, found 509.2174.

Diethyl 2-(2-(1H-benzo[d]imidazol-1-yl)but-3-en-1-yl)malonate 5na

Yellow oil; 61% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.93 (s, 1H), 7.83-7.80 (m, 1H), 7.42-7.40 (m, 1H), 7.31-7.28 (m, 2H), 6.12-6.04 (m, 1H), 5.35 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.23 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.06-5.01 (m, 1H), 4.21-4.03 (m, 4H), 3.18 (dd, *J* = 8.0, 6.4 Hz, 1H), 2.73-2.59 (m, 2H), 1.24-1.18 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.6, 168.4, 144.0, 141.4, 135.0, 133.1, 123.0, 122.4, 120.6, 118.7, 110.5, 61.9, 61.8, 56.1, 48.5, 32.6, 14.0, 13.9 ppm. HRMS: calcd for C₁₈H₂₂N₂O₄Na [M+Na]⁺ 353.1472, found 353.1467. Diethyl 2-(2-(5,6-dimethyl-1H-benzo[d]imidazol-1-yl)but-3-en-1-yl)malonate 5oa

Yellow oil; 35% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.55 (s, 1H), 7.13 (s, 1H), 6.09-6.01 (m, 1H), 5.30 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.18 (dd, *J* = 17.2, 1.2 Hz, 1H), 4.98-4.93 (m, 1H), 4.21-4.05 (m, 4H), 3.16-3.13 (m, 1H), 2.69-2.56 (m, 2H), 2.36-2.35 (m, 6H), 1.23-1.16 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.5, 168.3, 142.4, 140.6, 135.1, 132.0, 131.4, 131.3, 120.3, 118.2, 110.5, 61.7, 61.7, 55.9, 48.4, 32.4, 20.5, 20.1, 13.8, 13.8 ppm. HRMS: calcd for C₂₀H₂₇N₂O₄ [M+H⁺] 359.1965, found 359.1957

Diethyl 2-(2-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)but-3-en-1-yl)malonate 5pa

Yellow oil; 87% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.06 (d, J = 8.4 Hz, 1H), 7.52-7.44(m, 2H), 7.39-7.35 (m, 1H), 6.22-6.14 (m, 1H), 5.50-5.44 (m, 1H), 5.32 (d, J = 10.4 Hz, 1H), 5.23 (dd, J = 16.8, 0.8 Hz, 1H), 4.20-4.03 (m, 4H), 3.22 (dd, J = 8.4, 6.4 Hz, 1H), 2.96-2.88 (m, 1H), 2.80-2.73 (m, 1H), 1.22-1.17 (m, 6H) ppm. 13**C NMR** (100 MHz, CDCl3): δ 168.6, 168.4, 146.1, 134.8, 132.5, 127.3, 124.1, 120.1, 118.9, 109.7, 61.7, 61.7, 59.7, 48.4, 32.4, 13.9 ppm. HRMS: calcd for C₁₇H₂₁N₃O₄Na [M+Na]+ 354.1424, found 354.1419.

Diethyl 2-(2-(6-nitro-1*H*-benzo[*d*]imidazol-1-yl)but-3-en-1-yl)malonate (5sa)

Yellow oil; 45% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.38 (d, J = 2.0 Hz, 1H), 8.23 (dd, J = 9.2, 2.0 Hz, 1H), 8.17 (s, 1H), 7.88 (d, J = 8.8 Hz, 1H), 6.13-6.05 (m, 1H), 5.46 (dd, J = 10.4, 1.2 Hz, 1H), 5.31 (dd, J =

17.2, 1.6 Hz, 1H), 5.15-5.10 (m, 1H), 4.24-4.09 (m, 4H), 3.20 (t, J = 7.2 Hz, 1H), 2.69 (t, J = 7.6 Hz, 2H), 1.25-1.20 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.3, 168.1, 148.2, 145.8, 143.9, 134.1, 132.5, 120.8, 119.8, 118.3, 107.5, 62.1, 62.1, 56.8, 48.5, 32.7, 13.9, 13.9 ppm. HRMS: calcd for C₁₈H₂₂N₃O₆ [M+H⁺] 354.1424, found 354.1424.

Diethyl 2-(2-(5-nitro-1H-benzo[d]imidazol-1-yl)but-3-en-1-yl)malonate (5sa')

Yellow oil; 37% yield.

¹**H NMR** (400 MHz, CDCl3): δ 8.73 (d, J = 2.0 Hz, 1H), 8.24 (dd, J = 8.8, 2.0 Hz, 1H), 8.11 (s, 1H), 7.52 (d, J = 9.2 Hz,1H), 6.12-6.04 (m,1H), 5.44 (dd, J = 10.4, 1.2 Hz,1H), 5.28 (dd, J = 17.2, 1.2 Hz, 1H), 5.14-5.08 (m, 1H), 4.21-4.07 (m, 4H), 3.20 (t, J = 7.2 Hz, 1H), 2.72-2.59 (m, 2H), 1.22 (q, J = 7.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl3): δ 168.2, 168.2, 144.7, 143.8, 143.2, 137.2, 134.0, 119.8, 118.8, 117.2, 110.6, 62.0, 62.0, 56.7, 48.3, 32.5, 13.9, 13.9 ppm. HRMS: calcd for C₁₈H₂₁N₃O₆Na [M+Na]+ 398.1323, found 398.1323.

Diethyl 2-(2-(6-chloro-7*H*-purin-7-yl)but-3-en-1-yl)malonate (6aa)

Colorless oil; 72% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.90 (s, 1H), 8.35 (s, 1H), 6.12-6.03 (m, 1H), 5.74 (q, *J* = 7.2 Hz, 1H), 5.41 (d, *J* = 10.4 Hz, 1H), 5.22 (d, *J* = 17.2 Hz, 1H), 4.23-4.05 (m, 4H), 3.31 (t, *J* = 7.2 Hz, 1H), 2.77-2.68 (m, 2H), 1.25-1.19 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.0, 167.9, 161.6, 152.3, 146.9, 142.7, 134.8, 122.1, 119.8, 62.1, 62.0, 57.3, 48.5, 33.5, 13.8 ppm. HRMS: calcd for C₁₆H₁₉ClN₄O₄Na [M+Na]⁺ 389.0987, found 389.0978.

Dimethyl 2-(2-(6-chloro-7*H*-purin-7-yl)but-3-en-1-yl)malonate (6ab)

Colorless oil; 84% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.93(s, 1H), 8.36 (s, 1H), 6.13-6.05 (m, 1H), 5.76 (d, J = 7.6 Hz, 1H), 5.44 (dd, J = 10.4, 1.2 Hz, 1H), 5.25 (dd, J = 17.2, 1.2 Hz, 1H), 3.75 (s, 3H), 3.68 (s, 3H), 3.38 (t, J = 7.2 Hz, 1H), 2.78-2.67 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.4, 168.3, 161.6, 152.5, 146.8, 142.8, 134.7, 122.1, 120.0, 57.3, 53.1, 53.0, 48.2, 33.7 ppm. HRMS: calcd for C₁₄H₁₅ClN₄O₄Na [M+Na]⁺ 361.0674, found 361.0668.

Diisopropyl 2-(2-(6-chloro-7*H*-purin-7-yl)but-3-en-1-yl)malonate (6ac)

Colorless oil; 64% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.90 (s, 1H), 8.36 (s, 1H), 6.11-6.03 (m, 1H), 5.76-5.07 (m, 1H), 5.40 (dd, J = 10.4, 1.2 Hz, 1H), 5.20 (dd, J = 16.8, 1.2 Hz, 1H), 5.07-4.91 (m, 2H), 3.24 (t, J = 7.2 Hz, 1H), 2.76-2.63 (m, 2H), 1.22-1.15(m, 12H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 167.6, 161.7, 152.5, 146.9, 142.8, 135.0, 122.2, 119.7, 69.9, 69.9, 57.5, 48.9, 33.4, 21.5, 21.5, 21.4 ppm. HRMS: calcd for C₁₈H₂₃ClN₄O₄Na [M+Na]⁺ 417.1300, found 417.1290.

Di-tert-butyl 2-(2-(6-chloro-7*H*-purin-7-yl)but-3-en-1-yl)malonate (6ad)

Colorless oil; 41% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.90 (s, 1H), 8.36 (s, 1H), 6.10-6.01 (m, 1H), 5.70 (q, J = 7.2 Hz, 1H), 5.38 (dd, J = 10.4, 0.8 Hz, 1H), 5.17 (dd, J = 17.2, 0.8 Hz, 1H), 3.15 (t, J = 7.2 Hz, 1H), 2.68-2.59 (m, 2H), 1.44 (s, 3H), 1.40 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 167.5, 167.4, 161.7, 152.4, 146.9, 142.9, 135.3, 122.3, 119.5, 82.7, 57.7, 50.5, 33.4, 27.9, 27.8 ppm. HRMS: calcd for C₂₀H₂₇ClN₄O₄Na [M+Na]⁺ 445.1613, found 445.1606.

Dimethyl 2-(2-(6-iodo-7*H*-purin-7-yl)but-3-en-1-yl)malonate (6bb)

Colorless oil; 31% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.37 (s, 1H), 6.09-6.03 (m, 2H), 5.40 (d, J = 9.2 Hz, 1H), 5.16 (d, J = 15.6 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.39 (t, J = 7.2 Hz, 1H), 2.83-2.71 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.4, 168.4, 159.0, 152.7, 146.9, 135.0, 127.6, 119.6, 108.3, 55.0, 53.2, 53.1, 48.2, 33.5 ppm. HRMS: calcd for C₁₄H₁₅IN₄O₄Na [M+Na]⁺ 453.0030, found 453.0023.

Dimethyl 2-(2-(2,6-dichloro-7*H*-purin-7-yl)but-3-en-1-yl)malonate (6qb)

Colorless oil; 33% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.35 (s, 1H), 6.10-6.01 (m, 1H), 5.68 (q, *J* = 6.8 Hz, 1H), 5.44 (dd, *J* = 9.2, 1.2 Hz, 1H), 5.23 (dd, *J* = 15.6, 1.2 Hz, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 3.35 (t, *J* = 7.2 Hz, 1H), 2.74-2.69 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.3, 168.3, 163.3, 153.3, 148.1, 143.6, 134.4, 121.4, 120.3, 57.6, 53.2, 53.1, 48.1, 33.6 ppm. HRMS: calcd for C₁₄H₁₄Cl₂N₄O₄Na [M+Na]⁺ 395.0284, found 395.0277.

Diethyl 2-(2-(2-methyl-1*H*-benzo[*d*]imidazol-1-yl)but-3-en-1-yl)malonate (6ra)

Yellow oil; 71% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.70-7.67 (m, 1H), 7.35-7.33 (m, 1H), 7.23-7.16 (m, 2H), 6.14-6.06 (m, 1H), 5.29 (dd, J = 10.4, 1.2 Hz, 1H), 5.13-5.06 (m, 2H), 4.23-4.06 (m, 2H), 3.98 (q, J = 7.2 Hz, 2H), 3.12-3.01 (m, 1H), 2.84-2.76 (m, 1H), 2.72-2.64 (m, 1H), 2.57 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.6, 168.3, 151.6, 142.7, 1346, 133.5, 122.1, 122.0, 119.3, 118.0, 111.1, 61.8, 61.8, 55.6, 48.5, 31.2, 14.6, 13.9, 13.8 ppm. HRMS: calcd for C₁₉H₂₅N₂O₄ [M+H⁺] 345.1809, found 345.1800.

Diethyl 2-(2-(4-nitro-1*H*-imidazol-1-yl)but-3-en-1-yl)malonate (6ka)

Yellow oil; 95% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.48 (s, 1H), 5.99-5.91 (m, 1H), 5.44 (d, *J* = 10.4 Hz, 1H), 5.30 (d, *J* = 17.2 Hz, 1H), 4.83-4.77 (m, 1H), 4.23-4.17 (m, 4H), 3.21 (t, *J* = 7.2 Hz, 1H), 2.53-2.48 (m, 2H), 1.29-1.25 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.1, 168.0, 135.1, 134.1, 120.4, 117.6, 62.2, 62.2, 59.1, 48.2, 33.4, 14.0, 14.0 ppm. HRMS: calcd for C₁₄H₂₁₉N₃O₆Na [M+Na⁺] 348.1166, found 348.1165.

Diethyl 2-(2-(6-chloro-1*H*-benzo[*d*]imidazol-1-yl)but-3-en-1-yl)malonate (6ta)

Yellow oil; 45% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.91 (s, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.38 (d, J = 1.2 Hz, 1H), 7.24 (d, J = 1.6 Hz, 1H), 6.10-6.01 (m, 1H), 5.38 (d, J = 10.4 Hz, 1H), 5.24 (d, J = 17.2 Hz, 1H), 5.00-4.96 (m, 1H), 4.23-4.07 (m, 4H), 3.15 (t, J = 7.2 Hz, 1H), 2.63 (t, J = 7.2 Hz, 2H), 1.25-1.19 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.5, 168.3, 142.6, 142.2, 134.6, 133.7, 128.9, 123.2, 121.4, 119.0, 110.6, 62.0, 61.9, 56.2, 48.5, 32.6, 13.9, 13.9 ppm. HRMS: calcd for $C_{18}H_{22}CIN_2O_4Na$ [M+Na⁺] 387.1082, found 387.1080.

Diethyl 2-(2-(5-chloro-1H-benzo[d]imidazol-1-yl)but-3-en-1-yl)malonate (6ta')

Yellow oil; 39% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.24 (s, 1H), 6.10-6.01 (m, 1H), 5.37 (dd, J = 10.4, 0.8 Hz, 1H), 5.22 (dd, J = 17.2, 0.8 Hz, 1H), 5.04-4.99 (m, 1H), 4.21-4.05 (m, 4H), 3.18-3.14 (m, 1H), 2.70-2.57 (m, 2H), 1.24-1.18 (m, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 168.4, 168.3, 144.8, 142.6, 134.6, 131.7, 128.1, 123.6, 120.3, 119.0, 111.3, 61.9, 61.9, 56.4, 48.4, 32.5, 14.0, 13.9 ppm. HRMS: calcd for C₁₈H₂₂ClN₂O₄ [M+H⁺] 365.1263, found 365.1266.

(E)-2-(4-(6-Chloro-9H-purin-9-yl)but-2-en-1-yl)propane-1,3-diol (7aa)

Colorless oil; 53% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.14 (s, 1H), 5.89-5.70 (m, 2H), 4.87 (d, J = 6.4 Hz, 2H), 3.81-3.77 (m, 2H), 3.69-3.65 (m, 2H), 2.16 (t, J = 7.2 Hz, 4H), 1.88-1.61 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 152.0, 144.9, 135.0, 131.7, 124.4, 65.3, 46.0, 41.7, 31.0 ppm. HRMS: calcd for C₁₂H₁₅ClN₄O₂Na [M+Na]⁺ 305.0776, found 305.0776.

2-(2-(6-Chloro-9H-purin-9-yl)but-3-en-1-yl)propane-1,3-diol (8aa)

Colorless oil; 47% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.19 (s, 1H), 6.20-6.12 (m, 1H), 5.43-5.26 (m, 3H), 3.80-3.64 (m, 4H), 2.46 (d, J = 19.1 Hz, 2H), 2.30-2.16 (m, 2H), 1.58-1.52 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 151.8, 151.5, 151.2, 143.9, 135.2, 131.6, 119.1, 64.4, 64.4, 56.3, 38.8, 32.7 ppm. HRMS: calcd for C₁₂H₁₅ClN₄O₂Na [M+Na]⁺ 305.0776, found 305.0776.

10. References:

- [1] H. C. Koppel, D. E. O'Brien and R. K. Robins, J. Org. Chem., 1959, 24, 259.
- [2] G.-R. Qu, L. Zhao, D.-C. Wang, J. Wu and H.-M. Guo, Green Chem., 2008, 10, 287.
- [3] M. Hocek, D. Hocková and H. Dvořáková, Synthesis, 2004, 6, 889.
- [4] H. Dvořáková, D. Dvořák and A. Holý, Tetrahedron Lett., 1996, 37, 1285.
- [5] A. T. Parsons, M. J. Campbell and J. S. Johnson, Org. Lett., 2008, 10, 2541.
- [6] (a) Y. Hamashima, D. Sawada, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 1999, 121, 2641; (b) J. Casas, C. Nájera, J. M. Sansano and J. M. Saá, Org. Lett., 2002, 4, 2589; (c) Y. Hamashima, D. Sawada, H. Nogami, M. Kanai and M. Shibasaki, Tetrahedron, 2001, 57, 805; (d) J. Casas, C. Nájera, J. M. Sansano and J. M. Saá, Tetrahedron, 2004, 60, 10487.

[7] (a) M. P. Sibi, K. Itoh and C. P. Jasperse, J. Am. Chem. Soc., 2004, 126, 5366; (b) M. P. Sibi, G. Petrovic, and J. Zimmerman, J. Am. Chem. Soc., 2005, 127, 2390, (c) M. P. Sibi, N. Prabagaran, S. G. Ghorpade and C. P. Jasperse, J. Am. Chem. Soc., 2003, 125, 11796.

11. Copies of ¹H NMR and ¹³C NMR spectra ¹H-NMR for 3aa

HMBC for 3ab

Noesy for 3ab

¹H-NMR for 3ac

¹³C-NMR for 3ac

¹H-NMR for 3ad

¹³C-NMR for 3ad

¹H-NMR for 3ca

¹³C-NMR for 3ca

¹H-NMR for 3da

¹³C-NMR for 3da

¹H-NMR for 3ea

¹³C-NMR for 3ea

¹³C-NMR for 3fa

¹³C-NMR for 3gb

¹H-NMR for 3ha

¹³C-NMR for 3ha

S36
¹H-NMR for 3ia

¹³C-NMR for 3jb

¹H-NMR for 3ka

ppm (t1)

¹H-NMR for 4aa

¹³C-NMR for 4aa

¹H-NMR for 5aa

¹³C-NMR for 5aa

¹H-NMR for 5ab

S42

Т

100

50

| 150

ا 200 ppm (t1) 0

0

HSQC for 5ab

HMBC for 5ab

¹H-NMR for 5ac

¹³C-NMR for 5ac

¹H-NMR for 5ad

¹H-NMR for 5ea

ppm (t1)

¹³C-NMR for 5ea

¹H-NMR for 5ma

¹³C-NMR for 5ma

¹H-NMR for 5ha

¹³C-NMR for 5ha

ppm (t1)

¹³C-NMR for 5na

¹H-NMR for 50a

ppm (t1)

¹³C-NMR for 50a

¹H-NMR for 5pa

ppm (t1)

¹³C-NMR for 5pa

¹H-NMR for 5sa

¹³C-NMR for 5sa

¹H-NMR for 5sa'

ppm (t1)

¹³C-NMR for 5sa'

Noesy for 5sa'

¹H-NMR for 6aa

S58

¹H-NMR for 6ab

¹³C-NMR for 6ab

HSQC for 6ab

HMBC for 6ab

¹H-NMR for 6ac

¹³C-NMR for 6ac

¹H-NMR for 6ad

¹³C-NMR for 6ad

¹³C-NMR for 6bb

¹H-NMR for 6ra

ppm (t1)

¹³C-NMR for 6ra

¹H-NMR for 6ka

¹³C-NMR for 6ka

HSQC for 6ka

HMBC for 6ka

¹H-NMR for 6ta

ppm (t1)

¹³C-NMR for 6ta

Noesy for 6ta

¹H-NMR for 6ta'

¹³C-NMR for 6ta'

Noesy for 6ta'

