Photo-induced living radical polymerization of acrylates utilizing a discrete copper(II)/formate complex

Athina Anastasaki ^{a,b,‡}, Vasiliki Nikolaou ^{a,‡}, Francesca Brandford-Adams^a, Gabit Nurumbetov^a, Qiang Zhang^a, Guy J. Clarkson^a, David J. Fox^a, Paul Wilson ^{a,b}, Kristian Kempe^{a,b} and David M. Haddleton ^{a,b*}.

a - University of Warwick, Chemistry Department, Library road, CV4 7AL, Coventry United Kingdom.

b- Monash Institute of Pharmaceutical Sciences, Monash University, Parksville, VIC 3052, Australia.

[‡]These authors contributed equally to this work.

* Email: <u>D.M.Haddleton@warwick.ac.uk</u>

Figure S2: Typical set up for photo-induced polymerization.

Figure S3a: Molecular weight distribution of poly(methyl acrylate), M_n = 3300g/mol; D = 1.19; 75% conversion. [MA]:[EBiB]:[Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50]:[1]:[0.01] in DMSO 50% v/v.

Figure S3b: MALDI-ToF-MS reflectron mode spectrum of poly(methyl acrylate) obtained from photo-mediated polymerization: [MA] : [EBiB] : $[Cu(Me_6-Tren)(O_2CH)](ClO_4) = [50]$: [1] : [0.01] in DMSO 50% *v/v*.

Figure S4a: Molecular weight distribution of poly(methyl acrylate), M_n = 4100g/mol; D = 1.17; 85% conversion. [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄)] = [50] : [1] : [0.02] in DMSO 50% *v*/*v*.

Figure S4b: MALDI-ToF-MS reflectron mode spectrum of poly(methyl acrylate) obtained from photo-mediated polymerization: [MA] : [EBiB] : $[Cu(Me_6-Tren)(O_2CH)](ClO_4) = [50]$: [1] : [0.02] in DMSO 50% *v/v*.

Figure S5a: Molecular weight distribution of poly(methyl acrylate), M_n = 4000g/mol; D = 1.15; 89% conversion. [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.04] in DMSO 50% v/v.

Figure S5b: MALDI-ToF-MS reflectron mode spectrum of poly(methyl acrylate) obtained from photo-mediated polymerization: [MA] : [EBiB] : $[Cu(Me_6-Tren)(O_2CH)](ClO_4) = [50]$: [1] : [0.04] in DMSO 50% *v/v*.

Figure S6a: Molecular weight distribution of poly(methyl acrylate), M_n = 4400g/mol; D = 1.12; 94% conversion. [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.06] in DMSO 50% v/v.

Figure S6b: MALDI-ToF-MS reflectron mode spectrum of poly(methyl acrylate) obtained from photo-mediated polymerization: [MA] : [EBiB] : $[Cu(Me_6-Tren)(O_2CH)](ClO_4) = [50]$: [1] : [0.06] in DMSO 50% *v/v*.

Figure S7a: Molecular weight distribution of poly(methyl acrylate), M_n = 4900g/mol; D = 1.07; 96% conversion. [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.08] in DMSO 50% v/v.

Figure S7b: MALDI-ToF-MS reflectron mode spectrum of poly(methyl acrylate) obtained from photo-mediated polymerization: [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.08] in DMSO 50% v/v. Top figure 25% laser power, bottom figure 60% laser power (We believe the additional peaks in the last figure are due to fragmentation).

Figure S7c: ¹H NMR (400MHz, CDCl₃) of poly(methyl acrylate) obtained from UV experiment: [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.08] in DMSO 50% v/v.

Figure S8a: Kinetic data for the polymerization of poly(methyl acrylate) under UV irradiation.

Figure S8b: SEC trace for the kinetic data shown above.

Figure S9: Molecular weight and dispersity data of the polymerization of MA under UV irradiation

Figure S10a: In situ chain extension and block copolymerization from a PMA macroinitiator. Initial conditions: [MA] : [EBiB] : $[Cu(Me_6-Tren)(O_2CH)](ClO_4) = [50] : [1] : [0.08]$, DMSO (50%, *v/v*). Chain extension achieved upon addition of an aliquot of MA (50 equiv.) in DMSO (33%, *v/v*).

Figure S10b: ¹H NMR for the in situ chain extension of PMA.

Figure S11: ¹H NMR (400 MHz, CDCl₃) of (PMA)₅₀-*b*-P(EGA)₅₀ prepared by sequential addition of EGA to a PMA macroinitiator. Homopolymer [MA] : [EBiB] : [Cu(Me₆-

Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.08] in DMSO (50:50 ν/ν monomer/solvent). Block copolymerization achieved upon addition of EGA [EBiB] : [EGA] = [1] : [50].

Figure S12: ¹H NMR (400 MHz, CDCl₃) of $P(EGA)_{50}$ -*b*-(PMA)₅₀ prepared by sequential addition of MA to a P(EGA) macroinitiator. Homopolymer [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.08] in DMSO (50:50 *v/v* monomer/solvent). Block copolymerization achieved upon addition of MA [EBiB] : [MA] = [1] : [50].

Figure S13: ¹H NMR (400MHz, CDCl₃) of poly(methyl acrylate) obtained from UV experiment: [MA] : [EBiB] : $[Cu(Me_6-Tren)(O_2CH)](ClO_4) = [50] : [1] : [0.08]$ in DMSO 50% *v/v* under **dark conditions**.

Figure S14: Typical set up for polymerization under dark conditions.

Figure S15: SEC traces of temporal control via consecutive light and dark exposure.

 $[MA] : [EBiB] : [Cu(Me_6-Tren)(O_2CH)](ClO_4) = [50] : [1] : [0.08].$

Figure S16: Molecular weight distribution of poly(methyl acrylate), M_n = 4900g/mol; D = 1.07; 96% conversion **before** (right) **and after 6 months** M_n = 5000g/mol; D = 1.09; 97%

conversion (left). [MA] : [EBiB] : [Cu(Me₆-Tren)(O₂CH)](ClO₄) = [50] : [1] : [0.08] in DMSO 50% v/v.

Figure S17: a) **Freshly distilled** Me₆-Tren b) Freshly distilled Me₆-Tren (left) *vs* **degraded** Me₆-Tren (right) after 1 month stored under nitrogen in the fridge c) [Cu(Me₆-Tren)(O₂CH)](ClO₄) **stable after 6 months** of exposure in light/air/ambient temperature d) **Reaction vial** under UV irradiation in a homemade dark box.

Figure S18: Monitoring effect of UV irradiation on $[Cu(Me_6-Tren)(O_2CH)](ClO_4)$ as a function of time by UV-vis spectroscopy.

Figure S19: SEC trace of poly(methyl acrylate) M_n = 3800g/mol; D = 1.12; 85% conversion. Obtained from UV experiment: [MA] : [EBiB] : [CuBr₂] : [Me₆-Tren] : [HCOONa] = [50] : [1] : [0.02] : [0.02] : [0.02] in DMSO 50% v/v.

Figure S20: SEC trace of poly(methyl acrylate) M_n = 5100g/mol; D = 1.19; 95% conversion. Obtained from UV experiment: **[MA]: [EBiB]: [(O₂CH)₂Cu] : [Me₆-Tren] = [**50] : [1] : [0.02] : [0.02] in DMSO 50% *v*/*v*.

Experimental

Materials

All materials were purchased from Sigma Aldrich or Fischer Scientific unless otherwise stated. Copper (II) bromide (CuBr₂) and ethyl 2-bromoisobutyrate (EBiB) were used as received. All monomers were passed through a basic Al_2O_3 chromatographic column prior to use. Tris-(2-(dimethylamino)ethyl)amine (Me₆-Tren) was synthesized according to previously reported literature.¹

Apparatus

¹H NMR spectra were recorded on Bruker DPX-300 or DPX-400 spectrometers in CDCl₃ unless otherwise stated. Chemical shifts are given in ppm downfield from the internal standard tetramethylsilane. Size exclusion chromatography (SEC) measurements were conducted using an Agilent 1260 SEC-MDS fitted with differential refractive index (DRI), light scattering (LS) and viscometry (VS) detectors equipped with $2 \times PLgel 5$ mm mixed-D columns (300 \times 7.5 mm), 1 \times PLgel 5 mm guard column (50 \times 7.5 mm) and autosampler. Narrow linear poly(methyl methacrylate) standards in $\tau\eta\epsilon$ range of 200 to 1.0×10^6 g·mol⁻¹ were used to calibrate the system. All samples were passed through 0.45 µm PTFE filter before analysis. The mobile phase was chloroform with 2% triethylamine eluent at a flow rate of 1.0 mL/min. SEC data was analysed using Cirrus v3.3 software with calibration curves produced using Varian Polymer laboratories Easi-Vials linear poly(methyl methacrylate) standards (200-4.7×10⁵ g/mol). MALDI-ToF mass spectrometry was conducted using a Bruker Daltonics Ultraflex II MALDI-ToF mass spectrometer, equipped with a nitrogen laser delivering 2 ns laser pulses at 337 nm with positive ion ToF detection performed using an accelerating voltage of 25 kV. Solutions in tetrahydrofuran (50 µL) of trans-2-[3-(4-tertbutylphenyl)-2-methyl-2-propylidene] malonitrile (DCTB) as a matrix (saturated solution), sodium iodide as cationisation agent (1.0 mg/mL) and sample (1.0 mg/mL) were mixed, and 0.7 µL of the mixture was applied to the target plate. Spectra were recorded in reflector mode calibrating PEG-Me 1100 kDa. UV/Vis spectra were recorded on Agilent Technologies Cary 60 UV-Vis spectrophotometer in the range of 200-1100 nm using a cuvette with 10 mm path length. The source of UV light was an OmniCure® S2000 spot UV curing lamp system, 200W ($\lambda_{max} \sim 320-390$ nm).

General procedure for the homopolymerization of MA

Appropriate amounts of EBiB (1 eq.), MA (DP_n eq.), [Cu(Me₆-Tren)(O₂CH)](ClO₄) (0.08 eq.) and DMSO (50% ν/ν) were placed in a polymerization flask, which was equipped with a magnetic stir bar and fitted with a rubber septum. The reaction mixture was degassed *via* bubbling with nitrogen for 20 min. The polymerization was allowed to proceed for 2h under irradiation at λ ~320-390 nm. The distance of each sample from the UV source was approximately 5 cm. Samples were taken periodically for conversion and molecular weight analyses. The polymerization mixture was initially dissolved in THF and then passed through a small basic Al₂O₃ chromatographic column to remove the copper salts. The resulting solution was precipitated in methanol.

References

1. M. Ciampolini and N. Nardi, Inorg. Chem., 1966, 5, 41-44.