Core-Shell $\mathrm{SiO}_{2} @$ LDHs with Tuneable Size, Composition and Morphology

Chunping Chen, Ryan Felton, Jean-Charles Buffet and Dermot O'Hare*
Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA Oxford. UK. E-mail:
Dermot.ohare@.chem.ox.ac.uk

Table of contents

1. Experimental Details S2
2. Characterizations S3
3. Results S4

1. Experimental details

Preparation of silica spheres

The monodispersed silica spheres were synthesised using a modified literature method. Tetraethyl orthosilicate (TEOS, 98\%, Sigma-Aldrich) was added to a mixed solution of ammonia ($35 \mathrm{wt} \%$, Fisher Scientific), deionised water and ethanol. The white suspension was left to stir vigorously for 17 h . The volume of deionised water and ethanol remained constant (30 and 50 mL , respectively). The volume of TEOS and ammonia was varied to achieve the desired size of silica sphere (13.7, 9.15 and 3 mL of TEOS with 15,10 and 5 mL of ammonia for 850 , 550 and 250 nm silica spheres, respectively.) The final solid was washed with ethanol thoroughly followed by drying under vacuum overnight.

Preparation of $\mathrm{SiO}_{2} @$ LDH nanoparticles

The $\mathrm{SiO}_{2} @ \mathrm{LDH}$ particles were synthesised via an in situ co-precipitation method. SiO_{2} spheres (100 mg) with the desired size were dispersed in deionised water (20 mL) using ultrasound treatment. After 30 minutes, the sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}, 0.96 \mathrm{mmol}\right.$, Acros Organics) was added to the solution and a further 5 minutes of sonication was carried out to form solution A. An aqueous solution (19.2 mL) containing magnesium nitrate hexahydrate $\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad 0.96 \mathrm{mmol}\right.$, Sigma-Aldrich) and aluminium nitrate nonahydrate $\left(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, 0.48 \mathrm{mmol}\right.$, Sigma-Aldrich) was added at a rate of $60 \mathrm{~mL} / \mathrm{h}$ to solution A under vigorous stirring. The pH of the reaction solution was controlled with the addition of 1 M NaOH by an autotitrator. The obtained suspension was stirred with or without heating for 1 h . The obtained solid was collected and then re-dispersed in deionised water (40 mL) and stirred for 1 h . The collection and re-dispersion was repeated once. The solid samples were then dried under vacuum.

In order to obtain a LDH with Mg :Al ratio of $1: 1$, the procedure described above was repeated with the exception that an aqueous solution $(19.2 \mathrm{~mL})$ containing $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.72 \mathrm{mmol})$ and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.72 \mathrm{mmol})$ was added at a rate of $60 \mathrm{~mL} / \mathrm{h}$ to solution A under vigorous stirring. For the synthesis of LDH with $\mathrm{Mg}: \mathrm{Al}$ ratio of $3: 1$, the aqueous solution $(19.2 \mathrm{~mL})$ contained $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.08 \mathrm{mmol})$ and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.36 \mathrm{mmol})$.

2. Characterisation

The morphology of the samples described in this work was observed using Transmission Electron Microscopy (TEM) analysis performed on a JEOL 2100 microscope with an accelerating voltage of 200 kV . Powder X-ray diffraction (XRD) data were collected on a PANAnalytical X'Pert Pro diffractometer at 40 kV and 40 mA using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\alpha 1=$ $1.54057 \AA, \alpha 2=1.54433 \AA$, weighted average $=1.54178 \AA$). The reflections at $2 \theta=43-44^{\circ}$ and 50° are produced by the XRD sample holder. The solid state NMR spectroscopy $\left({ }^{29} \mathrm{Si}\right.$ $\left.{ }^{27} \mathrm{Al}\right)$ were recorded on a Varian Chemagnetics CMX Infinity 200 (4.7 T). Samples were packed in 7.5 mm zirconia rotors. A double resonance MAS probe was used for all measurements and a MAS rate of 4 kHz for ${ }^{29} \mathrm{Si}$, whereas MAS rate of 6 kHz was used for ${ }^{27} \mathrm{Al}$. ${ }^{27} \mathrm{Al}$ MAS NMR spectra were acquired with a single pulse excitation applied using a short pulse length $(0.7 \mu \mathrm{~s})$. Each spectrum resulted from 2000 scans separated by 1 s delay. The ${ }^{27} \mathrm{Al}$ chemical shifts are referenced to an aqueous solution of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\delta=0 \mathrm{ppm})$. In order to obtain the quantitative ${ }^{29} \mathrm{Si}$ DPMAS NMR spectra, 5000 transients were typically acquired with an acquisition time of 68 ms (1024 data points zero filled to 16 K) and recycle delay of 30 s . All ${ }^{29} \mathrm{Si}$ spectra were externally referenced to kaolinite (taken to be at $\delta=-91.7$ ppm on a scale where $\delta(\mathrm{TMS})=0 \mathrm{ppm})$ as a secondary reference. Thermogravimetric analysis (TGA) measurements were collected using a Netzsch STA 409 PC instrument. The sample ($10-20 \mathrm{mg}$) was heated in a corundum crucible between $30^{\circ} \mathrm{C}$ and $800^{\circ} \mathrm{C}$ at a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ under a flowing stream of nitrogen. Energy dispersive X-ray spectroscopy (EDX), carried out on from JSM-6610LV low vacuum SEM with an accelerating voltage of 20 kV , was used to determine the relative quantities of constituent elements on the surface of the sample. Brunauer-Emmett-Teller (BET) specific surface areas were measured from the N_{2} adsorption and desorption isotherms at 77 K collected from a Micromeritic TriStar.

3. Results

Fig. S1 Percentage weight loss of (a) LDH, (b) $\mathrm{SiO}_{2} @ \mathrm{LDH}$ and (c) silica nanoparticles.

Table. S1 Silicon environments in the SiO_{2} and $\mathrm{SiO}_{2} @ \mathrm{LDH}$ samples as determined by ${ }^{29} \mathrm{Si}$ solid state MAS NMR.

Sample	Assignment ${ }^{\text {a }}$	δ (ppm)
SiO_{2} spheres	$\mathrm{Q}^{4}(\mathrm{SiO})_{4} \mathrm{Si}$	-110
	$\mathrm{Q}^{3}(\mathrm{SiO})_{3} \mathrm{SiOH}$	-101
$\mathrm{SiO}_{2} @ \mathrm{LDH}$	$\mathrm{Q}^{4} \mathrm{Si}(2 \mathrm{Al})$	
	$\mathrm{Q}^{3}(\mathrm{SiO})_{2}(\mathrm{AlO}) \mathrm{SiOH}$	-85
	$\mathrm{Q}^{2}(\mathrm{SiO})_{2} \mathrm{Si}(\mathrm{OH})_{2}$	
	$\mathrm{Q}^{4} \mathrm{Si}(1 \mathrm{Al})$	-101
	$\mathrm{Q}^{3}(\mathrm{SiO})_{3} \mathrm{SiOH}$	
	$\mathrm{Q}^{4} \mathrm{Si}(0 \mathrm{Al})$	-111

 refers to number of Al atoms substituting Si atoms in the first coordination sphere.

Fig. S2 XRD patterns of $\mathrm{SiO}_{2} @ \mathrm{LDH}$ samples prepared with Mg :Al ratios (a) 1:1 and (b) 3:1.

Table. S2 SEM-EDX data for $\mathrm{SiO}_{2} @ \mathrm{LDH}$ samples containing $\mathrm{Mg} / \mathrm{Al}$ in different ratios.

$\mathrm{Mg}:$ Al theoretical ratio	Mg (atom \%)	Al (atom \%)	$\mathrm{Mg} / \mathrm{Al}$ experimental ratio
$1: 1$	0.32	0.30	$1: 0.94$
$2: 1$	0.56	0.28	$2: 1$
$3: 1$	0.57	0.19	$3: 1$

Fig. S3 TEM image of $\mathrm{SiO}_{2} @$ LDH synthesized by pH 9 at room temperature.

Table. S3 Silicon environments in the SiO_{2} and $\mathrm{SiO}_{2} @$ LDH samples as determined by ${ }^{29} \mathrm{Si}$ solid state MAS NMR.

Sample	Assignment	δ (ppm)	Percentage
Solid core-shell$\mathbf{S i O}_{\mathbf{2}} @ \mathbf{L D H}$	$\mathrm{Q}^{4} \mathrm{Si}(2 \mathrm{Al})$	-85	33.3\%
	$\mathrm{Q}^{3}(\mathrm{SiO})_{2}(\mathrm{AlO}) \mathrm{SiOH}$		
	$\mathrm{Q}^{2}(\mathrm{SiO})_{2} \mathrm{Si}(\mathrm{OH})_{2}$		
	$\mathrm{Q}^{4} \mathrm{Si}(1 \mathrm{Al})$	-101	33.4\%
	$\frac{\mathrm{Q}^{3}(\mathrm{SiO}}{3} \mathbf{3} \mathrm{SiOH}$		
	$\mathrm{Q}^{4} \mathrm{Si}(0 \mathrm{Al})$	-111	33.3\%
Yolk-shell$\mathbf{S i O}_{\mathbf{2}} @ L D H$	$\mathrm{Q}^{4} \mathrm{Si}(2 \mathrm{Al})$	-85	45\%
	$\mathrm{Q}^{3}(\mathrm{SiO})_{2}(\mathrm{AlO}) \mathrm{SiOH}$		
	$\mathrm{Q}^{2}(\mathrm{SiO})_{2} \mathrm{Si}(\mathrm{OH})_{2}$		
	$\begin{aligned} & \mathrm{Q}^{4} \mathrm{Si}(1 \mathrm{Al}) \\ & \mathrm{Q}^{3}(\mathrm{SiO})_{3} \mathrm{SiOH} \end{aligned}$	-101	45\%
	$\mathrm{Q}^{4} \mathrm{Si}(0 \mathrm{Al})$	-111	10\%

Table S4. N_{2} BET surface area data for $\mathrm{SiO}_{2} @ \mathrm{LDH}$ samples.

	pH	Temperature (${ }^{\circ} \mathrm{C}$)	Surface area (m²/g)
SiO_{2}	-	-	17
LDH	10	RT	11
Solid core-shell $\mathbf{S i O}_{2} @$ LDH	10	RT	107
Yolk-shell SiO_{2} @LDH	10	40	118
Hollow-shell $\mathrm{SiO}_{2} @$ LDH	11	40	177

Fig. S4 Pore size distribution of $\mathrm{SiO}_{2} @ \mathrm{LDH}$ samples

