Supporting Information

Asymmetric Hydroamination Catalyzed by a New Chiral Zirconium System: Reaction Scope and Mechanism

Xiaoguang Zhou, Bing Wei, Xiu-Li Sun, Yong Tang,* and Zuowei Xie*

Table of Contents

1.	General Procedures	S 2
2.	Synthesis and Characterization of Ligands	S 3
3.	Synthesis and Characterization of Complexes	511
4.	Crystal Data and Summary of Data Collection and Refinement S	526
5.	Ligand and Temperature Effects on Enantioselectivity	333
6.	Procedure for Kinetics Experiments	\$34
7.	Supplementary Data	335
8.	HPLC analyses of Hydroamination Products	343
9.	NMR Spectra of New Compounds and the Products	358
10.	References	5 94

1. General Procedures

All manipulations of air- and moisture-sensitive compounds were performed under nitrogen atmosphere using standard Schlenk techniques or drybox. ¹H NMR spectra were recorded on a Varian Mercury XL-300 MHz, Varian Mercury 400 MHz, Agilent Mercury 400 MHz or Agilent Mercury 600 MHz spectrometer. ¹³C NMR spectra were recorded on a Varian Mercury XL-75 MHz, Varian Mercury 100 MHz or Agilent Mercury 100 MHz spectrometer. Mass spectra were obtained using a HP5959A spectrometer, Finnigan Perkin-Elmer 241MC or Angilent 6224 LC/MS. Elemental analyses were performed by the Analytical Laboratory of the Shanghai Institute of Organic Chemistry (CAS). Hexane, Et₂O, and toluene were purified by passing through a column of activated alumina and degassed with nitrogen by MBraun SPS system. C₆D₆, D₈-toluene and C₆D₅Br were degassed and distilled over CaH₂. Ferrocene as standard was recrystallized from petroleum ether. Substrates of hydroamination were prepared as described in the literature.¹ All aminoalkenes were distilled over CaH₂ under reduced pressure or under an argon atmosphere and stored in drybox. ZrBn₄ (Bn = C₆H₅CH₂), 4-*tert*-butyl-2-adamantanyl salicylaldehyde, and 4-*tert*-butyl-2-triphenylsilyl salicylaldehyde were synthesized according to the published procedures.²⁻⁴

2. Synthesis and Characterization of Ligands

Preparation of Ligand (L1): An ethanol solution (40 mL) of 2,4-di-tert-butyl-salicylaldehyde (4.69 g, 20.0 mmol) and L1-1 (2.62 g, 20.0 mmol) was refluxed for 6 h, and the resulting solution was concentrated in vacuo to give a yellow foam. Et₂O (30 mL) was added to dissolve the foam, and the solution was added dropwise to a stirring suspension of lithium aluminum hydride (1.02 g, 26.8 mmol) at 0 °C. The stirring mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was then quenched by addition of water (1.0 mL), 15% aqueous NaOH (1.0 mL) and water (3.0 mL), respectively. The precipitates were removed by filtration. Removal of the solvent gave a crude product which was purified by flash chromatography on silica gel (hexane/EtOAc 100/1 in V/V) to afford L1 as a white foam (4.41 g, 50 %). ¹H NMR (300 MHz, CDCl₃): δ 7.22 (d, *J* = 2.1 Hz, 1H, Ar-*H*), 6.88 (d, *J* = 2.4 Hz, 1H, Ar-*H*), 3.93 (ABd, *J* = 15.3 Hz, 1H, CH₂N), 3.98 (ABd, J = 15.3 Hz, 1H, CH₂N), 3.37-3.60 (m, 4H, CH₂O), 2.57 (m, 1H, CH-N), 1.95 (m, 1H, CH(CH₃)₂), 1.43 (s, 9H, C(CH₃)₃), 1.29 (s, 9H, C(CH₃)₃), 1.20 (t, J = 7.2 Hz, 3H, CH₃CH₂), 0.97 (t, J = 6.6 Hz, 6H, CH(CH₃)₂). ¹³C NMR (75 M, CDCl₃): δ 154.7, 140.2, 135.9, 123.1, 122.8, 69.2, 66.7, 62.2, 51.7, 34.9, 34.1, 31.7, 29.6, 29.0, 19.1, 18.8, 15.2. IR (v/cm⁻¹): 3314(w), 2953(s), 2895(m), 2869(m), 1476(s), 1433(s), 1235(s), 1107(s). Rotation: -5.9° , c = 1.0 in EtOH. MS (EI, m/z): 349 (M⁺). HRMS (EI) Calcd for C₂₂H₃₉NO₂: 349.2981; Found: 349.2980.

Preparation of Ligand (L2): Compound **L2** was prepared as a colorless oil from **L1-1** (0.67 g, 5.0 mmol) and 4-*tert*-butyl-2-adamantanyl salicylaldehyde (1.56 g, 5.0 mmol) in ethanol (20 mL)

using the same procedures as reported for L1: yield 1.37 g (64%). ¹H NMR (300 MHz, CDCl₃): δ 7.17 (d, J = 1.5 Hz, 1H, Ar-H), 6.88 (s, 1H, Ar-H), 3.94 (s, 2H, CH₂N), 3.60-3.36 (m, 4H, CH₂OCH₂), 2.60-2.56 (m, 1H, CHN), 2.20-2.10 (m, 6H, CHCH₂), 2.09-2.06 (m, 3H, CHCH₂), 2.00-1.90 (m, 1H, CH(CH₃)₂), 1.83-1.73 (m, 6H), 1.29 (s, 9H, C(CH₃)₃), 1.20 (t, J = 7.2 Hz, 3H, CH₂CH₃), 1.00-0.95 (m, 6H, CH(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃): δ 154.9, 140.4, 136.3, 123.0, 122.9, 122.8, 69.3, 66.7, 62.3, 51.8, 40.4, 37.2, 37.0, 34.2, 31.7, 29.2, 29.0, 19.1, 18.7, 15.2. IR (v/cm⁻¹): 2952 (s), 2902 (s), 2842 (s), 1479 (s), 1449 (w). Rotation: -2.80°, c = 0.65 in EtOH. MS (ESI, m/z): 428.2 (M+H⁺). HRMS (ESI) calcd for C₂₈H₄₆NO₂ (M+H⁺): 428.3529; Found: 428.3532.

Preparation of Ligand (L3): Compound **L3** was prepared as a white solid from **L1-1** (131 mg, 1.0 mmol) and 4-*tert*-butyl-2-triphenylsilyl salicylaldehyde (437 mg, 1.0 mmol) in ethanol (15 mL) using the same procedures as reported for **L1**: yield 563 mg (100%). ¹H NMR (300 MHz, CDCl₃): δ 7.64 (d, J = 6.0 Hz, 6H, Ar-H), 7.63-7.30 (m, 9H, Ar-H), 7.08(s, 2H, Ar-H), 4.07 (ABd, J = 13.8 Hz, 1H, NC H_2), 3.96 (ABd, J = 13.8 Hz, 1H, NC H_2), 3.55-3.32 (m, 4H, (C H_2)₂O), 2.55-2.50 (m, 1H, NCH), 1.92-1.81 (m, 1H, (CH₃)₂CH), 1.16 (t, J = 7.2 Hz, 3H, OCH₂C H_3), 1.12 (s, 9H, C(C H_3)₃), 0.90-0.85 (m, 6H, (C H_3)₂CH). ¹³C NMR (75 MHz, CDCl₃): δ 161.3, 140.7, 136.4, 135.4, 134.4, 129.0, 127.8, 127.4, 121.8, 119.4, 69.0, 66.6, 61.5, 51.0, 33.9, 31.4, 29.2, 19.2, 18.8, 15.1. IR (v/cm⁻¹): 2957 (w), 2865 (w), 1591 (m), 1425 (m), 1103 (s). Rotation: -12.1°, c = 0.55 in EtOH. MS (ESI, m/z): 552.2 (M+H⁺). HRMS (ESI) calcd for C₃₆H₄₆NO₂Si (M+H⁺): 552.3298; Found: 552.3293.

Preparation of Ligand (L4b): Compound L4b was prepared as a white solid from L1-1 (262 mg, 2.0 mmol) and 4-*tert*-butyl-2-trityl salicylaldehyde (840 mg, 2.0 mmol) in ethanol (10 mL) using

the same procedures as reported for L1: yield 840 mg (80%). ¹H NMR (300 MHz, CDCl₃): δ 7.24-7.12 (m, 16H, Ar-*H*), 6.93 (s, 1H, Ar-*H*), 4.00 (ABd, *J* = 13.5 Hz, 1H, CH₂N), 3.86 (ABd, *J* = 13.5 Hz, 1H, CH₂N), 3.42-3.35 (m, 3H), 3.23 (dd, *J* = 9.6, 4.8 Hz, 1H, CH₂O), 2.32-2.28 (m, 1H, NC*H*), 1.72-1.62 (m, 1H, (CH₃)₂C*H*), 1.15-1.11 (m, 12H, C(CH₃)₃, OCH₂CH₃), 0.77-0.65 (m, 6H, (CH₃)₂CH). ¹³C NMR (75 MHz, CDCl₃): δ 154.3, 146.2, 139.9, 133.4, 131.1, 127.6, 126.9, 125.2, 124.0, 122.9, 68.8, 66.6, 63.4, 60.8, 50.8, 34.0, 31.5, 29.3, 19.0, 18.7, 15.1. IR (v/cm⁻¹): 3322 (w), 2958 (m), 2867 (m), 1599 (m), 1476 (m), 1444 (m), 1110 (s). Rotation: -11.5 °, c = 0.51 in EtOH. MS (ESI, m/z): 536.2 (M+H⁺). HRMS (ESI) calcd for C₃₇H₄₆NO₂ (M+H⁺): 536.3529; Found: 536.3533.

Preparation of Ligand (L4c): Compound **L4c** was prepared as a white solid from **L4c-1** (290 mg, 1.50 mmol) and 4-*tert*-butyl-2-trityl salicylaldehyde (632 mg, 1.50 mmol) in ethanol (10 mL) using the same procedures as reported for **L1**: yield 770 mg (87%). ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.28 (m, 5H, Ar-*H*), 7.23-7.12 (m, 16H, Ar-*H*), 6.87 (s, 1H, Ar-*H*), 4.43 (ABd, J = 12.0 Hz, 2H, CH₂N), 3.96 (ABd, J = 13.5 Hz, 1H, CH₂O), 3.78 (ABd, J = 13.5 Hz, 1H, CH₂O), 3.47 (dd, J = 9.6, 3.6 Hz, 1H, CH₂O), 3.31 (dd, J = 9.6, 4.2 Hz, 1H, CH₂O), 2.28 (d, J = 5.1 Hz, 1H, NC*H*), 1.72-1.66 (m, 1H, (CH₃)₂C*H*), 1.14 (s, 9H, C(CH₃)₃), 0.73-0.70 (m, 6H, (CH₃)₂CH). ¹³C NMR (75 MHz, CDCl₃): δ 154.2, 146.1, 139.9, 138.2, 133.4, 131.1, 128.4, 127.70, 127.66, 127.6, 126.8, 125.2, 124.1, 122.7, 73.3, 68.1, 63.4, 60.5, 50.5, 34.0, 31.5, 29.3, 19.1, 18.9. IR (v/cm⁻¹): 3325(w), 2957 (m), 2865 (m), 1598 (m), 1476 (s), 1446 (s), 1259 (m), 1096 (s), 1030 (s). Rotation: 13.4 °, c = 0.445 in EtOH. MS (ESI, m/z): 598.2 (M+H⁺). HRMS (ESI) calcd for C₄₂H₄₈NO₂ (M+H⁺): 598.3685; Found: 598.3672.

Preparation of Ligand (L4a): Compound L4a was prepared as a white solid from L4a-1 (129

mg, 1.10 mmol) and 4-*tert*-butyl-2-trityl salicylaldehyde (468 mg, 1.1 mmol) in ethanol (10 mL) using the same procedures as reported for L1: yield 580 mg (100%). ¹H NMR (300 MHz, CDCl₃): δ 7.15-7.6.99 (m, 16H, Ar-*H*), 6.84 (d, *J* = 1.8 Hz, 1H, Ar-*H*), 3.90 (ABd, *J* = 13.8 Hz, 1H, CH₂N), 3.76 (ABd, *J* = 13.5 Hz, 1H, CH₂N), 3.29-3.24 (m, 1H, CH₂O), 3.14 (s, 3H, CH₃O), 3.11-3.07 (m, 1H, CH₂O), 2.21-2.17 (m, 1H, NC*H*), 1.60-1.50 (m, 1H, (CH₃)₂C*H*), 1.07 (s, 9H, C(CH₃)₃), 0.62 (d, *J* = 6.9 Hz, 6H, (CH₃)₂CH). ¹³C NMR (75 MHz, CDCl₃): δ 154.2, 146.1, 139.9, 133.4, 131.0, 127.6, 126.8, 125.2, 124.0, 122.7, 70.9, 63.4, 60.6, 58.9, 50.7, 34.0, 31.5, 29.3, 19.0, 18.8. IR (v/cm⁻¹): 3309 (w), 2956 (m), 2871 (m), 1598 (m), 1475 (s), 1444 (s). Rotation: -18.4°, c = 0.820 in EtOH. MS (ESI, m/z): 522.2 (M+H⁺). HRMS (ESI) calcd for C₃₆H₄₄NO₂ (M+H⁺): 522.3372; Found: 522.3383.

Preparation of Ligand (L4d): Pre-L4d-1 (2.32 g, 5.0 mmol) was dissolved in ethanol and then 50% KOH solution was added. After the mixture refluxed for 13h, the mixture was extracted by 100 mL Et₂O. The organic layer was washed three times with brine and water. The organic layer was separated and dried by anhydrous MgSO₄, the solvent was evaporated and the residue was used for next reaction without further purification. And compound **L4d** was obtained from **L4d-1** and 4-*tert*-Butyl-2-trityl salicylaldehyde (1.26 g, 3.0 mmol) similarly to compound **L1** 0.65 g (39%). **Pre-L4d-1** was prepared according to the published procedures.^[5] ¹H NMR (300 MHz, CDCl₃): δ 7.11-7.22 (m, 16H, Ar-*H*), 6.91 (d, 1H, *J* = 1.8 Hz , Ar-*H*), 3.97 (ABd, *J* = 13.8 Hz, 1H, CH₂N), 3.84 (ABd, *J* = 13.5 Hz, 1H, CH₂N), 3.37-3.33 (m, 1H, CH₂O), 3.30-3.20 (m, 1H, CH₂O), 2.27-2.26 (m, 1H, CHN), 1.73-1.70 (m, 1H, CHCH₃), 1.15 (s, 9 H, C(CH₃)₃), 1.11 (s, 9 H, C(CH₃)₃), 0.74-0.72 (m, 6H, CH(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃): δ 154.4, 146.1, 139.8, 133.3, 131.1, 127.6, 126.8, 125.2, 123.9, 122.9, 72.6, 63.4, 60.9, 59.2, 50.6, 34.0, 31.5, 28.9, 27.4, 19.1, 18.8. IR (ν/cm⁻¹): 3086(w), 2958(s), 2869(m), 1598(m), 1475(s), 1444(s), 1258(s). Rotation: -13.3 °, c = 1.22 in EtOH. MS (ESI, m/z): 564.2 (M+H⁺). HRMS (ESI) calcd for C₃₉H₅₀NO₂ (M+H⁺): 564.3842; Found: 564.3835.

Preparation of Ligand (**L5a**): Compound **L5a** was prepared as a white solid from L-Prolinol (101 mg, 1.0 mmol) and 4-*tert*-Butyl-2-trityl salicylaldehyde (421 mg, 1.0 mmol) in ethanol (20 mL) using the same procedures as reported for **L1**: yield 506 mg (100%). ¹H NMR (300 MHz, CDCl₃): δ 7.12-7.23 (m, 16H, Ar-*H*), 6.91 (s, 1H, Ar-*H*), 3.84 (s, 2H, C*H*₂N), 3.07-2.89 (m, 3H), 2.57-2.52 (m, 1H, C*H*₂N), 2.32-2.30 (m, 1H, C*H*N), 1.87-1.82 (m, 1H, C*H*N), 1.65-1.55 (m, 3H, C*H*N), 1.15 (s, 9H, C(C*H*₃)₃). ¹³C NMR (100 MHz, CDCl₃): δ 153.6, 145.9, 140.4, 133.2, 131.0, 127.5, 127.0, 125.4, 123.5, 122.4, 65.9, 63.9, 63.3, 59.4, 55.2, 34.0, 31.5, 27.7, 23.0. IR (v/cm⁻¹): 3085(w), 2956(s), 2870 (m), 1474(s), 1444(s), 1257(m). Rotation:-19.8°, c = 2.45 in EtOH. MS (ESI, *m/z*): 506.7 (M+H⁺). HRMS (ESI) calcd for C₃₅H₄₀NO₂ (M+H⁺): 506.3059; Found: 506.3069.

Preparation of Ligand (L5b): **Pre-L5b-1** (1.29 mmol, 296 mg) was dissolved in DCM (3 mL), and TFA was added in dropwise at ice bath. The mixture was stirred overnight, and then 15% NaOH solution was added to the pH 12. The mixture was extracted by DCM three times. The organic layer was combined and dried with anhydrous Na₂SO₄. The solvent was evaporated and the residue (**L5b-1**) was used for next reaction without further purification. And compound **L5b** was prepared as a colorless oil from **L5b-1** and 4-*tert*-Butyl-2-trityl salicylaldehyde (543 mg, 1.29 mmol) in ethanol (20 mL) using the same procedures as reported for **L1**: yield 350 mg (66%). **Pre-L5b-1** was prepared according to the published procedures.^[6] ¹H NMR (300 MHz, CDCl₃): δ 7.21-7.06 (m, 15H, Ar-*H*), 7.07 (d, *J* = 2.1 Hz, 1H, Ar-*H*), 6.89 (d, *J* = 2.1 Hz, 1H, Ar-*H*), 4.34 (ABd, *J* = 13.5 Hz, 1H, CH₂N), 3.48 (ABd, *J* = 13.5 Hz, 1H, CH₂N), 2.63-2.53 (m, 2H, CH₂N), 2.36-2.30 (m, 1H, CH₃), 0.97 (s, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 153.5, 146.0, 140.1, 133.3, 131.1, 127.3, 126.9, 125.3, 123.8, 123.0, 73.7, 73.3, 63.4, 62.2, 54.5, 34.0, 31.5, 28.1, 27.9, 24.6, 24.1. IR (v/cm⁻¹): 3055(w), 2957(s), 2865 (m), 1598(m), 1468(s), 1444(s), 1259(m). Rotation: -17.2 °, c = 0.71 in

EtOH. MS (ESI, *m*/*z*): 534.3 (M+H⁺). HRMS (ESI) calcd for C₃₇H₄₃NO₂ (M+H⁺): 534.3372; Found: 534.3353.

Preparation of Ligand (L5c): Compound **L5c** was prepared as a colorless oil from **Pre-L5c-1** (337 mg, 1.30 mmol) and 4-*tert*-Butyl-2-trityl salicylaldehyde (547 mg, 1.30 mmol) in ethanol (20 mL) using the same procedures as reported for **L5b**: yield 552 mg (75%). **Pre-L5c-1** was prepared according to the published procedures.^[6] ¹H NMR (300 MHz, CDCl₃): δ 7.13-6.99 (m, 16H, Ar-*H*), 6.80 (s, 1H, Ar-*H*), 4.13 (ABd, J = 13.5 Hz, 1H, CH₂N), 3.42 (ABd, J = 13.8 Hz, 1H, CH₂N), 2.70-2.65 (m, 1H, CHN), 2.49-2.42 (m, 1H, CH₂N), 2.35-2.28 (m, 1H, CH₂N), 1.77-1.11 (m, 8H), 1.06 (s, 9H, C(CH₃)₃), 0.73-0.64 (m, 6H, CH₂CH₃).¹³C NMR (75 MHz, CDCl₃): δ 153.6, 146.0, 140.0, 133.2, 131.1, 127.4, 126.9, 125.3, 123.8, 122.7, 76.3, 70.9, 63.4, 62.3, 54.0, 34.0, 31.5, 28.9, 27.1, 26.6, 24.0, 7.8, 7.5. IR (v/cm⁻¹): 3590(w), 2961(m), 1599(m), 1465(s), 1445(s). Rotation: -39.3°, c = 0.650 in EtOH. MS (ESI, *m/z*): 562.8 (M+H⁺). HRMS (ESI) calcd for C₃₉H₄₈NO₂, (M+H⁺): 562.3685; Found: 562.3675.

Preparation of Ligand (**L5d**): Compound **L5d** was prepared as a white solid from 2-(Diphenylhydroxymethyl) pyrrolidine (253 mg, 1.00 mmol) and 4-*tert*-Butyl-2-trityl salicylaldehyde (421 mg, 1.00 mmol) in ethanol (20 mL) using the same procedures as reported for **L1**: yield 274 mg (42%). ¹H NMR (300 MHz, CDCl₃): δ 7.44-7.39 (m, 4H, Ar-*H*), 7.34-6.98 (m, 22H, Ar-*H*), 6.79 (s, 1H, Ar-*H*), 3.80 (dd, J = 9.3, 3.9 Hz, 1H, CH₂N), 3.24-3.14 (m, 2H, CH₂N), 2.61-2.59 (1H, m, CH₂N), 2.31-2.22 (m, 1H, CH₂N), 2.00-1.93 (m, 1H, CH₂CH₂), 1.77-1.72 (m, 1H, CH₂CH₂), 1.60-1.50 (m, 1H, CH₂CH₂), 1.42-1.26 (m, 1H, CH₂CH₂), 1.10 (s, 9H, C(CH₃)₃). ¹³C NMR (75 MHz, CDCl₃): δ 152.0, 146.1, 145.9, 145.6, 140.3, 132.6, 131.1, 128.1, 128.0, 127.2, 127.0, 126.5, 125.9, 125.7, 125.6, 124.6, 123.5, 79.2, 72.0, 63.2, 59.8, 54.9, 33.9, 31.4, 29.4, 26.8,

24.1. IR (v/cm⁻¹): 3515(m), 2956(m), 2927(m), 1478(s), 1442(s), 1207(m). 698 (vs). Rotation: 0.36°, c = 1.1 in EtOH. HRMS calcd for $C_{47}H_{48}NO_2$ (M+H⁺): 658.3685; Found: 658.3675.

Preparation of Ligand (L5e): To a stirred solution of 2-(bromomethyl)-4-*tert*-Bu-6-trityl phenol (634 mg, 1.43 mmol) was added L-homoprolinol (164 mg, 1.43 mmol) in THF (30 mL). After complete dissolution, triethylamine (0.46 mL, 3.3 mmol) was added dropwise. A white solid formed immediately and the reaction stirred for 1.5h at room temperature. The precipitate was filtered off and solvent was evaporated. The residue was subjected to flash chromatography (PE:EA = 20:1 ~ 3:1, V/V). The yield was 0.60 mg (88%). 2-(bromomethyl)-4-*tert*-Bu-6-trityl phenol was prepared according to the published procedures.^[7] ¹H NMR (300 MHz, CDCl₃): δ 7.24-7.12 (m, 15H, Ar-*H*), 6.85 (s, 1H, Ar-*H*), 6.75 (s, 1H, Ar-*H*), 4.20 (ABd, *J* = 15.1 Hz, 1H, CH₂N), 3.64-3.52 (m, 2H, CH₂O), 3.39 (ABd, *J* = 15.1 Hz, 1H, CH₂N), 2.66-2.62 (m, 1H, CHN), 2.28-2.24 (m, 1H, CH₂N), 2.16 (s, 3H, CH₃), 2.05-1.99 (m, 1H, CH₂N), 1.56-1.13 (m, 6H, CH₂CH₂). ¹³C NMR (75 MHz, CDCl₃): δ 153.7, 146.0, 134.0, 131.0, 130.3, 128.2, 126.9, 126.7, 125.3, 122.7, 63.1, 63.0, 62.3, 57.5, 51.2, 27.4, 24.4, 22.8, 20.9. IR (v/cm⁻¹): 3552(w), 3497(w), 2933(m), 2857(w), 1595(s), 1462(s), 1443(s), 1241(m). 698 (vs). Rotation: -21.6 °, c = 0.96 in EtOH. HRMS (ESI) calcd for C₃₃H₃₆NO₂, (M+H ⁺): 478.2746; Found: 478.2747.

Preparation of Ligand (**L5f**): Compound **L5f** was prepared as a colorless oil from **L5f-1** (141 mg, 1.00 mmol) and 4-*tert*-Butyl-2-trityl salicylaldehyde (421 mg, 1.00 mmol) in ethanol (20 mL) using the same procedures as reported for **L1**: yield 472 mg (85%). ¹H NMR (300 MHz, CDCl₃): δ 7.22-7.08 (m, 16H, Ar-*H*), 6.92 (s, 1H, Ar-*H*), 3.92 (ABd, *J* = 14.1 Hz, 1H, CH₂N), 3.74 (ABd, *J* =

14.4 Hz, 1H, CH₂N), 3.26 (ABd, J = 12.3 Hz, 1H, CH₂O), 3.16 (ABd, J = 10.2 Hz, 1H, CH₂O), 3.03-2.99 (m, 1H, CHN), 2.56-2.43 (m, 2H, CHCH₂CH), 1.96-1.88 (m, 1H, CH₂CHCH₂), 1.43-1.19 (m, 7H), 1.15 (s, 9H, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 145.7, 140.6, 133.2, 131.0, 128.4, 126.9, 125.3, 123.4, 122.9, 73.5, 69.1, 65.0, 63.3, 62.5, 58.8, 39.9, 34.9, 34.0, 32.6, 31.4, 24.4. IR (v/cm⁻¹): 3055(w), 3085(w), 2951(m), 2862(m), 1598(m), 1476(s), 1445(s), 744(vs). 699 (vs). Rotation: -33.6°, c = 0.500 in EtOH. MS (ESI, *m*/*z*): 546.7 (M+H⁺). HRMS (ESI) calcd for C₃₈H₄₄NO₂, (M+H⁺): 546.3372; Found: 546.3365.

Preparation of Ligand (**L8**): Compound **L8** was prepared as a white solid from 2-(bromomethyl)-4-*tert*-Butyl-6-trityl phenol (2.22 g, 5.0 mmol) and N-Me-ethanolamine (375 mg, 5.0 mmol) in THF (50 mL) using the same procedures as reported for **L5e**: yield 1.66 g (76%). ¹H NMR (300 MHz, CDCl₃): δ 7.22-7.14 (m, 15H, Ar-*H*), 6.91 (s, 1H, Ar-*H*), 6.75 (s, 1H, Ar-*H*), 5.23 (s, 1H, O*H*), 3.63 (s, 2H, C*H*₂N), 3.33 (t, *J* = 5.7 Hz, 2H, C*H*₂O), 2.28 (t, *J* = 5.7 Hz, 2H, C*H*₂N), 2.21 (s, 3H, Ph-C*H*₃), 2.17 (s, 3H, C*H*₃N). ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 145.9, 133.9, 131.0, 130.6, 128.4, 126.9, 126.7, 125.3, 122.1, 63.1, 61.9, 59.5, 57.3, 41.8, 20.9. IR (v/cm⁻¹): 3543(w), 2919(w), 1491(s), 1450(s), 1248(s). HRMS (ESI) calcd for C₃₀H₃₂NO₂, (M+H⁺): 438.2433; Found: 438.2422.

3. Synthesis and Characterization of Complexes

Preparation of Complex 1:

To a solution of ZrBn₄ (456 mg, 1.0 mmol) in toluene (20 mL) was added dropwise L1 (350 mg, 1.0 mmol) in toluene (20 mL) at -78°C over 1 h. After stirring for 3 h at room temperature, the solvent was removed to give a yellow solid that was washed with hexane. Recrystallization from toluene/hexane gave 1 as colorless crystals (335 mg, 54%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.58 (s, 1H, Ar-*H*), 7.38-7.28 (m, 2H, Ar-*H*), 7.24-7.22 (m, 3H, Ar-*H*), 7.13-7.05 (m, 3H, Ar-*H*), 6.88-6.80 (m, 3H, Ar-*H*), 4.45 (ABd, *J* = 16.2 Hz, 1H, CH₂-N), 4.16 (ABd, *J* = 15.9 Hz, 1H, CH₂-N), 3.62-3.51 (m, 1H, CH₃CH₂O), 3.36 (m, 1H, CHCH₂O), 3.26-3.21 (m, 1H, CHCH₂O), 2.99-2.88 (m, 1H, CH₃CH₂O), 2.62-2.59 (m, 1H, CH-N), 2.40 (ABd, *J* = 9.6 Hz, 1H, PhCH₂), 2.22-2.13 (m, 2H, PhCH₂), 1.79 (s, 9H, C(CH₃)₃), 1.70-1.64 (m, 1H, CH(CH₃)₂), 1.47 (s, 9H, C(CH₃)₃), 1.30 (ABd, *J* = 10.2 Hz, 1H, PhCH₂), 0.77-0.71 (m, 9H). ¹³C NMR (100M, C₆D₆): δ 156.2, 149.0, 142.6, 142.0, 135.7, 131.5, 131.6, 128.5, 126.7, 126.2, 122.96, 122.90, 122.1, 120.6, 73.6, 71.9, 69.4, 60.2, 56.1, 55.6, 35.5, 34.5, 32.1, 30.6, 30.4, 20.2, 17.8, 12.9. Anal. Calcd for C₃₆H₅₁NO₂Zr (1): C, 69.63; H, 8.28; N, 2.26. Found: C, 69.44; H, 8.39; N, 2.08.

Figure S1. Molecular Structure of Complex 1

Preparation of Complex 2:

Complex **2** was prepared as a white solid from ligand **L2** (214 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 135 mg (39%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C_6D_6) : δ 7.49 (s, 1H, Ar-*H*), 7.30-7.19 (m, 3H, Ar-*H*), 7.09 (t, *J* = 7.2 Hz, 4H, Ar-*H*), 6.97 (t, *J* = 7.2 Hz, 1H, Ar-*H*), 6.92-6.75 (m, 3H, Ar-*H*), 4.45 (ABd, *J* = 15.6 Hz, 1H, CH₂N), 4.10 (d, *J* = 15.9 Hz, 1H, CH₂N), 3.45-3.38 (m, 1H, CH₂O), 3.32-3.38 (m, 1H, CH₂O), 3.20-3.15 (m, 1H, CH₂O), 2.98-2.92 (m, 1H, CH₂O), 2.60-2.50 (m, 7H), 2.25-2.18 (m, 6H), 2.00-1.99 (m, 3H), 1.86-1.82 (m, 3H), 1.70-1.52 (m, 2H), 1.43 (s, 9H, C(CH₃)₃), 0.71-0.66 (m, 9H, CH₂CH₃, CH(CH₃)₂). ¹³C NMR (75 MHz, C₆D₆): δ 156.9, 148.0, 143.5, 142.1, 136.2, 131.8, 130.9, 128.9, 126.3, 126.2, 122.9, 122.5, 122.3, 121.0, 73.6, 71.9, 69.5, 60.1, 56.6, 56.0, 41.5, 37.8, 37.6, 34.6, 32.1, 30.8, 29.8, 20.2, 17.9, 13.0. Anal. Calcd for C₄₂H₅₇NO₂Zr (**2**): C, 72.15; H, 8.22; N, 2.00. Found: C, 71.85; H, 8.42; N, 2.00.

Figure S2. Molecular Structure of Complex 2

Preparation of Complex 3:

Complex **3** was prepared as a white solid from ligand **L3** (276 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 265 mg (64%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.95-7.93 (m, 6H, Ar-*H*), 7.51 (d, *J* = 1.8 Hz, 1H, Ar-*H*), 7.37 (d, *J* = 2.4 Hz, 1H, Ar-*H*), 7.24-7.15 (m, 9H, Ar-*H*), 7.07-7.02 (m, 2H, Ar-*H*), 6.89-6.71 (m, 6H, Ar-*H*), 6.42 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 4.75 (ABd, *J* = 16.8 Hz, 1H, CH₂N), 4.04 (ABd, *J* = 16.8 Hz, 1H, CH₂N), 3.40-3.20 (m, 2H), 3.01-2.94 (m, 1H, CH₂O), 2.75 (dt, *J* = 6.0, 13.8 Hz, 1H, CHN), 2.47-2.44 (m, 1H), 1.86-1.78 (m, 2H, CH₂Ph), 1.69-1.58 (m, 1H, CH(CH₃)₂), 1.46 (ABd, *J* = 9.0 Hz, 1H, CH₂Ph), 1.40-1.20 (m, 10H, C(CH₃)₃, CH₂Ph), 0.75-0.68 (m, 6H, CH(CH₃)₂), 0.58 (t, *J* = 6.9 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, C₆D₆): δ 162.6, 150.0, 142.8, 140.9, 137.0, 136.2, 134.5, 131.7, 129.7, 128.2, 126.2, 125.8, 122.6, 120.3, 120.2, 73.6, 71.9, 69.2, 60.4, 56.8, 56.5, 34.4, 31.8, 31.4, 20.1, 18.2, 12.8. Anal. Calcd for C₅₀H₅₇NO₂SiZr (**3**): C, 72.94; H, 6.98; N, 1.70. Found: C, 73.46; H, 6.54; N, 1.83.

Figure S3. Molecular Structure of complex 3

Preparation of Complex 4a:

Complex **4a** was prepared as a white solid from ligand **L4a** (261 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 228 mg (58%). Crystals suitable for X-ray analyses were grown from a toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (400 MHz, C₆D₆): δ 7.58 (d, *J* = 7.6 Hz, 6H, Ar-*H*), 7.34(d, *J* = 4.4 Hz, 2H, Ar-*H*), 7.15-7.07 (m, 8H, Ar-*H*), 7.00-6.93(m, 6H, Ar-*H*), 6.72 (t, *J* = 7.2 Hz, 1H, Ar-*H*), 6.34 (d, *J* = 7.3 Hz, 2H, Ar-*H*), 6.24 (d, *J* = 7.6 Hz, 2H, Ar-*H*), 4.45 (d, *J* = 16.5 Hz, 1H, CH₂N), 4.16 (d, *J* = 16.5 Hz, 1H, CH₂N), 3.09-3.06 (m, 1H, CH₂O), 3.00 (m, 1H, CH₂O), 2.68 (s, 3H, OCH₃), 2.41-2.38 (m, 1H, CHN), 1.89 (ABd, *J* = 9.4 Hz, 1H, CH₂Ph), 1.67-1.60 (m, 2H), 1.46 (ABd, *J* = 10.7 Hz, 1H, CH₂Ph), 1.27 (s, 9H, C(CH₃)₃), 0.74 (ABd, *J* = 10.7 Hz, 1H, CH₂Ph), 0.68 (d, *J* = 6.9 Hz, 3H, CH(CH₃)₂), 0.61 (d, *J* = 6.9 Hz, 3H, CH(CH₃)₂). ¹³C NMR (100 MHz, C₆D₆): δ 155.7, 148.8, 141.8, 141.7, 134.5, 131.7, 131.2, 131.2, 128.4, 128.2, 127.9, 127.7, 126.7, 126.3, 125.8, 124.1, 122.4, 120.2, 77.8, 71.0, 64.4, 61.5, 60.0, 57.5, 56.9, 34.5, 31.8, 30.3, 20.2, 17.4. Anal. Calcd for C₅₀H₅₇NO₂Zr (**4a**): C, 75.71; H, 6.99; N, 1.77. Found: C, 75.69; H, 7.16; N, 1.70.

Figure S4. Molecular Structure of 4a

Preparation of Complex 4b:

Complex **4b** was prepared as a white solid from ligand **L4b** (268 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 230 mg (57%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.59 (d, *J* = 7.8 Hz, 6H, Ar-*H*), 7.37-7.32 (m, 2H, Ar-*H*), 7.18-7.10 (m, 3H, Ar-*H*), 7.14-7.05 (m, 5H, Ar-*H*), 7.02-6.95 (m, 6H, Ar-*H*), 6.72 (t, *J* = 7.2 Hz, 1H, Ar-*H*), 6.40 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 6.27 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 4.53 (ABd, *J* = 16.4 Hz, 1H, CH₂N), 4.12 (ABd, *J* = 16.8 Hz, 1H, CH₂N), 3.41-3.35 (m, 1H, CH₂O), 3.21 (d, *J* = 8.4 Hz, 1H, CH₂O), 2.94-2.82 (m, 2H, CH₂O), 2.38-2.34 (m, 1H, CHN), 1.97 (ABd, *J* = 9.3 Hz, 1H, CH₂Ph), 1.74-1.59 (m, 2H), 1.45 (ABd, *J* = 10.8 Hz, 1H, CH₂Ph), 1.27 (s, 9H, C(CH₃)₃), 0.74-0.62 (m, 10H). ¹³C NMR (75 MHz, C₆D₆): δ 155.7, 150.0, 147.0, 141.8, 141.3, 134.6, 131.7, 131.5, 131.2, 128.2, 127.9, 127.7, 126.30, 126.29, 125.8, 124.1, 122.5, 120.1, 73.0, 71.4, 69.2, 64.5, 60.6, 57.2, 56.9, 34.5, 31.8, 31.0, 20.3, 18.0, 12.9. Anal. Calcd for C₅₁H₅₇NO₂Zr (**4b**): C, 75.88; H, 7.12; N, 1.74. Found: C, 75.37; H, 7.42; N, 1.73.

Figure S5. Molecular Structure of 4b

Preparation of Complex 4c:

Complex **4c** was prepared as a white solid from ligand **L4c** (299 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1:** yield 113 mg (26%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.62 (d, *J* = 7.8 Hz, 6H, Ar-*H*), 7.37-7.34 (m, 2H, Ar-*H*), 7.19-7.17 (m, 2H, Ar-*H*), 7.14-7.10 (m, 3H, Ar-*H*), 7.08-6.95 (m, 14H, Ar-*H*), 6.76 (t, *J* = 7.2 Hz, 1H, Ar-*H*), 6.50 (d, *J* = 7.8 Hz, 2H, Ar-*H*), 6.41 (d, *J* = 7.2 Hz, 2H, Ar-*H*), 4.76 (ABd, *J* = 12.9 Hz, 1H, CH₂N), 4.63 (ABd, *J* = 16.8 Hz, 1H, CH₂N), 4.06 (ABd, *J* = 16.8 Hz, 1H, CH₂O), 3.87 (ABd, *J* = 12.6 Hz, 1H, CH₂O), 3.36 (d, *J* = 8.4 Hz, 1H, CH₂O), 3.06-3.02 (m, 1H, CH₂O), 2.32-2.27 (m, 2H), 1.87 (ABd, *J* = 9.3 Hz, 1H, CH₂Ph), 1.66-1.56 (m, 2H), 1.27 (s, 9H, C(CH₃)₃), 0.84 (ABd, *J* = 11.1 Hz, 1H, CH₂Ph), 0.60-0.54 (m, 6H, CH(CH₃)₂). ¹³C NMR (100 MHz, C₆D₆): δ 156.0, 149.6, 141.9, 141.2, 134.6, 134.2, 131.7, 131.0, 129.4, 129.1, 129.0, 127.7, 126.5, 126.3, 126.1, 124.0, 122.7, 120.3, 75.5, 73.3, 71.8, 64.5, 60.9, 57.9, 57.0, 34.5, 32.1, 31.9, 20.1, 18.4. Anal. Calcd for C₅₆H₅₉NO₂Zr (**4c**): C, 77.37; H, 6.84; N, 1.61. Found: C, 77.28; H, 7.04; N, 1.53.

Figure S6. Molecular Structure of 4c

Preparation of Complex 4d:

Complex **4d** was prepared as a white solid from ligand **L4d** (282 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 450 mg (54%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (400 MHz, C₆D₆): δ 7.61 (d, *J* = 8.0 Hz, 6H, Ar-*H*), 7.20-7.19 (m, 2H, Ar-*H*), 7.14-7.05 (m, 8H, Ar-*H*), 7.00-6.89 (m, 4H, Ar-*H*), 6.76 (t, *J* = 7.2 Hz, 1H, Ar-*H*), 6.63 (d, *J* = 7.6 Hz, 4H, Ar-*H*), 4.23 (ABd, *J* = 16.4 Hz, 1H, C*H*₂O), 3.86 (ABd, *J* = 16.4 Hz, 1H, C*H*₂O), 3.40-3.38 (m, 2H, C*H*₂O), 2.45 (d, 1H, *J* = 5.2 Hz, C*H*N), 1.88-1.82 (m, 2H, C*H*₂Ph), 1.69-1.60 (m, 1H, C*H*(CH₃)₂), 1.46 (ABd, *J* = 10.4 Hz, 1H, C*H*₂Ph), 1.40 (ABd, *J* = 10.8 Hz, 1H, C*H*₂Ph), 1.24 (s, 9H, C(C*H*₃)₃), 0.82 (s, 9H, C(C*H*₃)₃), 0.71 (d, *J* = 6.8 Hz, 3H, CH(C*H*₃)₂), 0.59 (d, *J* = 6.8 Hz, 3H, CH(C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃): δ 156.6, 147.8, 147.1, 143.6, 141.7, 134.1, 131.8, 130.5, 129.7, 128.4, 128.2, 127.7, 127.2, 126.31, 126.28, 123.6, 121.8, 120.4, 83.7, 69.6, 67.5, 64.5, 59.0, 58.7, 58.3, 34.4, 31.8, 30.1, 27.4, 19.7, 17.5. Anal. Calcd for C₅₃H₆₁NO₂Zr (**4d**): C, 76.21; H, 7.36; N, 1.68. Found: C, 76.19; H, 7.14; N, 1.64.

Figure S7. Molecular Structure of 4d

Preparation of Complex 5a:

Complex **5a** was prepared as a white solid from ligand **L5a** (253 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1:** yield 206 mg (53%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (400 MHz, C₆D₆): δ 7.57-7.52 (m, 7H, Ar-*H*), 7.19-7.12 (m, 8H, Ar-*H*), 7.03-7.00 (m, 4H, Ar-*H*), 6.87 (d, *J* = 2.1 Hz, 1H, Ar-*H*), 6.81 (t, *J* = 7.6 Hz, 2H, Ar-*H*), 6.65 (t, *J* = 7.2 Hz, 1H, Ar-*H*), 6.42 (d, *J* = 7.2 Hz, 2H, Ar-*H*), 6.34 (d, *J* = 7.2 Hz, 2H, Ar-*H*), 3.98 (dd, *J* = 6.0, 11.2 Hz, 1H, CH₂O), 3.62 (dd, *J* = 6.4, 11.2 Hz, 1H, CH₂O), 2.79-2.74 (m, 2H, CH₂N), 2.64-2.63 (m, 1H, CH₂N), 2.52-2.46 (m, 1H, CH₂N), 2.33-2.24 (m, 2H), 1.69 (ABd, *J* = 7.2 Hz, 1H, PhCH₂), 1.34-1.18 (m, 15H). ¹³C NMR (100M, C₆D₆): δ 156.8, 148.8, 140.6, 136.4, 134.5, 131.8, 131.6, 129.8, 129.0, 128.9, 128.2, 127.9, 127.8, 126.1, 125.5, 125.2, 124.0, 120.7, 74.0, 70.9, 64.3, 58.4, 57.1, 56.8, 47.9, 34.3, 31.8, 25.5, 21.8. Anal. Calcd for C₄₉H₅₁NO₂Zr (**5a**): C, 75.73; H, 6.61; N, 1.80. Found: C, 75.41; H, 6.86; N, 1.56.

Figure S8. Molecular Structure of 5a

Preparation of Complex 5b:

Complex **5b** was prepared as a white solid from ligand **L5b** (267 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 175 mg (43%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.59-7.55 (m, 7H, Ar-*H*), 7.22-7.11 (m, 8H, Ar-*H*), 7.05-7.03 (m, 4H, Ar-*H*), 6.92-6.88 (s, 1H, Ar-*H*), 6.81 (t, *J* = 7.2 Hz, 2H, Ar-*H*), 6.66 (t, *J* = 7.2 Hz, 1H, Ar-*H*), 6.52 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 6.38 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 2.94-2.83 (m, 2H, CH₂N), 2.67-2.62 (m, 2H, CH₂N), 2.56-2.49 (m, 1H, CHN), 2.33 (ABd, *J* = 7.2 Hz, 1H, PhCH₂), 1.64 (ABd, *J* = 7.2 Hz, 1H, PhCH₂), 1.50-1.31 (m, 6H), 1.22 (s, 9H, C(CH₃)₃), 1.03 (s, 3H, CH₃), 0.91 (s, 3H, CH₃). ¹³C NMR (100M, C₆D₆): δ 157.0, 148.6, 140.5, 137.2, 134.7, 131.7, 131.3, 130.1, 129.5, 129.2, 128.4, 128.2, 127.9, 126.2, 125.6, 124.8, 123.7, 121.0, 83.2, 81.5, 64.3, 60.9, 56.9, 56.7, 45.7, 34.3, 31.8, 31.0, 27.6, 24.1, 22.3.Anal. Calcd for C₅₁H₅₅NO₂Zr (**5b**): C, 76.07; H, 6.88; N, 1.74. Found: C, 75.21; H, 7.02; N, 1.42.

Figure S9. Molecular Structure of 5b

Preparation of Complex 5c:

Complex **5c** was prepared as a white solid from ligand **L5c** (281 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 285 mg (68%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.70-7.50 (m, 7H, Ar-*H*), 7.22-7.11 (m, 8H, Ar-*H*), 7.04-7.02 (m, 4H, Ar-*H*), 6.90-6.83 (m, 1H, Ar-*H*), 6.81 (t, *J* = 6.9 Hz, 2H, Ar-*H*), 6.67 (t, *J* = 6.6 Hz, 1H, Ar-*H*), 6.57 (d, *J* = 7.2 Hz, 2H, Ar-*H*), 6.29 (d, *J* = 6.6 Hz, 2H, Ar-*H*), 2.94-2.89 (m, 2H, CH₂N), 2.74-2.69 (m, 2H, CH₂N), 2.50-2.46 (m, 1H, CHN), 2.21 (ABd, *J* = 7.2 Hz, 1H, PhCH₂), 1.62-1.34 (m, 9H), 1.34-1.10 (m, 11H), 0.95-0.93 (m, 3H, CH₂CH₃), 0.63 (t, *J* = 6.9 Hz, 3H, CH₂CH₃). ¹³C NMR (75 MHz, C₆D₆): δ 156.9, 148.1, 140.4, 138.1, 134.7, 131.7, 131.1, 130.0, 129.2, 129.0, 128.4, 126.1, 125.5, 125.0, 123,5, 121.1, 85.8, 83.4, 64.3, 61.0, 56.7, 56.2, 46.2, 34.3, 32.9, 31.8, 27.9, 24.8, 22.6, 9.3, 8.3. Anal. Calcd for C₅₃H₅₉NO₂Zr (**5c**): C, 76.39; H, 7.14; N, 1.68. Found: C, 76.25; H, 7.10; N, 1.69.

Figure S10. Molecular Structure of 5c

Preparation of Complex 5d:

Complex **5d** was prepared as a white solid from ligand **L5d** (329 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1:** yield 293 mg (63%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.60-7.58 (m, 2H, Ar-*H*), 7.58-7.47 (m, 8H, Ar-*H*), 7.38-7.35 (m, 2H, Ar-*H*), 7.14-7.07 (m, 3H, Ar-*H*), 7.04-6.92 (m, 17H, Ar-*H*), 6.81-6.74 (m, 3H, Ar-*H*), 6.30-6.20 (m, 2H, Ar-*H*), 3.80-3.77 (m, 1H, C*H*N), 3.51 (ABd, *J* = 13.8 Hz, 1H, C*H*₂N), 3.08 (ABd, *J* = 14.7 Hz, 1H, C*H*₂N), 2.64-2.49 (m, 2H), 2.32 (ABd, *J* = 7.8 Hz, 1H, PhC*H*₂), 2.04 (ABd, *J* = 7.5 Hz, 1H, PhC*H*₂), 1.63 (ABd, *J* = 10.2 Hz, 1H, PhC*H*₂), 1.30-1.11 (m, 11H), 0.90-0.86 (m, 2H), 0.68 (ABd, *J* = 9.9 Hz, 1H, PhC*H*₂). ¹³C NMR (75 MHz, C₆D₆): δ 157.3, 149.0, 147.3, 146.7, 141.7, 140.8, 134.5, 131.6, 130.3, 129.7, 129.3, 129.2, 129.1, 128.6, 128.2, 127.9, 127.8, 127.2, 126.43, 126.37, 126.3, 126.2, 125.60, 125.56, 123.6, 122.0, 87.9, 80.9, 64.0, 59.4, 58.8, 58.4, 50.6, 34.3, 31.7, 23.1, 21.2. Anal. Calcd for C₆₁H₅₉NO₂Zr (**5d**): C, 78.83; H, 6.40; N, 1.51. Found: C, 78.82; H, 6.72; N, 1.21.

Figure S11. Molecular Structure of 5d

Preparation of Complex 5e:

Complex **5e** was prepared as a white solid from ligand **L5e** (239 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1**: yield 105 mg (28%). ¹H NMR (400 MHz, C₆D₆): δ 7.53-7.51 (m, 6H, Ar-*H*), 7.30-7.29 (m, 1H, Ar-*H*), 7.20-7.13 (m, 8H, Ar-*H*), 7.04-7.01 (m, 5H, Ar-*H*), 6.85-6.81 (m, 2H, Ar-*H*), 6.66-6.59 (m, 4H, Ar-*H*), 6.41 (d, *J* = 7.6 Hz, 2H, Ar-*H*), 4.28-4.25 (m, 1H, CH₂O), 3.80-3.77 (m, 1H, CH₂O), 3.51 (ABd, *J* = 14.4 Hz, 1H, CH₂N), 2.72 (ABd, *J* = 14.4 Hz, 1H, CH₂N), 2.54-2.52 (m, 1H, CHN), 2.46 (ABd, *J* = 7.2 Hz, 1H, PhCH₂), 2.36-2.34 (m, 2H, CH₂N), 2.08 (s, 3H, CH₃), 1.66 (ABd, *J* = 7.2 Hz, 1H, PhCH₂), 1.34-1.32 (m, 2H), 1.24-1.21 (m, 2H), 1.12-1.07 (m, 2H), 0.81-0.78 (m, 1H, CH₂CH₂), 0.70-0.65 (m, 1H, CH₂CH₂). ¹³C NMR (100 MHz, C₆D₆): δ 156.8, 148.7, 137.0, 135.2, 133.1, 131.7, 131.1, 130.0, 129.6, 129.0, 128.2, 127.94, 127.86, 127.3, 126.2, 123.9, 123.8, 121.0, 69.0, 65.3, 64.0, 57.7, 57.4, 55.6, 37.6, 21.1, 19.1, 18.2, 17.9. Anal. Calcd for C₄₇H₄₇NO₂Zr (**5e**): C, 75.36; H, 6.32; N, 1.87. Found: C, 75.37; H, 6.40; N, 1.80.

Preparation of Complex 5f:

Complex **5f** was prepared as a white solid from ligand **L5f** (273 mg, 0.5 mmol) and ZrBn₄ (228 mg, 0.5 mmol) using the same procedures as reported for complex **1:** yield 277 mg (68%). ¹H NMR (400 MHz, C₆D₆): δ 7.61 (brs, 6H, Ar-*H*), 7.50 (d, *J* = 2.0 Hz, 1H, Ar-*H*), 7.20-7.18 (m, 4H, Ar-*H*), 7.15-7.12 (m, 4H, Ar-*H*), 7.08-7.01 (m, 4H, Ar-*H*), 6.93-6.86 (m, 3H, Ar-*H*), 6.74-6.61 (m, 5H, Ar-*H*), 4.02-3.87 (m, 2H, CH₂O), 3.44-3.37 (m, 1H, CHN), 3.10-3.04 (m, 1H, CHN), 2.90 (ABd, *J* = 14.4 Hz, 1H, CH₂N), 2.70 (ABd, *J* = 14.4 Hz, 1H, CH₂N), 2.41 (ABd, *J* = 8.4 Hz, 1H, PhCH₂), 2.18-2.08 (m, 1H), 1.71-1.56 (m, 3H), 1.49-1.20 (m, 16H), 0.71-0.63 (m, 1H, CHCH₂). ¹³C NMR (100 MHz, C₆D₆):

δ 157.1, 150.0, 140.7, 136.2, 134.8, 131.7, 131.0, 130.1, 130.0, 129.3, 128.6, 128.2, 127.9, 126.2, 125.7, 125.2, 124.3, 120.8, 76.8, 72.9, 68.6, 64.4, 61.6, 61.3, 58.0, 42.0, 34.4, 34.3, 32.2, 31.7, 31.5, 26.9. Anal. Calcd for C₅₂H₅₅NO₂Zr (**5f**): C, 76.42; H, 6.78; N, 1.71. Found: C, 75.97; H, 6.86; N, 1.47.

Preparation of Complex 8:

Complex **8** was prepared as a white solid from ligand **L8** (438 mg, 1.0 mmol) and ZrBn₄ (456 mg, 1.0 mmol) using the same procedures as reported for complex **1**: yield 373 mg (53%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution as colorless crystals at room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.53-7.50 (m, 6H, Ar-*H*), 7.28 (s, 1H, Ar-*H*), 7.20-7.17 (m, 2H, Ar-*H*), 7.15-7.12 (m, 5H, Ar-*H*), 7.04-7.00 (m, 5H, Ar-*H*), 6.86-6.81 (m, 2H, Ar-*H*), 6.68-6.63 (m, 1H, Ar-*H*), 6.54-6.51 (m, 3H, Ar-*H*), 6.41 (d, *J* = 7.5 Hz, 1H, Ar-*H*), 3.98-3.92 (m, 1H, CH₂O), 3.72-3.66 (m, 1H, CH₂O), 3.01 (ABd, *J* = 14.4 Hz, 1H, CH₂N), 2.66 (ABd, *J* = 14.1 Hz, 1H, CH₂N), 2.38 (ABd, *J* = 7.5 Hz, 1H, CH₂N), 2.27-2.17 (m, 1H, CH₂N), 2.08 (s, 3H, Ph-CH₃), 1.17-1.69 (m, 4H), 1.60 (ABd, *J* = 7.2 Hz, 1H, PhCH₂), 1.28 (ABd, *J* = 9.6 Hz, 1H, PhCH₂), 1.11 (ABd, *J* = 9.9 Hz, 1H, PhCH₂). ¹³C NMR (100 MHz, C₆D₆): δ 156.5, 148.4, 136.8, 135.3, 133.0, 131.6, 131.3, 129.8, 129.4, 129.3, 129.1, 128.6, 127.3, 126.2, 125.7, 123.9, 123.7, 121.0, 64.91, 64.88, 63.9, 63.4, 57.3, 34.9, 21.5, 21.0. Anal. Calcd for C₄₄H₄₃NO₂Zr (**8**): C, 74.53; H, 6.11; N, 1.98. Found: C, 74.75; H, 6.22; N, 2.37.

Figure S12. Molecular Structure of 8

Preparation of Complex 9:

To a toluene solution (20 mL) of **8** (142 mg, 0.2 mmol) was added ¹BuNH₂ (73 mg, 1.0 mmol), and the mixture was stirred at room temperature for 5 h. Removal of the volatile molecules gave a crude product. Recrystallization from a mixed solvent of toluene and hexane afforded **9** as colorless crystals (56 mg, 44%). Crystals suitable for X-ray analyses were grown from toluene/hexane solution. The ¹³C NMR spectrum was not available due to the very poor solubility. ¹H NMR (300 MHz, C₆D₆): δ 7.65-7.55 (m, 3H, Ar-*H*), 7.48-7.43 (m, 1H, Ar-*H*), 7.37-7.31 (m, 5H, Ar-*H*), 7.28-7.20 (m, 8H, Ar-*H*), 7.13-7.10 (m, 7H, Ar-*H*), 7.06-6.98 (m, 7H, Ar-*H*), 6.93 (s, 2H, Ar-*H*), 6.81 (s, 1H, Ar-*H*), 4.01-4.44 (m, 1H), 4.23-4.10 (m, 3H), 3.40 (s, 1H, N*H*), 3.34-3.28 (m, 1H), 3.10 (s, 1H, N*H*), 3.06-2.92 (m, 2H), 2.65-2.61 (m, 1H), 2.53 (s, 3H, Me), 2.25-2.24 (m, 1H), 2.17-2.14 (m, 1H), 2.21 (s, 3H, Me), 2.07 (s, 3H, Me), 1.68-1.64 (m, 2H), 1.61 (s, 3H, Me), 1.36 (s, 9H, *t*-Bu), 1.21 (s, 9H, *t*-Bu), 1.09 (s, 9H, *t*-Bu). Anal. Calcd for C₇₂H₈₇N₅O₄Zr₂ (**9**): C, 68.15; H, 6.91; N, 5.52. Found: C

Figure S13. Molecular Structure of 9

X-ray Structure Determination. Single crystals of **1-3**, **4a-d**, **5a-d**, **8** and **9** were immersed in Paraton-N oil and sealed under N₂ in thin-walled glass capillaries. All data were collected at 293 K on a Bruker AXS D8 X-ray diffractometer using Mo-K α radiation. An empirical absorption correction was applied using the SADABS program.^[8] All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all non-hydrogen atoms by full-matrix least squares calculations on F^2 using the SHELXTL program package.^[9] All hydrogen atoms were geometrically fixed using the riding model. Crystal data and details of data collection and structure refinements are given in Table S1.

CCDC1016330-1016342 (**1-3**, **4a**, **b**, **c**, **d**, **5a**, **b**, **c**, **d**, **8**, and **9**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4. Crystal Data and Summary of Data Collection and Refinement

complex No.	1	2	3
empirical formula	$C_{36}H_{51}NO_2Zr$	$C_{42}H_{57}NO_2Zr$	C ₅₀ H ₅₇ NO ₂ SiZr
formula weight	621.00	699.11	823.28
crystal size (mm)	0.297×0.220×0.130	0.369×0.311×0.257	0.327×0.269×0.211
crystal system	Monoclinic	Trigonal	Orthorhombic
space group	P2 ₁	P3 ₂	$P2_{1}2_{1}2_{1}$
<i>a</i> , Å	10.820(6)	25.473(4)	10.472(1)
b, Å	11.235(7)	25.473(4)	20.727(2)
<i>c</i> , Å	15.074(9)	15.017(3)	21.297(2)
α , deg	90	90	90
β , deg	110.6(1)	90	90
γ, deg	90	120	90
$V, \text{\AA}^3$	1714.7(17)	8439(2)	4622.8(7)
Ζ	2	9	4
$D_{\text{catcd}}, \text{Mg/m}^3$	1.203	1.238	1.183
radiation (λ), (Å)	Mo Ka (0.71073)	Mo Ka (0.71073)	Mo Ka (0.71073)
2θ range for data collection (deg)	1.44 to 27.00	1.60 to 26.49	1.91 to 25.50
absorption coefficient (mm ⁻¹)	0.350	0.328	0.301
F(000)	660	3348	1736
no. of obsd reflns	7112	22434	8583
no. of params reflns	371	1262	510
reflections collected /	10099 / 7112	62219 / 22434 [R(int) =	24284 / 8583
unique	[R(int) = 0.0635]	0.0197]	[R(int) = 0.0858]
goodness-of-fit on F ²	0.830	1.211	0.827
R1 $[I>2\sigma(I)]^a$	0.0636	0.0974	0.0510
wR1 $[I>2\sigma(I)]^{a}$	0.1527	0.2550	0.0924

Table S1. Crystal Data and Summary of Data Collection and Refinement

complex No.	4a	4b	4c
empirical formula	$C_{50}H_{55}NO_2Zr$	$C_{51}H_{56}NO_2Zr$	$C_{56}H_{59}NO_2Zr$
formula weight	793.17	807.20	869.26
crystal size (mm)	0.30×0.25×0.20	0.13×0.10×0.08	0.323×0.256×0.175
crystal system	Monoclinic	Orthorhombic	Monoclinic
space group	P2 ₁	$P2_{1}2_{1}2_{1}$	P2 ₁
<i>a</i> , Å	9.915(1)	9.970(2)	12.399(1)
b, Å	39.191(4)	20.770(4)	10.204(1)
<i>c</i> , Å	10.949(1)	20.886(4)	35.906(3)
α , deg	90	90	90
β , deg	93.596(2)	90	91.315(2)
γ, deg	90	90	90
$V, Å^3$	4246.1(7)	4325(1)	4541.2(7)
Ζ	4	4	4
$D_{\rm catcd}$, Mg/m ³	1.241	1.238	1.271
radiation (λ), (Å)	Mo Kα (0.71073)	Mo Kα (0.71073)	Mo K α (0.71073)
2θ range for data collection (deg)	1.86 to 27.00	1.96 to 25.65	1.13 to 26.00
absorption coefficient (mm ⁻¹)	0.298	0.294	0.285
F(000)	1672	1736	1832
no. of obsd reflns	18179	3810	16208
no. of params reflns	1027	541	1100
reflections collected / unique	38003 / 18179 [R(int) = 0.0222]	14432 / 3810 R(int) = 0.0530]	34011 / 16208 [R(int) = 0.0242]
goodness-of-fit on F ²	1.092	1.064	1.150
R1 [I> $2\sigma(I)$] ^{<i>a</i>}	0.0333	0.0514	0.0513
wR1 [I>2σ(I)] ^{<i>a</i>}	0.0838	0.0920	0.1253

complex No.	5a	5b	5c
empirical formula	$C_{49}H_{51}NO_2Zr$	$C_{51}H_{55}NO_2Zr$	$C_{53}H_{59}NO_2Zr$
formula weight	777.13	805.18	833.23
crystal size (mm)	$0.27 \times 0.22 \times 0.22$	0.30×0.10×0.08	0.229×0.202×0.175
crystal system	Monoclinic	Orthorhombic	Orthorhombic
space group	P2 ₁	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
<i>a</i> , Å	10.249(4)	10.407(1)	10.505(1)
b, Å	10.086(4)	20.067(2)	20.145(2)
<i>c</i> , Å	20.139(8)	20.180(1)	20.793(2)
α , deg	90	90	90
β , deg	102.780(7)	90	90
γ, deg	90	90	90
V, Å ³	2030(1)	4214.4(5)	4400.3(6)
Ζ	2	4	4
$D_{\rm catcd}, {\rm Mg/m}^3$	1.271	1.269	1.258
radiation (λ), (Å)	Mo Kα (0.71073)	Mo Kα (0.71073)	Mo Kα (0.71073)
2θ range for data collection (deg)	2.04 to 25.50	2.02 to 30.54	1.96 to 27.00
absorption coefficient (mm ⁻¹)	0.310	0.301	0.291
F(000)	816	1696	1760
no. of obsd reflns	6835	12891	9595
no. of params reflns	481	501	519
reflections collected /	13455 / 6835	41831 / 12891 [R(int)	34053 / 9595 [R(int) =
unique	[R(int) = 0.0407]	= 0.0658]	0.0356]
goodness-of-fit on F ²	1.009	0.980	1.065
R1 [I> $2\sigma(I)$] ^{<i>a</i>}	0.0405	0.0434	0.0326
wR1 [I> $2\sigma(I)$] ^{<i>a</i>}	0.1065	0.0876	0.0844

complex No.	5d	8	9
empirical formula	$C_{61}H_{59}NO_2Zr$	C ₄₄ H ₄₃ NO ₂ Zr	$C_{72}H_{87}NO_4Zr_2$
formula weight	929.31	709.01	1268.91
crystal size (mm)	0.25×0.15×0.05	0.08 × 0.04 × 0.03	0.12×0.05×0.03
crystal system	Orthorhombic	Monoclinic	Triclinic
space group	$P2_{1}2_{1}2_{1}$	C2/c	P-1
<i>a</i> , Å	9.986(1)	29.258(4)	12.065(2)
b, Å	10.263 (1)	24.694(4)	13.096(2)
<i>c</i> , Å	46.379(5)	23.148(3)	23.377(4)
α , deg	90	90	100.83(1)
β , deg	90	117.29(1)	93.01(1)
γ, deg	90	90	111.47(1)
$V, Å^3$	4753.2(8)	14862(4)	3346.3(9)
Ζ	4	16	2
$D_{\rm catcd}$, Mg/m ³	1.299	1.268	1.259
radiation (λ), (Å)	Mo Kα (0.71073)	Mo Kα (0.71073)	Mo Kα (0.71073)
2θ range for data collection (deg)	1.76 to 30.50	1.65 to 25.10	1.75 to 25.10
absorption coefficient (mm ⁻¹)	0.277	0.332	0.362
F(000)	1952	5920	1332
no. of obsd reflns	14461	13132	11728
no. of params reflns	589	857	748
reflections collected / unique	47013 / 14461 [R(int) = 0.0979]	48300 / 13132 [R(int) = 0.1208]	21203 / 11728 [R(int) = 0.0461]
goodness-of-fit on F ²	0.961	0.924	0.953
R1 $[I>2\sigma(I)]^{a}$	0.0533	0.0789	0.0483
wR1 [I> $2\sigma(I)$] ^{<i>a</i>}	0.0810	0.1831	0.1250

componds No.	4d
empirical formula	$C_{53}H_{61}NO_2Zr$
formula weight	835.25
crystal size (mm)	0.20 x 0.16 x 0.04
crystal system	Monoclinic
space group	P2 ₁
<i>a</i> , Å	10.071(1)
b, Å	16.436(2)
<i>c</i> , Å	29.620(3)
α , deg	90
β, deg	91.340(2)
γ, deg	90
$V, \text{ Å}^3$	4901.6(8)
Ζ	4
$D_{\text{catcd}}, \text{Mg/m}^3$	1.132
radiation (λ), (Å)	Mo Ka (0.71073)
2θ range for data collection (deg)	0.69 to 30.50
absorption coefficient (mm ⁻¹)	0.261
F(000)	1768
no. of obsd reflns	29501
no. of params reflns	1027
reflections collected / unique	48845 / 29501
	[R(int) = 0.0716]
goodness-of-fit on F^2	0.922
R1 [I> $2\sigma(I)$] ^{<i>a</i>}	0.0637
wR1 [I>2σ(I)] ^{<i>a</i>}	0.1017

		But R ²	10^{-2} 0^{2} R^{1} 10^{-1718} 11^{-1718}	2		
-	1	2 ^{<i>a</i>}	3	4a ^b	4b	4c ^b
Zr-O(1)	1.921(6)	1.948(8)	1.965(3)	1.973(2)	1.960(2)	1.962(3)
Zr-O(2)	2.246(6)	2.270(8)	2.258(3)	2.275(2)	2.257(2)	2.317(4)
Zr-N(1)	2.047(8)	2.057(8)	2.050(4)	2.044(2)	2.059(2)	2.058(4)
Zr-C(10)	2.316(10)	2.337(11)	2.277(6)	2.314(3)	2.296(3)	2.286(5)
Zr-C(11)	2.873(10)	2.713(10)	2.725(6)	2.759(3)	2.715(3)	2.728(6)
Zr-C(17)	2.285(13)	2.300(13)	2.257(5)	2.289(3)	2.300(3)	2.299(5)
Zr-C(18)	3.320(14)	3.218(12)	3.159(6)	3.127(3)	3.176(4)	3.077(6)
O(1)-Zr-N(1)	85.8(3)	86.3(3)	84.4(1)	86.1(1)	84.2(2)	85.1(2)
O(2)-Zr-N(1)	73.8(3)	73.1(3)	73.1(2)	71.1(1)	72.8(2)	73.3(1)
O(1)-Zr-O(2)	159.3(2)	159.1(3)	157.2(1)	146.4(1)	156.0(2)	158.3(1)
C(10)-Zr-C(17)	123.9(6)	127.8(4)	120.7(3)	119.7(1)	122.7(3)	124.6(2)
C(11)-C(10)-Zr	95.6(9)	87.4(6)	91.2(4)	91.0(2)	89.7(4)	90.6(3)
C(18)-C(17)-Zr	117.5(9)	113.8(8)	115.6(4)	109.9(2)	112.8(5)	107.0(4)

Table S2. Selected Bond Lengths (Å) and Angles (deg) for Complexes 1-8

^{*a.*} average values of three independent molecules in the unit cell. ^{*b.*} average values of two independent molecules in the unit cell.

	4d ^{<i>b</i>}	5a	5b	5c	5d	8 ^b
Zr-O(1)	1.973(3)	2.008(4)	2.012(2)	2.011(1)	1.981(2)	2.001(5)
Zr-O(2)	2.343(3)	1.966(4)	1.975(2)	1.964(2)	1.966(2)	1.974(5)
Zr-N(1)	2.041(3)	2.328(4)	2.352(2)	2.350(2)	2.363(2)	2.379(5)
Zr-C(10)	2.278(5)	2.272(5)	2.287(3)	2.284(2)	2.265(3)	2.283(7)

Zr-C(11)	2.873(4)	2.666(4)	2.606(3)	2.610(2)	2.604(2)	2.657(7)
Zr-C(17)	2.314(4)	2.282(5)	2.280(3)	2.294(2)	2.280(3)	2.282(6)
Zr-C(18)	3.095(4)	3.015(5)	3.000(3)	3.005(2)	3.085(3)	3.003(7)
O(1)-Zr-N(1)	83.8(1)	77.5(1)	76.8(1)	76.6(1)	78.8(1)	77.8(2)
O(2)-Zr-N(1)	73.1(1)	74.3(2)	73.3(1)	73.0(1)	71.9(1)	73.8(2)
O(1)-Zr-O(2)	156.5(1)	151.7(1)	150.1(1)	149.5(1)	150.7(1)	150.6(2)
C(10)-Zr-C(17)	125.1(2)	124.8(2)	123.5(1)	122.8(1)	123.1(1)	120.9(3)
C(11)-C(10)-Zr	97.9(3)	88.8(3)	85.2(2)	85.3(1)	85.9 (2)	87.5(5)
C(18)-C(17)-Zr	107.5(3)	104.0(3)	103.9(2)	103.7(1)	108.2(2)	104.3(4)

^{b.} average values of two independent molecules in the unit cell.

Figure S14. Space-filling Structures of Complexes 1, 2, 3, 4b

5. Ligand and Temperature Effects on Enantioselectivity

Chart S1. New Zr Complexes 1-4.

Ph Ph	MH ₂	$\frac{10 \text{ mol}\% \text{ cat.}}{C_6 D_6, 100^{\circ} \text{C}} \xrightarrow{\text{Ph}}_{\text{Ph}} \xrightarrow{\text{NH}}_{\text{7A}} \overset{\text{Me}}{}$					DR ² Sn	
	entry	cat.	R^1	\mathbf{R}^2	time ^{a} (h)	ee ^b (%)		
	1	1	Bu^t	Et	4.0	27		
	2	2	adamantanyl	Et	8.5	28		
	3	3	Ph ₃ Si	Et	4.0	38		
	4	4b	Ph ₃ C	Et	2.0	56		
	5	4a	Ph ₃ C	Me	3.0	49		
	6	4c	Ph ₃ C	Bn	1.5	40		
	7	4d	Ph ₃ C	Bu ^t	2.0	1		
а.	^{<i>a.</i>} time for \geq 95% conversion. ^{<i>b</i>} measured by chiral HPLC.							

Table S3. Effect of R^1 and R^2 on Enantioselectivity

	Ph Ph NH ₂ 6A	10 mol% 5b C ₆ D ₆ , T°C	Ph Ph 7A	Me NH
entry	temp. (°C)	time (h)	con. (%)	ee ^{<i>a</i>} (%)
1	115	4.5	95	84
2	100	4.5	94	89
3	85	11	92	92
4	80	14	90	93
5	70	19	95	94
6	55	29	93	94

Table S4. Effects of Reaction Temperatures on Enantioselectivity

11

^{*a*} measured by chiral HPLC.

6. Procedure for Kinetics Experiments

A 5.00 mL stock standard solution in d_8 -toluene containing aminoalkene substrate (1.778 g, 7.50 mmol) and Cp₂Fe (internal standard, 348.8 mg, 1.875 mmol) was prepared using a 5.0 mL volumetric flask. The concentration of substrate in the standard solution was 1.50 M, and that of internal standard Cp₂Fe was 0.375 M. At the same time, a standard solution of catalyst in d_8 -toluene (387.9 mg, 0.3 mmol) was prepared using a 2.0 mL volumetric flask. Standard solutions of the substrate (1.50 M) and internal standard Cp₂Fe (0.375 M) in d_8 -toluene were added to a Teflon-sealed J. Young NMR tube by a 50 µL microsyringe. And then a standard solution of the catalyst in d_8 -toluene (0.15 M) was added to a J. Young NMR tube via a 50µL microsyringe. d_8 -Toluene was added (150 µL) to bring a total volume to 500 µL. The NMR tube was inserted into a pre-heated NMR probe (600 MHz spectrometer) and was left to thermally equilibrate with the heated probe for five minutes before data acquisition was started. Each kinetic run was performed using four-scan experiments. The temperature of the probe was calibrated using tabulated chemical shifts of ethylene glycol at five-degree intervals. The product concentration was quantified by integration of the CH₂CH signal

of product relative to the signal of the internal standard Cp_2Fe . All errors on linear correlations were estimated from the standard error of the linear regression analysis performed using the Origin Linear Fit.

7. Supplementary Data.

Figure S15. Plot of [**7A**] versus time in various $[6A]_0$ Conditions for cyclization: $[6A]_0 = 0.03 - 0.12$ M, $[5b]_0 = 6$ mM, toluene- d_8 , 60 °C.

Figure S16. Plot of first-order k (mM min⁻¹) versus $[6A]_0$ (M) Conditions for cyclization: $[6A]_0 = 0.03 - 0.12$ M, $[5b]_0 = 6$ mM, toluene- d_8 , 60 °C.

Figure S17. Plot of [**7A**] versus time (min) in various [cat.] Conditions for cyclization: $[6A]_0 = 0.06$ M, $[5b]_0 = 3-9$ mM, toluene- d_8 , 60 °C.

Figure S18. Plot of first-order k (mM min⁻¹) versus [cat.] (mM) Conditions for cyclization: [**6A**] $_0 = 0.06$ M, [**5b**] $_0 = 3.9$ mM, toluene- d_8 , 60 °C.

Figure S19. Kinetic Isotope Effect for the $6A/d_2$ -6AConditions for cyclization: $[6A]_0 = 0.15$ M, $[5b]_0 = 18$ mM, toluene- d_8 , 60 °C.

In the presence of catalyst **5b**, the cyclization of *N*-deuterated **6A** was much slower than for the proteo counterpart **6A**, giving the $k(H)/k(D) = (9.12 \text{ E-4}/1.75 \text{ E-4}) = 5.2 \text{ at } 60 \text{ }^{\circ}\text{C}$, toluene-*d8* (Figure S19).

Figure S20. Plot of [**7A**] versus Time/min at ten-degree intervals from 50 $^{\circ}$ C to 80 $^{\circ}$ C in toluene- d_8 . Conditions for cyclization: [**6A**] $_0 = 0.15$ M, [**5b**] $_0 = 6$ mM.

In order to obtain parameters for the Eyring analysis, the temperature was converted from Celsius to Kelvin, and the *k* values were converted from units of \min^{-1} to s⁻¹.

Entry	$\operatorname{Temp.}_{a}(^{\circ}\mathrm{C})$	Temp. (K) b	k (M/min)	<i>k</i> (M/s)	1/T (K ⁻¹)	Ln(K _{obs} /T)
1	50	323.05	1.43E-04	2.38E-06	0.003095	-18.7282
2	50	323.05	1.48E-04	2.46E-06	0.003095	-18.6914
3	60	332.77	2.69E-04	4.48E-06	0.003005	-18.1241
4	60	332.77	2.63E-04	4.39E-06	0.003005	-18.1437
5	60	332.77	2.46E-04	4.11E-06	0.003005	-18.2105
6	70	343.04	4.12E-04	6.87E-06	0.002915	-17.7264
7	80	353.85	5.90E-04	9.83E-06	0.002826	-17.399
8	80	353.85	6.04E-04	1.01E-05	0.002826	-17.3756

Table S5. Parameters for Eyring analysis.

^{*a*} Setting Temperature. ^{*b*} Actual temperature measured by NMR spectrometer, ± 0.1 K.

Plotting 1/*T* versus $\ln(k/T)$ and performing a least-squares linear regression analysis gave: y = - (4843.9 ±235.9) x - (3.66±0.70), Adj. R² = 0.984 (errors from standard error of regression)

Figure S21. Eyring plot for the cyclization of 6A.

Conditions for cyclization: $[6A]_0 = 0.15$ M, $[5b]_0 = 6$ mM in toluene- d_8 .

From the Eyring equation: $\ln(k/T) = -\Delta H^{\neq}/RT + \Delta S^{\neq}/R + \ln(k_{\rm B}/h)$ $-\Delta H^{\neq}/R = -4843.9 \pm 235.9$, R = 1.98588 cal K⁻¹ mol⁻¹, Therefore, $\Delta H^{\neq} = 9.9 \pm 0.3$ kcal mol⁻¹ $\Delta S^{\neq}/R + \ln(k_{\rm B}/h) = -3.66 \pm 0.70, \ln(kB/h) = 23.76$ Therefore, $\Delta S^{\neq} = -53.4 \pm 0.9$ cal mol⁻¹ K⁻¹.

Table S6. Linear regression statistics on Eyring analysis

Regression Statistics					
Number of Points	8				
Degrees of Freedom	6				
Residual Sum of	0.02650				
Squares	0.02039				
Pearson's r	-0.99296				
Adj. R-Square	0.98363				

ANOVA

	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	1	1.86815	1.86815	421.52762	8.68381E-7
Error	6	0.02659	0.00443		
Total	7	1.89474			

ee of 5b (%)	ee of 7A (%)
0	3
20	11
40	41
60	54
80	69
100	94

Figure S22. Plot of *ee* values of **5b** versus *ee* values of **7A** Conditions: [5b] = 0.02 M and [6A] = 0.2 M in 0.5 mL of C₆D₆.

Scheme S1. Reaction of Complex 9 with excess *t*-BuNH₂ at 85° C in *d*₆-Benzene.

Scheme **S2**. Reaction of Complex **8** with 5 equiv of t-BuNH₂ at 85°C in d_6 -Benzene.

Scheme S3. Rate equation derived from Steady State Approximation.

Since the rate-determining step is from **II** to **III**, the rate equation is: rate = k[II]. Since the conversion from **I** to **II** is reversible, [II]=k'[I][6].

$$\therefore$$
 rate = kk'[**I**][**6**].

Since the conversion from **5b** to **I** is irreversible, \therefore [**I**] = [**5b**]

: rate = $kk'[5b][6] = k_{obs}[5b][6]$.

Table S7. Isotopic substitution effects on the reaction enantioselectivity.

8. HPLC analysis of Hydroamination Products

General procedure for NMR scale intramolecular hydroamination of aminoalkene. In a dry-box, the desired aminoalkene substrate (0.2 mmol), internal standard ferrocene (0.1 mmol, 18.6 mg), zirconium complex (0.02 mmol, 10 mol%), 500 mg C_6D_6 were added to a Teflon-sealed J. Young NMR tube. The reaction proceeded at desired temperature, which were frequently monitored by ¹H NMR. The racemic samples were prepared by hydroamination of the corresponding aminoalkenes in the presence of 10 mol% Zr(NMe₂)₄.

HPLC analysis. The enantiomeric excess of chiral pyrrolidines (7A, 7G) was determined by chiral HPLC and the other pyrrolidines (7B, 7C, 7D, 7E, 7F) were determined by the analysis of their tosyl derivatized products.

Typical procedure for derivatization: 4-Toluenesulfonyl chloride (120 mg) was added to a CH_2Cl_2 solution of reaction mixture and triethylamine (0.2 mL) at room temperature. The resultant mixture was stirred for 2 h at room temperature, and then the volatile materials were removed by rotary evaporation, giving a white solid which was purified by flash chromatography on silica gel (PE:EA=25:1).

Heated at 70 °C for 19 h to give **7A**: 40 mg, 84%, ee: 94% (Chiralcel OJ, 10/90 *i*PrOH/Hexane, 0.6 mL/min, 234 nm; tr (major) = 13.93 min, tr (minor) = 22.02 min). ¹H NMR (300 MHz, CDCl₃): δ 7.23-7.06 (m, 10H), 3.70 (ABd, J = 11.4 Hz, 1H), 3.47 (ABd, J = 11.4 Hz, 1H), 3.32-3.25 (m, 1H), 2.66 (dd, $J_1 = 6.9$ Hz, $J_2 = 11.4$ Hz), 2.07 (br, 1 H, obscured by water residue in CDCl₃, NH), 1.95 (dd, J = 9.3 Hz, 12.6 Hz, 1H), 1.12 (d, J = 6.3 Hz, 3H). Rotation: -44.2 °, c = 2.0 in EtOH.

<Chromatogram>

1 PDA Multi 1/254nm 4nm

PeakTable

PDA Ch1 254nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	15.932	8118964	102113	50.029	60.634	
2	23.528	8109649	66295	49.971	39.366	
Total		16228613	168408	100.000	100.000	

PeakTable

	r cak i abic							
Ι	Detector A Ch1 230nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
Γ	1	13.929	15055218	189963	97.037	97.464		
Γ	2	22.017	459634	4943	2.963	2.536		
	Total		15514853	194907	100.000	100.000		

Heated at 70 °C for 21 h, followed by reaction with TsCl to give N-Ts-**7B**: 59.4 mg, 97%, ee: 93% (Chiralcel OJ-H, 90/10 N₂/CO₂, 1.5 MPa, 230 nm; tr (minor) = 4.7 min, tr (major) = 5.1 min). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 7.30 (d, *J* = 8.4 Hz, 2H, Ar-*H*), 3.60-3.51 (m, 1H, CH₃C*H*N), 3.24 (ABd, *J* = 10.4 Hz, 1H, C*H*₂N), 3.14 (ABd, *J* = 10.8 Hz, 1H, C*H*₂N), 2.42(s, C*H*₃, Ar-C*H*₃), 1.80 (dd, *J*₁ = 7.2 Hz, *J*₂ = 12.8 Hz, 1H), 1.42-1.12 (m, 12H), 0.85-0.77 (m, 1H), 0.71-0.65 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.1, 134.8, 129.4, 127.4, 58.7, 55.1, 47.0, 40.9, 36.5, 34.1, 25.8, 23.6, 22.8, 22.7, 21.5. IR (v/cm⁻¹): 2924(m), 2853(w), 1598(w), 1337(s), 1155(s). 658 (s). Rotation: -20.7°, c = 3.0 in EtOH. HRMS (ESI) calcd for C₁₇H₂₆NO₂S, (M+H⁺): 308.1679; Found: 308.1677.

Signal:	DAD1	A,	Sig=230,	16	Ref=360,	100
---------	------	----	----------	----	----------	-----

RT [min]	Туре	Width [min]	Area	Height	Area%
4.648	BB	0.0786	1628.5398	318.6733	49.9934
5.067	BV	0.0869	1628.9717	288.2773	50.0066
		Sum	3257.5115		

Signal: DAD1 A, Sig=230, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
4.651	VB	0.0797	236.2276	46.1372	3.6097
5.059	BB	0.0897	6308.0537	1086.8413	96.3903
		Sum	6544.2813		

Heated at 85 °C for 72 h, followed by reaction with TsCl to give N-Ts-**7C**: 53.2 mg, 91%, ee: 87% (Chiralcel OJ-H, 90/10 N₂/CO₂, 1.5 MPa, 230 nm; tr (minor) = 4.4 min, tr (major) = 4.7 min). ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2H, Ar-*H*), 7.31 (d, *J* = 7.8 Hz, 2H, Ar-*H*), 3.66-3.55 (m, 1H, CH₃C*H*N), 3.26 (ABd, *J* = 10.2 Hz, 1H, C*H*₂N), 3.07 (ABd, *J* = 9.9 Hz, 1H, NC*H*₂), 2.43(s, C*H*₃, Ar-C*H*₃), 1.85-1.78 (m, 1H), 1.63-1.40 (m, 10H), 1.06-0.85 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 143.1, 134.9, 129.4, 127.4, 59.9, 56.1, 48.3, 46.6, 36.52, 36.49, 24.4, 24.2, 22.7, 21.4. IR (v/cm⁻¹): 2952(m), 2861(w), 1333(s), 1154(s). 659 (s). Rotation: -19.7 °, c = 2.5 in EtOH. HRMS (ESI) calcd for C₁₆H₂₄NO₂S, (M+H⁺): 294.1522; Found: 294.1520.

Signal: DAD1 A, Sig=214, 16 Ref=360, 100					
RT [min]	Туре	Width [min]	Area	Height	Area%
4.488	BV	0.0794	10726.2539	2105.4753	49.6740
4.737	VB	0.0858	10867.0293	1957.1085	50.3260
		Sum	21593.2832		

Signal: DAD1 A, Sig=214, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
4.448	VV	0.0762	594.0263	119.1694	6.6896
4.684	VB	0.0825	8285.7656	1545.5056	93.3104
		Sum	8879.7919		

Heated at 85 °C for 120 h, followed by reaction with TsCl to give N-Ts-**7D**: 51.0 mg, 96%, ee: 89% (Chiralcel AD-H, 95/5 N₂/CO₂, 1.5 MPa, 214 nm; tr (major) = 11.6 min, tr (minor) = 13.5 min). ¹H NMR (300 MHz, CDCl₃): δ 7.73 (d, *J* = 8.4 Hz, 2H, Ar-*H*), 7.31 (d, *J* = 7.8 Hz, 2H, Ar-*H*), 3.71-3.59 (m, 1H, CH₃C*H*N), 3.17 (ABd, *J* = 10.2 Hz, 1H, C*H*₂N), 3.07 (ABd, *J* = 10.2 Hz, 1H, NC*H*₂), 2.43(s, C*H*₃, Ar-C*H*₃), 1.77-1.70 (m, 1H), 1.44-1.37 (m, 4H), 1.04 (s, 3H, C*H*₃), 0.55 (s, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 143.0, 135.0, 129.4, 127.3, 61.4, 55.9, 48.8, 37.0, 26.5, 25.8, 22.7, 21.4. IR (v/cm⁻¹): 2965(m), 2885(w), 1326(s), 1152(s). 659 (s). Rotation: -30.8 °, c = 1.7 in EtOH. HRMS (ESI) calcd for C₁₄H₂₂NO₂S, (M+H⁺): 268.1366; Found: 268.1366.

Signal: DAD1 A, Sig=214, 16 Ref=360,	, 100
--------------------------------------	-------

RT [min]	Туре	Width [min]	Area	Height	Area%
11.658	BB	0.2212	1288.0347	88.8306	49.8780
13.542	BB	0.2591	1294.3381	76.2170	50.1220
		Sum	2582.3728		

Signal: DADI A, Sig=214, 16 Ref=360, 1	ig=214,16 Ref=360,100
--	-----------------------

RT [min]	Туре	Width [min]	Area	Height	Area%
11.632	BB	0.2153	1707.7028	119.8208	94.5537
13.533	BB	0.2153	98.3644	6.0319	5.4463
		Sum	1806.0672		

Heated at 85 °C for 89 h, followed by reaction with TsCl to give N-Ts-**7E**: 51.9 mg, 89%. ee: 90%, 93%, dr=1.2:1 (Chiralcel IC, 95/5 N₂/CO₂, 1.7 MPa, 214 nm; tr (minor) = 67.3 min, tr (major) = 75.4 min; tr (minor) = 72.8 min, tr (major) = 84.2 min).For a mixture of cis- and trans- isomers ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2 H, Ar-*H*), 7.31 (d, *J* = 6.6 Hz, 2 H, Ar-*H*), 5.76-5.49 (m, 1 H, CH₂=C*H*), 5.05-4.78 (m, 2 H, CH₂=CH), 3.69-3.58 (m, 1 H, CHN), 3.25-3.04 (m, 2 H, NCH₂), 2.43(s, 3 H, Ar-CH₃), 2.07 (d, *J* = 7.2 Hz, 1 H), 1.90-1.83 (m, 0.5 H), 1.67-1.59 (m, 1.5H), 1.48-1.29 (m, 4 H), 1.03 (s, 1.4H, CH₃), 0.49 (s, 1.3 H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 143.2(143.1), 135.14(135.11), 134.2(134.0), 129.49(129.47), 127.41(127.40), 118.0(117.9), 60.0(59.8), 55.58(55.56), 47.05(46.51), 44.3(42.7), 40.2(40.1), 24.0(23.2), 22.8(22.6), 21.49(21.47). IR (v/cm⁻¹): 2964(m), 2928(m), 2875(w), 1344(s), 1335(s),1155(s). 657 (s). Rotation: -11.7 °, c = 3.0 in EtOH. HRMS (ESI) calcd for C₁₆H₂₄NO₂S, (M+H⁺): 294.1522; Found: 294.1524.

Signal:	DAD1	Α	Sig=214 16	Ref=360 100
orginar.	DADI	л,	51g 214, 10	KCI 000,100

RT [min]	Туре	Width [min]	Area	Height	Area%
67.570	MM R	1.3747	1724.1978	20.2618	17.9493
73.337	MM R	1.5231	3076.5605	32.6234	32.0277
77.743	MM R	1.5782	1711.6000	17.4349	17.8182
87.029	MM R	1.8032	3093.5752	27.1522	32.2048
		Sum	9605.9335		

DAD1 A, Sig=214, 16 Ref=360, 100 Signal: RT [min] Туре Width [min] Area Height Area% 67.279 MM R 1.3131 1025.4575 12.3733 1.9549 72.825 MF R 1.3143 1159.7544 14.1931 2.2109 75.378 FM R 2.0653 20469.5332 162.6545 39.0219 84.244 29801.7793 56.8123

BB R

1.8152

Sum

52456.5244

190.2420

Heated at 70 °C for 24 h, followed by reaction with TsCl to give N-Ts-7F: 64.8 mg, 91%, dr=1.7:1. For one of the isomer A ee value: 92% (Chiralcel OJ-H, 95/5 N₂/CO₂, 1.3 MPa, 214 nm; tr (major) = 13.1 min, tr (minor) = 14.3 min). ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.4 Hz, 2 H, Ar-H), 7.34-7.06 (m, 5 H, Ar-H), 7.05 (d, J = 7.2 Hz, 2 H, Ar-H), 5.25-5.15 (m, 1H, CH₂CH), 4.87-4.84 (m, 1H, CH₂CH), 4.66-4.62 (m, 1H, CH₂CH), 3.89-3.83 (m, 1H, CHN), 3.75 (ABd, J = 10.4 Hz, 1 H, CH_2N), 3.57 (ABd, J = 10.4 Hz, 1 H, CH_2N), 2.43-2.35 (m, 4H, CH_3 , CH_2N), 1.99-1.94 (m, 1H), 1.84-1.77 (m, 2H), 1.36 (d, J = 6.0 Hz, 3H, CH₃CH). ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 143.3, 136.1, 133.4, 129.6, 128.2, 127.2, 126.5, 126.4, 118.1, 57.9, 55.1, 47.9, 44.0, 43.4, 22.3, 21.5. IR (v/cm⁻¹): 2965(m), 2924(m), 2875(w), 1335(s), 1157(s), 662(s). Rotation: 15.3°, c = 2.0 in EtOH. HRMS (ESI) calcd for $C_{21}H_{26}NO_2S$, (M+H⁺): 356.1679; Found: 356.1682.

_		~ · · · · · ·	
onal.	DAD1 A	$Si\sigma = 214 \ 16$	Ref=360 100
GIIGI .	DI1D1 11,	018 211, 10	MOI 000, 100

Signal: DAD1 A, Sig=214, 16 Ref=360, 100					
RT [min]	Туре	Width [min]	Area	Height	Area%
13.041	MM R	0.2623	12402.1201	749.6440	50.7656
14.138	VB	0.2865	12028.0527	645.0943	49.2344
		Sum	24430.1729		

Signal: DAD1 A, Sig=214, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
13.057	MM R	0.2784	15579.4180	926.0387	96.6548
14.269	MM R	0.2816	539.2034	31.4341	3.3452
		Sum	16118.6213		

For another isomer **B**, ee: 88 % (Chiralcel AD-H, 95/5 N₂/CO₂, 1.5 MPa, 214 nm; tr (minor) = 32.3 min, tr (major) = 35.4 min). Mixture of isomer A and isomer B: ¹H NMR (300 MHz, CDCl₃): δ 7.58 (d, *J* = 8.1 Hz, 2 H, Ar-*H*), 7.22-7.12 (m, 5 H, Ar-*H*), 7.00-6.97 (m, 2 H, Ar-*H*), 5.39-5.26 (m, 1H, CH₂=C*H*), 4.98-4.93 (m, 2H, CH₂=CH), 3.77 (ABd, *J* = 9.9 Hz, 1H, CH₂N), 3.59-3.48 (m, 1H, CHN), 3.37 (ABd, *J* = 9.9 Hz, 1 H, CH₂N), 2.52 (d, *J* = 7.2 Hz, 2 H, CH₂CH=CH₂), 2.37-2.28 (m, 4H, CH₃, CH₂N), 1.92-1.86 (m, 1H), 1.54 (d, *J* = 6.6 Hz, 3H, CH₃CH).For a mixture of isomer A and isomer B ¹³C NMR (100 MHz, CDCl₃): δ 144.1(144.2), 143.1(143.3), 133.8(136.1), 129.5(133.4), 129.4(129.6), 127.5(128.2), 127.0(127.2), 126.21(126.5), 126.17(126.4), 118.3(118.1), 59.3(57.9), 55.2(55.1), 47.92(47.86), 45.6(44.0), 43.6(43.4), 23.2(22.3), 21.4(21.5).

Signal: DAD1 A, Sig=214, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
32.242	VB	0.5407	2709.6060	64.1658	49.2385
35.460	BB	0.5520	2793.4175	61.8422	50.7615
		Sum	5503.0234		

RT [min]	Туре	Width [min]	Area	Height	Area%
32.318	MM R	0.6487	528.2576	13.0832	5.7559
35.389	MM R	0.7658	8649.4043	182.1060	94.2441
		Sum	9177.6619		

Heated at 130 °C for 2 h to give **7G**: 45.7 mg, 91%, ee: 66% (Chiralcel OD-H, 2/98 *i*PrOH/Hexane, 0.4 mL/min, 230 nm; tr (major) = 18.43 min, tr (minor) = 31.52 min). ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.31 (m, 4H, Ph-*H*), 7.25-7.09 (m, 6H, Ph-*H*), 3.91 (dd, *J* = 3.0 Hz, 13.5 Hz, 1H), 3.11 (d, *J* = 13.5 Hz, 1H), 2.83-2.67 (m, 2H), 2.22 (dt, *J* = 3.6 Hz, 13.2 Hz, 1H), 1.67-1.60 (m, 2H), 1.48 (brs, 1H), 1.22-1.08 (m, 1H), 1.01 (d, *J* = 6.3 Hz, 3H, CH₃CH).

2011-12-2 20:14:4

==== Shimadzu LCsolution Analysis Report ====

E:\Shimadzu 数据\zxg\result\zxg0745-rac-OD-H-0.4-(98-2)-214.lcd Acquired by : Admin zxg-0745-rac Sample Name Sample ID Vail # : 1 Injection Volume : 2 uL : zxg0745-rac-OD-H-0.4-(98-2)-214.lcd : OD-H-98-2-0.4-214.lcm Data File Name Method File Name Batch File Name : 1.lcb Report File Name Default.lcr Data Acquired 2011-12-2 19:35:21 Data Processed 2011-12-2 20:12:22

<Chromatogram>

PeakTable						
Detector A	Ch2 230nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	18.835	5752751	141540	50.254	66.331	
2	32.153	5694520	71845	49.746	33.669	
Total		11447271	213385	100.000	100.000	

==== Shimadzu LCsolution Analysis Report ====

<Chromatogram>

PeakTable

Detector A Ch2 230nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	18.426	7322797	134945	83.000	89.816	
2	31.517	1499830	15301	17.000	10.184	
Total		8822626	150246	100.000	100.000	

9. NMR Spectra of New Compounds and the Products

Figure S23 Sadow reported ¹⁹F NMR (376 MHz, CDCl₃, 60 $^{\circ}$ C) spectrum of (R)-Mosher amide derivative of 2-methyl-4,4-diphenylpyrrolidine (**7A**) from stereoselective hydroamination obtained after treatment with (S)-Mosher chloride.^[10]

The reported absolute configuration of **6A** is S.^[10]

Figure S24 ¹⁹F NMR (450 MHz, CDCl₃, 60 $^{\circ}$ C) spectrum of (S)-Mosher amide derivative of 7A from stereoselective hydroamination obtained after treatment with (R)-Mosher chloride in our condition.

Comparisons between two spectra suggested that the absolute configuration of 7A is R in our system.

10. References:

a) S. Hong, S. Tian, M. V. Metz and T. J. Marks, *J. Am. Chem. Soc.* 2003, **125**, 14768-14783. b) T. Kondo, T. Okada and T. Mitsudo, *J. Am. Chem. Soc.* 2002, **124**, 186-187. c) C. F. Bender and R. A. Widenhoefer, *J. Am. Chem. Soc.* 2005, **127**, 1070-1071. d) H. Ohmiya, T. Moriya and M. Sawamura, *Org. Lett.* 2009, **11**, 2145-2147. e) Z. Liu and J. F. Hartwig, *J. Am. Chem. Soc.* 2008, **130**, 1570-1571.
f) L. Ackermann, L. T. Kaspar and A. Althammer, *Org. Biomol. Chem.* 2007, **5**, 1975-1978. g) M. Dochnahl, J.-W. Pissarek, S. Blechert, K. Loehnwitzb and P. W. Roesky, *Chem. Commun.* 2006, **32**, 3405-3407. h) S. Majumder and A. L. Odom, *Organometallics* 2008, **27**, 1174-1177. i) A. T. Gilbert, B. L. Davis, T. J. Emge and R. D. Broene, *Organometallics* 1999, **18**, 2125-2132. j) D. V. Gribkov, K. C. Hultzsch and F. Hampel, *Chem. Eur. J.* 2003, **9**, 4796-4810. k) K. C. Hultzsch, F. Hampel and T. Wagner, *Organometallics* 2004, **23**, 2601-2612. l) J. M. Andres, I. Herraiz-Sierra, R. Pedrosa and A. Perez-Encabo, *Eur. J. Org. Chem.* 2000, **9**, 1719-1726.

2. J. J. Felten and W. P. Anderson, J. Organomet. Chem. 1972, 36, 87-92.

3. S. Ay, M. Nieger and S. Br äse, Chem. Eur. J. 2008, 14, 11539-11556.

4. N. Nomura, R. Ishii, Y. Yamamoto and T. Kondo, Chem. Eur. J. 2007, 13, 4433-4451.

5. A. I. Meyers, M. Boes and D. A. Dickman, Org. Synth., Coll. Vol. VIII 1993, 204-209.

6. S. Manaviazar, K. J. Hale and A. LeFranc, Tetrahedron Lett. 2011, 52, 2080-2084.

7. A Cohen, J. Kopilov, I.Goldberg and M. Kol, Organometallics 2009, 28, 1391-1405

8. G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen: Germany, 1996.

9. G. M. Sheldrick, SHELXTL 5.10 for Windows NT: Structure Determination Software Programs. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1997.

10. K. Manna, M. L. Kruse and A. D. Sadow, ACS Catal. 2011, 1, 1637–1642.