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1. Synthesis details 

1.1 General 

All manipulations and reactions were performed under dry Ar atmosphere by using 

standard Schlenk or glovebox techniques. All solvents were dried and freshly distilled 

prior to use. [2.2.2]crypt[1a] (Merck) was dried in vacuo for at least 18 h.  

A phase with a nominal composition “KGeAs” was addressed by combining K, Ge and 

As in equimolar amounts in a niobium ampoule. The ampoule was then sealed by 

arc-welding and was placed in an oven at 950 °C. The resulting solid contained some 

single crystals of the known phase.[1b] It was was ground in a mortar and analysed by 

means of powder X-ray diffractometry and energy dispersive X-ray (EDX) 

spectroscopy. The powder diffraction pattern confirmed the existence of K2GeAs2. 

Additional reflections could not be explained with any phase known in the ICSD 

database for any combination of the given elements (see 2.3). To our surprise, the 

EDX analysis revealed the presence of Nb with 3.1 atom-% within the resulting 

product. This accords with an overall stoichiometry near to “K10Ge10As10Nb”, thus 

close to the Ge:As:Nb ratio found in the [Nb@Ge8As6]
3– anion (see below). The other 

elements appeared in near to equimolar ratios, as expected. In the related work by 

von Schnering and co-workers, the compound containing the [NbAs8]
3– anion was 

reproduced by directed synthesis with Nb2O5.
[1c] This indicated the possibility of an 

Nb2O5 impurity to take place in the fusion reaction. We cannot exclude a contribution 

of such an impurity to the generation of the starting material in our case, but we 

suppose that the purity of the tube material (99.8%) does not allow for an impurity 

that results in a 3.1 atomic-% in the starting material. The powder diffraction pattern 

does not indicate the presence of (crystalline) Nb2O5 (see 2.3). We did not use Nb2O5 

directly, as we have always strictly excluded oxygen from our reactions so far. 

Upon the synthesis of the Nb compound (see below), we attempted to generate a 

homologue V compound. For this, the phase “K8Ge8As6V” was approached by fusing 

K, Ge, As and V in an 8:8:6:1 stoichiometric ratio – thereby adopting the As amount to 

the stoichiometric ratio observed in the [Nb@Ge8As6]
3– anion – in a silica glass 

ampoule with an oxygen torch. Caution: heating of K in silica glass ampoules needs to 

be carried out with care! The resulting solid was thoroughly ground in a mortar prior to 

further use. In the X-ray powder diagram (see 2.3), K2GeAs2 could be identified, and 

elemental Ge. EDX analysis confirmed the presence of V with 3.0 atom-% in the 

intermetallic phase, indicating a smaller amount to be included in the intermetallic 

phase than attempted. We assume a side reaction of V with the silica tube material 
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(yielding V2O5, for instance) to be responsible for the small loss of V during the fusion 

reaction. However, the fusion product does not contain (crystalline) V2O5 as indicated 

in the powder diagram (see 2.3). The other elements appeared in the expected ratios. 

 

1.2 Syntheses 

1.2.1 Synthesis of [K([2.2.2]crypt]3[V@Ge8As4]∙2tol∙en (1) 

139 mg (0.1 mmol) of the K/Ge/As/V intermetallic solid and 139 mg of [2.2.2]crypt 

were weighed out into a Schlenk tube. Then en (ethane-1,2-diamine, 4 mL) was 

added. The reaction mixture was allowed to stir for 2 days. The liquid was filtered 

through a standard glass frit, yielding a orange solution that was carefully layered by 

tol (toluene, 7 mL). After 21 days, yellow plate shaped crystals of 

[K([2.2.2]crypt]3[V@Ge8As4]∙2tol∙en (1) were obtained in approximately 12% yield.  

 

1.2.2 Synthesis of [K([2.2.2]crypt]3[Nb@Ge8As6]∙tol∙en (2) 

187 mg (1 mmol) of the K/Ge/As/Nb intermetallic solid and 141 mg [2.2.2]crypt (0.375 

mmol) were weighed out into a Schlenk tube. Then en (ethane-1,2-diamine, 4 mL) 

was added. The reaction mixture was allowed to stir for 2 days. The liquid was filtered 

through a standard glass frit, yielding a dark red solution that was carefully layered by 

tol (toluene, 7 mL). After 7 days dark red block shaped crystals of 

K([2.2.2]crypt]3[Nb@Ge8As6]∙tol∙en (2) were obtained in approximately 22% yield. 

 

2. X-ray crystallography  

Powder X-ray data of the crude phases, as used for the extraction and cluster 

formation step by means of en/[2.2.2]crypt, were collected by Ekrem Güneş 

(Justus-Liebig Universität, Gießen) on a Stoe StadiP powder diffractometer (Stoe, 

Darmstadt, Germany) using CuKα radiation, and were evaluated with the X'Pert 

Highscore Plus software.[2a]  

The data for the single-crystal X-ray structural analyses were collected at T = 100(2) K 

with Mo-Kα-radiation (λMo-Kα= 0.71073 Å) on an area detector system Stoe IPDS2. The 

structures were solved by direct methods (SHELXS-97[2b]), and refined by 

full-matrix-least-squares methods against F2 with program SHELXL-2013.[2b] 

Crystallographic data for the two structures reported in this paper have been 

deposited with the Cambridge Crystallographic Data Center as supplementary 

publications nos. CCDC-1030791 (1) and CCDC-1030792 (2). The crystal data and 

experimental parameters of the structure determinations are collected in Table S1. 
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Table S1. Crystal data and details of the structure determinations of 1 and 2. 
 

Compound 1 2 

empirical formula C70H132As4Ge8K3N8O18V C63H124As6Ge8K3N8NbO18 

formula weight [g mol
-1

] 2422.47 2522.14 

crystal color, shape block, red block, red 

crystal size [mm
3
] 0.48 × 0.31 × 0.20 0.50 × 0.50 × 0.40 

crystal system triclinic triclinic 

space group P1̅ P1̅ 

a [Å] 11.9985(7)  16.1475(7) 

b [Å] 16.7415(11) 16.7769(6) 

c [Å] 25.3291(18)  18.0373(8) 

 [°] 80.709(6) 89.184(3) 

 [°] 88.755(5) 80.452(3) 

 [°] 69.258(5) 79.420(3) 

V [Å
3
] 4692.3(6)  4736.1(3) 

Z, calc [g cm
-3

] 2, 1.715 2, 1.769 

 (MoK) [mm
-1

] 4.215  4.889 

absorption correction type numerical numerical 

2 range [°] 2.55-25.00 3.01-26.00 

total reflns 41618 66699 

unique reflns [Rint] 16426 [0.109] 18581 [0.080] 

obs. reflns [I > 2(I)] 4761 8558 

parameters 886 945 

wR2 (all data)/ R1 [I > 2(I)] 0.1194/0.0598 0.0628/0.0346 

GooF (all data) 0.687 0.633 

max peak/hole, [e Å
-3

] 0.972/–0.738 1.084/–0.507 

  
 
2.1 Details of the structure determination of [K([2.2.2]crypt]3[V@Ge8As4]·2tol·en (1) 

A numerical absorption correction (Gaussian integration) has been applied based on 

crystal faces optimized by the XSHAPE procedure in XAREA (Stoe 2013). 

Cluster anion: The main component is a V-centered 12-atom cluster with the 

composition [V@Ge8As4]
3– according to theoretical calculations (see section 5). After 

refinement of this cluster anion, five residual electron density maxima were observed 

and could be refined as Ge/As atoms with occupations up to 13%. Vice versa, 

underoccupations of up to 13% were observed for several of the 12 main cluster 

atoms. This feature can be explained by assuming disorder over two additional 

orientations. The atom positions for the latter were obtained by fitting the geometry of 

the main component to five atom or peak positions that belonged clearly to the 

respective orientation. Refinement of a respective disorder model gave occupations 

for the three orientations of 82.6(1), 9.0(1), and 8.4(1)%, respectively. The critical 

refinement of many close metal positions was stabilized by applying geometrical 
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restraints favoring the same geometry for all three cluster shells (SAME option in 

SHELXL). Atoms with neighbors closer than 1 Å were refined with the same 

anisotropic displacement parameters. In the final cycles, all metal positions were 

refined with the expected overall ratio Ge/As 8:4. As Ge and As have virtually the 

same scattering power with Mo radiation, errors in the assignment would not influence 

the quality of the refinement. The correctness of this model is documented in good 

convergence of the refinement and the fact that for all atoms reasonable anisotropic 

displacement parameters could be refined. In Figure 1 of the main document, only the 

main component of the anion is shown with Ge/As attributions according to the 

perturbation theoretical calculations (see section 5). In Figure S1, the complete 

disorder model is shown with the labelling scheme. Bond lengths are given in Table 

S2. 

Figure S1. [V@Ge8As4]
3– anion in 1 disordered over three orientations (blue 82.6%, 

red 9.0%, green 8.4%). Displacement ellipsoids at the 50% probability level.  
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Table S2. Interatomic distances [Å] in the anion of 1 [I: main orientation (82.6%), II: 

2nd (9.0%), III: 3rd orientation (8.4%)]. 

 atom 
numbers 

 atom 
numbers 

 atom 
numbers 

 

I 
II 
III 

1 – 2 
 

2.531(3) 
2.62(2) 
2.57(2) 

3 – 11  2.522(3) 
2.44(1) 
2.43(1) 

7 – 8 2.489(3) 
2.47(2) 
2.46(2) 

I 
II 
III 

1 – 5  2.464(3) 
2.48(2) 
2.47(2) 

4 – 5 2.474(3) 
2.62(1) 
2.63(1) 

8 – 9 2.655(3) 
2.61(2) 
2.57(2) 

I 
II 
III 

1 – 6  2.514(3) 
2.51(2) 
2.50(2) 

4 – 12 2.515(3) 
2.49(2) 
2.46(1) 

9 – 10 2.487(2) 
2.47(2) 
2.46(2) 

I 
II 
III 

2 – 3  2.470(5) 
2.33(1) 
2.36(2) 

5 – 10 2.580(2) 
2.77(1) 
2.86(1) 

9 – 12 2.515(3) 
2.51(2) 
2.56(2) 

I 
II 
III 

2 – 7  2.529(3) 
2.57(2) 
2.54(2) 

6 – 7 2.478(3) 
2.45(2) 
2.45(2) 

11 – 12 2.493(3) 
2.56(2) 
2.56(2) 

I 
II 
III 

3 – 4 2.595(3) 
2.54(1) 
2.63(1) 

6 – 10 2.436(3) 
2.36(2) 
2.35(2) 

average 2.515 
2.518 
2.521 

       

I 
II 
III 

V – 1 2.841(3) 
2.81(1) 
2.82(2) 

V – 5 2.624(3) 
2.67(1) 
2.62(1) 

V – 9 2.678(3) 
2.69(2) 
2.70(2) 

I 
II 
III 

V – 2 2.621(3) 
2.65(1) 
2.65(2) 

V – 6 2.771(3) 
2.78(2) 
2.79(2) 

V – 10 2.714(3) 
2.68(1) 
2.67(1) 

I 
II 
III 

V – 3 2.730(3) 
2.72(1) 
2.68(1) 

V – 7 2.747(3) 
2.74(2) 
2.76(2) 

V – 11 2.804(3) 
2.80(1) 
2.80(1) 

I 
II 
III 

V – 4 2.674(3) 
2.64(1) 
2.70(1) 

V – 8 2.653(3) 
2.67(2) 
2.76(2) 

V – 12 2.786(3) 
2.78(1) 
2.78(1) 

I 
II 
III 

    average 2.720 
2.719 
2.728 

 

Cations: Two of three [K([2.2.2]crypt)]+ cations are well localized. A third one shows 

disorder over two positions shifted by about 1 Å. For it only isotropic displacement 

parameters could be refined common by pairs. All cations were refined using 

geometrical restraints on the bond lengths and 1,3-distances but leaving 

conformational freedom (SAME option of SHELXL). This explains the large number of 

restraints. Figure S2 shows all three cations. 
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cation 1 cation 2 1:1 disordered cation 3 

Figure S2. The three independent [K([2.2.2]crypt)]+ cations in 1. Displacement 

ellipsoids for cations 1 and 2 at the 50% probability level, for 3 arbitrary radii. 

 

Solvent: Around the unit cell origin, a large void remained with diffuse electron 

densities corresponding to about 140 electrons/asymm. unit. Thus, similar to the 

structure of 2, solvent contents of toluene and en molecules are assumed, probably 

two toluene and one en molecules according to the electron count. As we were not 

able to establish a sensible disorder model for this region, its contribution was 

subtracted by back Fourier transform (PLATON SQUEEZE) from the data set. Thus, 

the solvent molecules are missing in the parameter list leading to several error 

messages in the PLATON CHECKCIF procedure. 

 

Packing: The three independent cations form layers parallel to the (0-11) plane. In 

between, the anion clusters are inserted (Figure S3), as well as the disordered solvent 

molecules.  

Figure S3. Unit cell of 1 with neighborhood. Arbitrary radii; polyhedra: anionic clusters 

(main orientation), pink: K, green: N, red: O, grey: C. Note that the empty space 

around the cell origin contains non-localized, disordered toluene and en solvent 

molecules. 
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2.2 Details of the structure determination of [K([2.2.2]crypt]3[Nb@Ge8As6]∙tol∙en (2) 

As for 1, a numerical absorption correction has been applied based on crystal faces 

optimized by the XSHAPE procedure in XAREA (Stoe 2013). 

The anion revealed as a pure [Nb@Ge8As6]
3– cluster. The Ge/As assignment (Figure 

1 and Figure S4) was done based on the perturbation theoretical calculations (section 

5). The interatomic distances are collected in Table S3. The three independent 

[K([2.2.2]crypt)]+ cations are all well localized 

(Figure S5). Even the solvent content, a 

toluene and an en molecule, could be localized 

and refined. Only the en molecule had to be 

refined with restraints of the bond lengths and 

with isotropic displacement parameters.  

 

 

Figure S4. [Nb@Ge8As6]
3– anion in 2. 

Displacement ellipsoids at the 50% probability 

level. 

 

Table S3. Interatomic distances [Å] in the anion of 2. 

atom 
numbers 

 atom 
numbers 

 atom 
numbers 

 

As1 – Ge2 2.5111(9) Ge4 – As8  2.4817(9) As8 – Ge11 2.4950(9) 

As1 – Ge4  2.5125(9) Ge5 – As9 2.4733(9) As8 – Ge12 2.4949(8) 

As1 – Ge5  2.4803(9) Ge5 –Ge12 2.5050(9) As9 – Ge13 2.5099(10) 

Ge2 – As3  2.5080(9) Ge6 – As9 2.4960(9) As10 – Ge13 2.5215(10) 

Ge2 – Ge6  2.4762(10) Ge6 – As10 2.5009(10) Ge11 – As14 2.5057(9) 

As3 – Ge4 2.5197(9) Ge7 – As10 2.5010(10) Ge12 – As14 2.5006(9) 

As3 – Ge7 2.4741(9) Ge7 – Ge11 2.5221(10) Ge13 – As14 2.4505(11) 

    av. Ge – As  
av. Ge – Ge 

2.4965 
2.5011 

 

Nb – As1 2.7783(8) Nb – Ge6 2.9998(9) Nb – Ge11 2.8487(8) 

Nb – Ge2 3.0327(9) Nb – Ge7 2.9322(8) Nb – Ge12 2.8480(8) 

Nb – As3 2.8096(8) Nb – As8 2.9416(8) Nb – Ge13 3.0409(9) 

Nb – Ge4 3.0769(9) Nb – As9 2.8246(8) Nb – As14 2.9736(9) 

Nb – Ge5 2.9441(8) Nb – As10 2.8094(8) av. Nb – Ge 
av. Nb – As 

2.9654 
2.8562 
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cation 1 cation 2 cation 3 

 

Figure S5. The three independent [K[2.2.2]crypt]+ cations in 2. Displacement 

ellipsoids at the 50% probability level. 

 

Packing: The [K([2.2.2]crypt)]+ cations form a honeycomb-like packing with channels 

along the [11-1] direction, in which the anion clusters are aligned (Figure S6).  

 

Figure S6. Unit cell of 1 with neighborhood. Arbitrary radii; blue polyhedra: anion 

clusters, pink: K, green: N, red: O, grey: C. 

 

2.3 Powder X-ray diffraction data of the crude phases prior to cluster formation 

Figures S7 and S8 show the PXRD patterns of the solid products upon the fusion 

reaction (see Section 1.1), which were used for the extractions. They were compared 

with known phases in the respective systems and with possible oxides.  
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Figure S7. X-ray powder pattern of the K/Ge/As/V solid used for the synthesis of 1, 

and possible assignments. 

 

In the V-containing system, K2GeAs2
[1b] could be identified as a minor component, as 

well as very sharp reflections of elemental Ge. The major component (marked with *) 

could be indexed with a cubic F-centered cell with a = 10.08 Å. There is no entry in the 

ICSD database with these cell and the respective atom types.  

 

Figure S8. X-ray powder pattern of the K/Ge/As/Nb intermetallic solid used for 

synthesis and possible assignments. 

 

The pattern of the Nb-containing solid shows a strong contribution of an amorphous 

phase, a large amount of K2GeAs2, and some additional reflections that could neither 

be identified nor indexed.   
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3. Energy dispersive X-ray spectroscopy (EDX) analysis 

EDX analyses were performed to support the elemental composition that was 

suggested based on the XRD experiments. These were carried out using an 

EDX-device Voyager 4.0 of Noran Instruments coupled with an electron microscope 

CamScan CS 4DV. Data acquisition was performed with an acceleration voltage of 20 

kV and 100 s accumulation time. The radiation emitted by the atoms was analyzed: 

K-K, Ge-K, As-K, V-K and Nb-L. To minimize surface effects in the measurement, the 

K-lines were preferably used to calculate the elemental composition. Results are 

summarized in Table S4. 

 

Table S4. EDX analysis of 1 and 2 (K, Ge, As, V/Nb) 

 

Element k-ratio ZAF Atom% Atomic ratio 

observed (calc) 

Element wt % wt % Err. 

(1-sigma) 

[K([2.2.2]crypt]3[Ge8As4V]∙2tol∙en (1) 

K-K 0.1131 1.180 22.07 3.73      (3) 13.35 +/- 0.26 

Ge-K 0.4835 1.033 44.47 7.23      (6) 49.95 +/- 1.77 

As-K 0.3113 1.037 27.86 4.00      (4) 32.29 +/- 1.91 

V-K 0.0413 1.068 5.60 0.97      (1) 4.41 +/- 0.27 

Total   100 15.93    (14) 100  

[K([2.2.2]crypt]3[Ge8As6Nb]∙tol∙en (2) 

K-K 0.1174 1.226 24.43 4.77      (3) 14.40 +/- 0.21 

Ge-K 0.4140 1.028 38.90 7.59      (8) 42.57 +/- 1.15 

As-K 0.3363 1.032 30.74 6.00      (6) 34.72 +/- 1.37 

Nb-L 0.0444 1.873 5.94 1.16      (1) 8.32 +/- 0.38 

Total   100 19.52    (18) 100  

 

The results of the EDX investigations confirm the Ge:As ratios of the investigated 

substances within the expected accuracy, as well as the presence of V and Nb, 

respectively, in the crystalline material. 
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4. Electrospray Ionization Mass Spectrometry (ESI-MS) Investigations 

ESI(–) mass spectrometry has been performed on a Finnigan LTQ-FT spectrometer 

by Thermo Fischer Scientific in the negative ion mode: Spray voltage 3.90 kV, 

capillary temperature 300°C, capillary voltage –11 V, tube lens voltage –140 V, 

sheath gas flow rate 25 arb, sweep gas flow rate 0 arb. For the measurements, the 

filtered solutions were dried in vacuo and re-dissolved in dry DMF. During the ESI-MS 

investigations fast decomposition was observed during the injection, resulting in black 

precipitate in the Hamilton syringe as well as a decreased flow rate into the ESI 

chamber. Additional peaks observed in the ESI(–) spectrum show incomplete isotopic 

patterns and are believed to belong to decomposition products and fragments formed 

by a dynamic re-organization of the cluster anions and their fragments in solution 

under ESI-MS conditions. As it is common for Zintl anions and intermetallic cluster 

anions, the observed fragments have been detected as oxidized, singly charged 

species. In summary, despite analytical challenges the existence of the cluster anions 

of 1 and 2 could be proven (see below). 

 

4.1 ESI-MS investigation of [K([2.2.2]crypt)]3[Ge8As4V] (1) 

The ESI(–)MS spectrum of 1 (Figure S9) revealed the (protonated) cluster anion 

[Ge8As4VH]– (m/z = 933.01) to be present along with the [K([2.2.2]crypt)]+ adduct 

[Ge8As4VC18H37N2O6K]– (m/z = 1348.23) of the trimetallic cluster [Ge8As4V]3– found in 

SCXD (Figures S10, S11). Furthermore, the anions (Ge2As2H)– (m/z = 296.69), 

(Ge7As2)
– (m/z = 658.30), (Ge7As2C18H36N2O6K)– (m/z = 1073.52), and 

(Ge10C18H36N2O6K)– (m/z = 1141.44) and were identified (Figures S12-S14). They are 

believed to origin from the formation of the multimetallic cluster itself during extraction, 

and they likely represent intermediates which could not be crystallized. In some 

spectra, unidentified components that may derive from fragmentations partially 

overlay the peak of the named species.  
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Figure S9. ESI-MS(–) overview spectrum  

 

Figure S10. ESI-MS(–) mass peak of the [Ge8As4VH]– anion. Measured (top) vs. 

calculated (bottom) spectrum. The partially overlaid species could not be identified. 
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Figure S11. ESI(–) mass peak of [Ge8As4VC18H37N2O6K]–. Measured (top) vs. 

calculated (bottom) spectrum.  

 

Figure S12. ESI(–) mass peak of (Ge2As2H)–. Measured (top) vs. calculated (bottom) 

spectrum.  
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Figure S13. ESI(–) mass peak of (Ge7As2)
–. Measured (top) vs. calculated (bottom) 

spectrum.  

 

Figure S14. ESI(–) mass peak of (Ge10C18H36N2O6K)–. Measured (top) vs. calculated 

(bottom) spectrum.  
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4.2 ESI-MS Investigation of [K([2.2.2]crypt)]3[Ge8As6Nb] (2) 

The ESI(–)MS spectrum of 2 (Figure S15) revealed the cluster [Ge8As6Nb]– (m/z = 

1123.81), which corresponds to the trimetallic cluster [Ge8As6Nb]3– found in SCXD 

(Figure S16). Furthermore the mass peaks of (Ge2As2H)– (m/z = 296.69) was 

identified in the ESI(–) spectrum (Figure S17). Also mass peaks corresponding to a 

cluster with the composition [Ge6As6Nb]– (m/z = 975.97) and an overlay (mixture) of 

the following species were found: [Ge7As6NbH]– / [Ge7As6Nb]– / [Ge6As7NbH]– / 

[Ge6As7Nb]– (m/z = 1051.89) (Figures S18, S19); the latter could, however, not be 

assigned unambiguously, and have not been confirmed yet by crystalline products. 

Nevertheless, these indicate further species to possibly co-exist in a complicated 

equilibrium in solution. 

 

 

Figure S15. ESI-MS(–) overview spectrum  
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Figure S16. ESI(–) mass peak of [Ge8As6Nb]–. Measured (top) vs. calculated 

(bottom) spectrum. 

  

Figure S17. ESI(–) mass peak of (Ge2As2H)–. Measured (top) vs. calculated (bottom) 

spectrum.  
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Figure S18. ESI(–) mass peak of [Ge6As6Nb]–. Measured (top) vs. calculated 

(bottom) spectrum.  

 

Figure S19. ESI(–) mass peak likely corresponding to [Ge7As6Nb]– / [Ge7As6NbH]– / 

[Ge6As7Nb]– / [Ge6As7NbH]–. Measured (top) vs. calculated (below) spectra.  
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5. Quantum Chemical Investigations 

5.1 Methods 

The DFT calculations were performed with the program system Turbomole.[3] The 

GGA exchange-correlation functional BP86 was applied,[4] together with a def-SVP 

basis set[5] and corresponding effective core potentials (ECPs) for Sn, Bi, Nb, and 

Rh.[6] COSMO was used with default parameters to compensate for the negative 

charge of the clusters.[7] The structures from Figure S20 and Tables S5 and S6 were 

drawn with the CYLview software.[8] Localization of MOs was done following the 

procedure by Boys.[9]  

 

5.2 Perturbation theory study for atom assignment in the anions of 2 

The optimal distribution of the different atom types (Ge/As) to the positions in the 

(trimetallic) cluster anions of compound 2 was done using first-order perturbation 

theory.[11,12] The (first-order) estimation for the preference of Ge and As to the different 

positions requires only the calculation of the electrostatic potential at the respective 

positions, Vi = V(Ri), without the contribution of the nucleus located at this position Ri. 

As atoms (more right in the periodic table) are assigned to the sites with the lower 

electrostatic potential, Ge atoms are assigned to the remaining positions with a higher 

electrostatic potential. A detailed theoretical background of this method can be found 

in refs. 10 and 11.  

For the anion of 1, [V@Ge8As4]
3–, which is depicted in Figure S18, left hand side, 

many isomers exist that are very close in energy. Here the perturbation theory 

treatment leads to one of the structures that are lowest in energy according to explicit 

permutation of all possible atomic distributions, but not to the global minimum 

structure, which is by 2.0 kJ/mol lower in energy. However, as only slight changes in 

interatomic distances cause a change in the order of the isomer energies in this case, 

none of the results is more probable than the other. The result rather suggests a 

co-existence of several isomers – even in the crystal. For that, the isomer shown in 

Figure S20 (left) accords with the global minimum structure obtained by conservative 

permutation of the atoms.  

For the anion of 2, [Nb@Ge8As6]
3-, depicted in Figure S20 (right), the perturbation 

treatment afforded the global minimum structure that is separated from the next 

isomer in the order of increasing energy by 11 kJ/mol. During the perturbation theory 

treatment, the electrostatic potential was the highest at positions (2), (4)-(7), (11)-(13) 

and varies between –156.576 and –156.565 Hartree; the Ge atoms were placed here. 
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Positions (1), (3), (8)-(10), (14) have the lowest electrostatic potential (–160.927 

Hartree) and the six As atoms were assigned to these points.      

     

Figure S20. Left: Minimum structures of the [V@Ge8As4]
3– anion in 1 (left) and 

minimum structure of the [Nb@Ge8As6]
3– anion in 2 (right). Ge atoms are drawn in 

yellow and As atoms in blue. 

 

5.3 Isomers of the anions of 1 and 2 

We have calculated all isomers of the [V@Ge8As4]
3– and the [Nb@Ge8As6]

3– anion in 

1 or 2, respectively. According to many previous studies, the energetically lowest 

isomers are expected to be found among a series of isomers that possess the 

maximum number of heteroatomic bonds for each cluster type, i.e., 12 Ge–As bonds 

in [V@Ge8As4]
3– or 18 Ge–As bonds in [Nb@Ge8As6]

3–. The distributions obtained by 

perturbation theory are indeed the most favorable ones, but the others are close in 

energy. For comparison, all isomers were calculated based on the crystal structure 

geometry. 

Figures S21 and S22 show the range of energies for all series of isomers of the 

anions [V@Ge8As4]
3– in 1 and [Nb@Ge8As6]

3– in 2, respectively. For the 12-atom 

cage the least favorable isomer among the resulting non-equivalent 46 structures with 

12 Ge-As bonds is higher in energy by 38.4 kJ/mol. For the 14-atom cage the second, 

third and fourth of the resulting non-equivalent isomers with 18 Ge-As bonds are 

higher in energy by 10.9, 20.3, or 29.7 kJ/mol, respectively. Tables S5 and S6 list 

structures and relative energies of the lowest-energy isomers of both cluster types.  
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Figure S21. Numbers and energy ranges (in kJ/mol) calculated for series of isomers 

of the [V@Ge8As4]
3– anion in 1 that possess the same number n of (heteroatomic) 

Ge–As bonds. 

 

Figure S22. Numbers and energy ranges (in kJ/mol) calculated for series of isomers 

of the [Nb@Ge8As6]
3– anion in 2 that possess the same number n of (heteroatomic) 

Ge–As bonds. 
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Table S5. Structures and relative energies of the first nine calculated isomers (up to 5 

kJ/mol) of [V@Ge8As4]
3– with a maximum number of heteroatomic bonds, i.e., 12 Ge–

As bonds. Note that apparently identical clusters differ in structural details due to the 

missing molecular symmetry of the X-ray structure, which can cause different total 

energies. 

Isomer 
structure 

E / 
kJ/mol 

Isomer 
structure  

E / 
kJ/mol 

Isomer 
structure 

E / 
kJ/mol 

 

0.0 

 

2.0 

 

3.2 

 

0.6 

 

2.0 

 

4.6 

 

1.5 

 

3.2 

 

4.6 

 

Table S6. Structures and relative energies of the four calculated isomers of 

[Nb@Ge8As6]
3– with a maximum number of heteroatomic bonds, i.e., 18 Ge–As 

bonds. Note that apparently identical clusters differ in structural details due to the 

missing molecular symmetry of the X-ray structure, which can cause different total 

energies. 

Isomer structure E / kJ/mol Isomer structure E / kJ/mol 

 

0.0 

 

20.3 

 

10.9 

 

29.7 
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