Supplementary Information

for

Synthesis, Structure and Properties of C₃-Symmetric Heterosuperbenzene with Three BN Units

Xiao-Ye Wang, Fang-Dong Zhuang, Xin-Chang Wang, Xiao-Yu Cao, * Jie-Yu Wang, * and Jian Pei*

Table of Contents

- 1. Experimental Section
- 2. Thermogravimetric Analysis (TGA)
- 3. Absorption Spectra
- 4. Cyclic Voltammogram (CV)
- 5. Photoelectron Spectroscopy (PES)
- 6. Single Crystal Data
- 7. Computational Studies
- 8. NMR Spectra

1. Experimental Section

General. All commercially available chemicals were used without further purification unless otherwise noted. Column chromatography was performed with silica gel. Analytical thin-layer chromatography (TLC) was performed on 0.2 mm silica gelcoated glass sheets with F254 indicator. All yields given referred to isolated yields. Nuclear Magnetic Resonance (NMR) spectra were recorded on 400 MHz or 500 MHz Bruker AVANCE III spectrometers. Chemical shifts were reported in ppm. Coupling constants (*J* values) were reported in Hertz. ¹H NMR chemical shifts were referenced to TMS (0 ppm). ¹³C NMR chemical shifts were referenced to CDCl₃ (77.00 ppm). ¹¹B NMR chemical shifts were referenced to the external standard boron signal of BF₃·Et₂O (0 ppm). ESI-HRMS spectra were recorded on a Bruker Apex IV Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

Absorption spectra were recorded on PerkinElmer Lambda 750 UV-*vis* Spectrometer. Photoluminescence spectra were recorded on an Edinburgh Photonics FLS980 spectrometer. The fluorescence quantum yield was measured with the integrating sphere system on an Edinburgh Photonics FLS920 spectrometer. Cyclic voltammetry was performed on BASi Epsilon workstation and measurements were carried out in dichloromethane containing 0.1 M *n*-Bu₄NPF₆ as supporting electrolyte (scan rate: 100 mV s⁻¹.). Glassy carbon electrode was used as working electrode, a platinum sheet as counter electrode and Ag/AgCl as reference electrode. Thermogravimetric analysis (TGA) was carried out on a TA Instrument Q600 analyzer under N₂ (10 °C min⁻¹). Photoelectron spectroscopy (PES) was performed on AC-2 photoelectron spectrometer (Riken-Keiki Co.).

Synthetic Procedure.

3,4,7,8,11,12-Hexamethoxy-2,6,10-triphenyl-1,5,9-triaza-2,6,10-triboracoronene

(1): To a solution of compound 3 (453 mg, 1.0 mmol) in *o*-dichlorobenzene (30 mL) under nitrogen was added dichlorophenylborane (632 mg, 4.0 mmol) and triethylamine (607 mg, 6.0 mmol). The reaction mixture was heated at 180 °C for 12 h. After removal of the solvent under reduced pressure, the residue was purified by S2

column chromatography over silica gel (eluent: petroleum ether/CH₂Cl₂ = 2 : 3) and recrystallization from CHCl₃/MeOH to afford 249 mg (35%) of compound **1** as a white solid. ¹H NMR (400 MHz, CDCl₃, 298 K, ppm) δ 9.02 (s, 3H), 7.93 (d, *J* = 6.5 Hz, 6H), 7.52 (m, 9H), 4.16 (s, 9H), 3.60 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 156.8, 138.1, 136.0, 132.6, 131.4, 127.5, 127.1, 114.2, 61.1, 61.0; ¹¹B NMR (160 MHz, CDCl₃, 298 K, ppm): δ 37.2; HRMS (ESI) *m/z*: Calcd for C₄₂H₃₇B₃N₃O₆: 712.2975; Found: 712.2980 [M + H]⁺.

2. Thermogravimetric Analysis (TGA)

Figure S1. TGA curve of compound 1 (5% weight loss: 341 °C).

3. Absorption Spectra

Figure S2. Comparison of the absorption spectra of compound **1** in solution and in thin film, showing a slight redshift of absorption maximum from 321 nm to 325 nm.

4. Cyclic Voltammogram

Figure S3. Cyclic voltammogram of compound **1** in CH₂Cl₂ (1 mM) with 0.1 M *n*-Bu₄PF₆ as supporting electrolyte and ferrocene as an external standard. The HOMO energy level is estimated from the equation HOMO = $-4.80 - E_{ox}$ based on the oxidation onset.

5. Photoelectron Spectroscopy (PES)

Figure S4. PES spectrum of compound 1 in thin film (work function: -5.65 eV).

6. Single Crystal Data

Empirical formula	C ₄₂ H ₃₆ N ₃ O ₆ B ₃
Formula weight	711.17
Temperature/K	100.01(10)
Crystal system	triclinic
Space group	<i>P</i> 1
a/Å	7.3418(2)
b/Å	15.7880(5)
c/Å	31.0079(8)
α/°	83.135(2)
β/°	87.475(2)
γ/°	89.797(2)
Volume/Å ³	3564.96(17)
Ζ	4
$\rho_{calc}/mg \ mm^{-3}$	1.325
Absorption coefficient/mm ⁻¹	0.703
F(000)	1488.0
Crystal size/mm ³	0.7 imes 0.1 imes 0.05
Radiation	$CuK\alpha (\lambda = 1.54184)$
2θ range for data collection	6.628 to 151.864°
Index ranges	$-8 \le h \le 9, -15 \le k \le 19, -32 \le l \le 38$
Reflections collected	25470
Independent reflections	16692 [$R_{int} = 0.0600, R_{sigma} = 0.0687$]
Data/restraints/parameters	16692/3/1969
Goodness-of-fit on F ²	1.106
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0636, wR_2 = 0.1801$
Final R indexes [all data]	$R_1 = 0.0740, wR_2 = 0.1871$
Largest diff. peak/hole / e Å ⁻³	0.50/-0.32

Table S1. Crystal data and structure refinement for compound 1 (CCDC 1039514).

7. Computational Studies

Calculations were performed using the Gaussian 09 software package.¹ The geometries were optimized at the B3LYP/6-311G(d,p) level, and energies were calculated at the same level. Nucleus independent chemical shifts (NICS) were calculated using the gauge invariant atomic orbital (GIAO) approach at the GIAO-

B3LYP/6-311+G(2d,p) level of theory.² The NICS(1) values were averaged by the two positions (above and below the plane) of all the equivalent rings.

Figure S5. DFT-Calculated NICS(1) values (ppm) of compound **1** and its corresponding carbon analogue.

Figure S6. Degenerate HOMO and LUMO levels and their molecular orbitals of BN heterocoronene **1** (right) and its corresponding carbon analogue (left).

Appendix: Cartesian coordinates

i	mized geo	ometry of co	mpound 1		39	Н	7.73	5751
	Sumbol	v	v	7	40	Н	8.168	368
		A 2 257572	1	22 4(010	41	Н	8.1464	10
	0	2.35/5/3	3.068288	23.46810	42	С	7.36321	5
	0	0.380242	3.356501	21.54443	43	Н	7.79022	3
	0	6.669092	8.425572	25.04961	44	С	3.03187	7
	0	-0.47267	9.617464	18.40153	45	С	3.388870)
	0	6.301183	10.87286	23.79646	46	С	2.387485	5
	0	1.145985	11.77006	19.06196	47	С	-3.47458	
	Ν	3.998938	5.119528	24.08034	48	Н	-4 50975	
	Η	3.985787	4.183896	24.46744	49	C	-1 15421	
	Ν	-0.13765	7.219490	19.59148	50	C	4 606750	
	Н	-0.78478	7.473011	18.85491	51	с ц	5 480134	1
	Ν	4.340976	11.21230	21.97449	51	n C	5 464022	r
	Н	4.988749	11.90002	22.33914	52	C II	3.404233	, ,
	С	1.720293	8.041926	20.90397	55	н	4.390307	
	С	0.523727	9.504645	19.35009	54	С	8.212952	2
	С	-3.11248	3.303701	18.21627	55	Н	9.287171	
	Н	-3.86140	2.684809	17.73411	56	С	2.290743	3
	С	2.181825	4.256687	22.78827	57	Н	1.332246	6
	С	5.506307	9.784460	23.49803	58	С	-0.65938	
	С	1.182632	4.433284	21.8417	59	Н	-1.20845	
	C	0 698954	8 248111	19 95351	60	Н	-1.33751	
	C	1 008197	5 660372	21 16688	61	Н	-0.23938	
	C	5 655087	8 558067	24 13037	62	С	4.723084	ŀ
	C	1 182200	9 974529	24.15057	63	Н	5.67291	
	C C	4.920025	7 157957	22.33322	64	С	6.398232	2
	C	4.828033	7.457857	23.01931	65	Н	6.237365	5
	C	2.5(0100	7.030227	22.65127	66	Н	7.275604	1
	C	2.560190	9.139937	21.24845	67	Н	5.524505	5
	C	3.60/122	8.920396	22.22104	68	С	-2.50312	
	C	5.966323	5.550664	25.60239	69	Н	-2.80565	
	С	1.364934	10.55922	19.67553	70	С	3.621139)
	С	1.875721	6.742303	21.51768	71	Н	3.706688	3
	С	-1.77834	2.897158	18.24668	72	С	2.405088	3
	Н	-1.48716	1.961173	17.78166	73	Н	1.542742	2
	С	2.842052	1.971708	22.67182	74	C	-0.81896	-
	Η	2.125323	1.716709	21.89012	75	н	0.207632	, ,
	Н	2.962816	1.132728	23.35665	76	C	-1 58086	-
	Н	3.809339	2.220197	22.22313	70 77	н	-1.30000	,
	С	2.897441	6.578376	22.49708	70	и п	-2.2077/	
	С	7.673404	10.76237	23.37941	/8	п	-1.25361	
					/9	Н	-2.054/0	

80	С	7.689633	4.39792	27.52689
81	Н	8.352843	3.958314	28.26402
82	С	6.310052	4.340756	27.70139
83	Н	5.891146	3.859170	28.57859
84	С	1.644458	11.86967	17.72120
85	Н	1.161707	11.13610	17.06989
86	Н	2.729516	11.72914	17.70444
87	Н	1.409599	12.87884	17.38496
88	В	3.336862	11.57738	21.03540
89	В	4.961730	6.076739	24.50441
90	В	-0.08489	5.890631	20.09636

O	otimized	geometry	of t	the	carbon	analogue
~	pullinged	Scomeny			cui bon	ununogue

Opu	inizeu get	onneur y or uno	e carbon ana	logue	43	С	-2.35271	4.652961	-0.39435
Tag	Symbol	Х	Y	Z	44	С	-3.13970	5.257042	0.591269
1	С	-1.06948	-0.96789	-0.08108	45	С	-3.62884	6.552477	0.421261
2	С	-1.33717	0.434260	-0.13341	46	С	-3.34842	7.256758	-0.74530
3	С	-0.27558	1.387402	-0.07588	47	С	-2.57557	6.657418	-1.74089
4	С	1.069836	0.920418	0.033029	48	С	-2.08193	5.370122	-1.56634
5	С	1.363585	-0.47676	0.054812	49	Н	2.843350	-6.26190	-0.65281
6	С	0.284411	-1.41178	0.012768	50	Н	3.776259	-4.78090	-1.00979
7	С	2.716980	-0.93623	0.144309	51	Н	2.185245	-5.05155	-1.78440
8	С	2.938481	-2.34896	0.232172	52	Н	5.581239	-3.63041	1.641388
9	С	1.893565	-3.24546	0.156045	53	Н	3.894934	-4.09822	2.009969
10	С	0.549593	-2.79990	0.045174	54	Н	4.486631	-2.45310	2.404554
11	С	-0.55459	2.791579	-0.10143	55	Н	4.058287	5.515242	-0.64132
12	С	0.548079	3.695220	0.040452	56	Н	2.348667	5.557313	-1.15833
13	С	1.846337	3.236636	0.114556	57	Н	3.439442	4.270451	-1.75741
14	С	2.135442	1.845957	0.109814	58	Н	0.205901	6.706289	1.236547
15	С	-2.14444	-1.91242	-0.13415	59	Н	1.463447	5.545257	1.757404
16	С	-3.47533	-1.40346	-0.28258	60	Н	-0.26727	5.208166	2.072637
17	С	-3.72750	-0.04784	-0.29506	61	Н	-6.82521	0.684421	0.427086
18	С	-2.66973	0.897284	-0.22403	62	Н	-6.00379	-0.82812	0.905302
19	0	0.324893	5.049638	0.076113	63	Н	-5.46146	0.741520	1.574055
20	0	2.897112	4.112958	0.253263	64	Н	-5.89646	-3.13202	-1.61124
21	0	4.213180	-2.84040	0.371485	65	Н	-5.47828	-1.45107	-2.05720
22	0	2.118360	-4.59861	0.253272	66	Н	-4.33498	-2.78947	-2.39300
23	0	-4.53551	-2.27033	-0.38103	67	Н	-2.37269	-5.14320	-1.98327
24	0	-5.00974	0.427630	-0.44056	68	Н	-3.93369	-7.05929	-1.88330
25	С	2.776337	-5.19699	-0.87414	69	Н	-5.30189	-7.44304	0.153335
26	С	4.550225	-3.28286	1.694052	70	Н	-5.08976	-5.89353	2.082351
27	С	3.190734	4.910760	-0.90483	71	Н	-3.54604	-3.97156	1.967177
28	С	0.446551	5.652654	1.372250	72	Н	5.581694	0.479536	2.138738
29	С	-5.86922	0.234210	0.693474	73	Н	8.025308	0.102032	2.088915

30

31

32

33

34

35

36

37

38

39

40

41

42

С

С

С

С

С

С

С

С

С

С

С

С

С

-5.08862

-2.85980

-2.97469

-3.85437

-4.62128

-4.50233

-3.63143

5.242281

6.043554

7.422254

8.020926

7.232000

5.857734

-2.40657

-4.41499

-5.30346

-6.38482

-6.60047

-5.72808

-4.64669

-0.29224

0.048839

-0.16285

-0.70612

-1.03636

-0.83271

-1.69813

-0.02167

-1.09531

-1.03758

0.103030

1.185757

1.123557

0.162438

1.256937

1.227217

0.095032

-1.00788

-0.97367

74	Н	9.092851	-0.86716	0.067163
75	Н	7.691201	-1.45279	-1.89785
76	Н	5.250791	-1.09475	-1.83254
77	Н	-3.36567	4.708776	1.499469
78	Н	-4.23199	7.006165	1.200211
79	Н	-3.73132	8.261846	-0.88284
80	Н	-2.35908	7.195948	-2.65709
81	Н	-1.47961	4.911744	-2.34212
82	С	-1.91911	3.227443	-0.24027
83	С	-2.92195	2.286982	-0.28306
84	Н	-3.94679	2.610542	-0.40559
85	С	3.46528	1.372649	0.177908
86	Н	4.261521	2.103775	0.213918
87	С	3.78033	0.033566	0.172917
88	С	-0.52656	-3.71603	0.011952
89	Н	-0.29587	-4.77022	0.085759
90	С	-1.84058	-3.31713	-0.062130

NICS calculations for compound 1

NIC	S calculat	ions for con	pound 1		43	Н	7.790223	6.104028
Tag	Symbol	Х	Y	Z	44	С	3.031877	5.323284
1	0	2.357573	3.068288	23.46811	45	С	3.38887	13.08507
2	0	0.380242	3.356501	21.54443	46	С	2.387485	10.42228
3	0	6.669092	8.425572	25.04961	47	С	-3.47458	4.509161
4	0	-0.47268	9.617464	18.40153	48	Н	-4.50976	4.833577
5	0	6.301183	10.87286	23.79647	49	С	-1.15421	4.910181
6	0	1.145984	11.77006	19.06196	50	С	4.606750	13.63480
7	Ν	3.998938	5.119528	24.08034	51	Н	5.480134	12.99510
8	Н	3.985787	4.183896	24.46744	52	С	5.464233	4.899222
9	Ν	-0.13765	7.219490	19.59148	53	Н	4.390307	4.838817
10	Н	-0.78478	7.473011	18.85491	54	С	8.212952	5.025997
11	Ν	4.340975	11.21230	21.97449	55	Н	9.287170	5.070766
12	Н	4.988749	11.90002	22.33914	56	С	2.290743	13.95657
13	С	1.720293	8.041926	20.90397	57	Н	1.332246	13.56962
14	С	0.523727	9.504645	19.35009	58	С	-0.65938	3.096559
15	С	-3.11248	3.303701	18.21628	59	Н	-1.20845	2.234794
16	Н	-3.86141	2.684809	17.73411	60	Н	-1.33751	3.952575
17	С	2.181825	4.256687	22.78827	61	Н	-0.23938	2.870438
18	С	5.506307	9.784460	23.49803	62	С	4.723084	14.98171
19	С	1.182632	4.433284	21.84170	63	Н	5.672910	15.37152
20	С	0.698954	8.248111	19.95351	64	С	6.398232	9.003450
21	С	1.008197	5.660372	21.16688	65	Н	6.237365	10.08157
22	С	5.655086	8.558067	24.13037	66	Н	7.275604	8.803794
23	С	4.482299	9.974529	22.55522	67	Н	5.524505	8.527816

С

С

С

С

С

С

С

С

Η

С

Η

Η

Η

С

С

Η

Η

Η

С

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

4.828035

3.793324

2.560190

3.607122

5.966323

1.364934

1.875721

-1.77834

-1.48716

2.842052

2.125323

2.962815

3.809339

2.897441

7.673404

7.735751

8.168368

8.146410

7.363215

7.457857

7.656227

9.139937

8.920396

5.550664

10.55922

6.742303

2.897158

1.961173

1.971708

1.716708

1.132728

2.220197

6.578376

10.76237

10.61309

9.938168

11.70740

5.601679

23.81931

22.85127

21.24843

22.22104

25.60239

19.67553

21.51768

18.24668

17.78167

22.67182

21.89012

23.35665

22.22313

22.49708

23.37941

22.29642

23.89487

23.64536

25.4568

24.59757 23.12569 20.57231 20.6384 18.81012 18.79732 19.47579 20.13397 20.04321 26.74334 26.89577 26.39657 26.25090 20.66911 20.99274 22.49682 22.11928 22.56622 23.48066 19.79142 19.44091 26.33426 26.25086 26.94824 26.78987

	-2.50312	5.303807	19.41811	NIC	S calculat	ions for the	carbon analo	ogue
-2.8	0565	6.243732	19.87116	Tag	Symbol	X	Y	Z
3.621139		15.82405	19.90562	1	<u>C</u>	-1 06948	-0.96789	-0.0810
3.706688		16.87437	19.64888	2	C	-1 33717	0.434260	-0.1334
2.405088		15.30673	20.35245	2	C C	0.27558	1 387402	0.0759
1.542742 15	15	.95802	20.44883	1	C C	1 060936	0.020419	-0.0756
-0.81896 3.684061	3.684061		18.87652	4	C C	1.009850	0.920418	0.0530
0.207632 3.340151 18.9	3.340151 18.9	18.9	0799	3	C	1.363584	-0.4/6/6	0.0548
-1.58086 10.45692 18.77134	10.45692 18.77134	18.77134	1	6	C	0.284411	-1.411/9	0.012/
-2.28997 10.40107 17.94573	10.40107 17.94573	17.94573		7	C	2.716980	-0.93623	0.1443
-1.25361 11.48763 18.91437	11.48763 18.91437	18.91437		8	C	2.938481	-2.34896	0.2321
-2.05470 10.08807 19.68701	10.08807 19.68701	19.68701		9	С	1.893565	-3.24546	0.1560
7.689633 4.397920 27.52689	4.397920 27.52689	27.52689		10	С	0.549593	-2.7999	0.0451
8.352843 3.958314 28.26402	3.958314 28.26402	28.26402		11	С	-0.55459	2.791579	-0.1014
6.310052 4.340756 27.70139	4.340756 27.70139	27.70139		12	С	0.548079	3.69522	0.0404
5.891146 3.859169 28.57859	3.859169 28.57859	28.57859		13	С	1.846337	3.236636	0.1145
1.644458 11.86967 17.72120	11.86967 17.72120	17.72120		14	С	2.135442	1.845957	0.1098
1.161707 11.13610 17.06989	11.13610 17.06989	17.06989		15	С	-2.14444	-1.91242	-0.1341
2 729516 11 72914 17 70444	11 72914 17 70444	17 70444		16	С	-3.47533	-1.40346	-0.2825
1 409599 12 87884 17 38496	12 87884 17 38496	17 38496		17	С	-3.72750	-0.04784	-0.2950
3 336862 11 57738 21 03540	11 57738 21 03540	21.03540		18	С	-2.66974	0.897284	-0.2240
4 961730 6 076739 24 50	6.076739 24.50	21.05	1/1	19	0	0.324893	5.049638	0.0761
0.08480 5.800631 20.00636	5 800621 20 00626	24.30441		20	0	2.897112	4.112958	0.2532
-0.08489 5.890051 20.09050	3.890031 20.09030	20.09030		21	0	4.213180	-2.84041	0.3714
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.840333 21.87317 8.108735 23.60328	21.8/31/		22	0	2.118360	-4.59861	0.25327
4 2.110069 8.108725 22.60228	8.108725 22.00228	22.60228		23	0	-4.53551	-2.27033	-0.3810
q 3.3/4264 /.583942 21.14406	7.583942 21.14406	21.14406		24	0	-5.00974	0.427630	-0.4405
q 0.846667 6.967000 20.53833	6.967000 20.53833	20.53833		25	С	2.776337	-5.19699	-0.8741
q 0.214173 7.236245 21.26460	7.236245 21.26460	21.26460		26	С	4.550225	-3.28286	1.69405
q 1.479160 6.697755 19.81207	6.697755 19.81207	19.81207		27	С	3.190734	4.91076	-0.9048
q 2.029667 5.498833 22.15633	5.498833 22.15633	22.15633		28	С	0.446551	5.652654	1.37224
q 1.388901 5.785519 22.86854	5.785519 22.86854	22.86854		29	С	-5.86922	0.23421	0.69347
q 2.670432 5.212147 21.44413	5.212147 21.44413	21.44413		30	С	-5.08862	-2.40657	-1.6981
q 3.918500 6.368667 23.4795	6.368667 23.4795	23.4795		31	C	-2.85980	-4.41499	-0.0216
a 3.290005 6.671496 24.19594	6.671496 24.19594	24.19594		32	C	-2.97469	-5 30347	-1 0953
4.546995 6.065838 22.76306	6.065838 22.76306	22.76306		32	C	-3 85437	-6 38482	-1 0375
q 4.645167 8.725167 23.17900	8.725167 23.17900	23.17900		21	C	-4 62128	-6.60047	0 1020
q 4.024766 9.007011 23.91089	9.007011 23.91089	23.91089		34	C	-4.02120	-0.00047	1 1957
q 5.265567 8.443323 22.44711	8.443323 22.44711	22.44711		33 26	C	-4.30233	-3.12008	1.100/
q 3.452333 10.20767 21.61183	10.20767 21.61183	21.61183		30 27	C	-3.03143	-4.040/0	1.1235
q 2.836230 10.48444 22.34927	10.48444 22.34927	22.34927	-	5/	C	5.242281	-0.29224	0.1624
4.068437 9.930892 20.87440	9.930892 20.87440	20.87440		38	C	6.043554	0.048839	1.2569
A 1.542500 9.319333 20.29500	9.319333 20.29500	20.29500		39	C	7.422254	-0.16285	1.2272
q 0.910244 9.578141 21.02525	9.578141 21.02525	21.02525		40	C	8.020926	-0.70612	0.0950
q 2.174756 9.060526 19.56475	9.060526 19.56475	19.56475	2	41	С	7.232000	-1.03636	-1.0073
4	4	4	4	12	С	5.857734	-0.83271	-0.9736

43	С	-2.35271	4.652961	-0.39435	78	Н	-4.23199	7.006165	1.200211
44	С	-3.13970	5.257042	0.591269	79	Н	-3.73132	8.261846	-0.88284
45	С	-3.62884	6.552477	0.421261	80	Н	-2.35908	7.195948	-2.65709
46	С	-3.34842	7.256757	-0.74530	81	Н	-1.47961	4.911744	-2.34212
47	С	-2.57557	6.657418	-1.74089	82	С	-1.91911	3.227443	-0.24027
48	С	-2.08193	5.370122	-1.56634	83	С	-2.92195	2.286982	-0.28306
49	Н	2.843350	-6.26190	-0.65281	84	Н	-3.94679	2.610542	-0.40559
50	Н	3.776259	-4.78090	-1.00979	85	С	3.465280	1.372649	0.177908
51	Н	2.185245	-5.05155	-1.78440	86	Н	4.261521	2.103775	0.213918
52	Н	5.581239	-3.63041	1.641388	87	С	3.780330	0.033566	0.172917
53	Н	3.894934	-4.09822	2.009969	88	С	-0.52656	-3.71603	0.011952
54	Н	4.486631	-2.4531	2.404554	89	Н	-0.29587	-4.77022	0.085759
55	Н	4.058287	5.515242	-0.64132	90	С	-1.84058	-3.31713	-0.06213
56	Н	2.348666	5.557313	-1.15833	91	Bq	0.006000	-0.01933	-0.03150
57	Н	3.439442	4.270451	-1.75741	92	Bq	-0.05340	-0.00145	0.966574
58	Н	0.205901	6.706289	1.236547	93	Bq	0.065399	-0.03722	-1.02957
59	Н	1.463447	5.545257	1.757404	94	Bq	-2.40367	-0.50000	-0.19167
60	Н	-0.26727	5.208166	2.072637	95	Bq	-2.48804	-0.49603	0.804760
61	Н	-6.82521	0.684421	0.427086	96	Bq	-2.31929	-0.50397	-1.18809
62	Н	-6.00379	-0.82812	0.905302	97	Bq	-0.79117	-2.35417	-0.03450
63	Н	-5.46146	0.74152	1.574055	98	Bq	-0.84115	-2.32967	0.963950
64	Н	-5.89646	-3.13202	-1.61124	99	Bq	-0.74119	-2.37867	-1.03295
65	Н	-5.47828	-1.45108	-2.05720	100	Bq	1.624500	-1.86983	0.1075
66	Н	-4.33498	-2.78947	-2.39300	101	Bq	1.541822	-1.84515	1.103771
67	Н	-2.37269	-5.14320	-1.98327	102	Bq	1.707178	-1.89452	-0.88877
68	Н	-3.93369	-7.05929	-1.88330	103	Bq	2.421833	0.460000	0.115500
69	Н	-5.30189	-7.44304	0.153335	104	Bq	2.483244	0.454803	-0.88260
70	Н	-5.08976	-5.89353	2.082351	105	Bq	2.360423	0.465197	1.113599
71	Н	-3.54604	-3.97156	1.967177	106	Bq	0.794667	2.312833	0.020167
72	Н	5.581694	0.479536	2.138738	107	Bq	0.722372	2.28853	1.017254
73	Н	8.025308	0.102032	2.088915	108	Bq	0.866962	2.337136	-0.97692
74	Н	9.092851	-0.86716	0.067163	109	Bq	-1.61317	1.837333	-0.17617
75	Н	7.691201	-1.45279	-1.89785	110	Bq	-1.54787	1.829219	-1.17400
76	Н	5.250791	-1.09475	-1.83254	111	Bq	-1.67847	1.845448	0.821666
77	Н	-3.36567	4,708776	1.499469					

Reference:

 Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;Rega, N.; S11 Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

(2) (a) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. R. *Chem. Rev.* 2005, *105*, 3842. (b) Schleyer, P. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. E. J. Am. Chem. Soc. 1996, *118*, 6317. (c) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, *112*, 8251.

8. NMR Spectra

-156.83-156.83-135.96-132.66-114.17-114.1777.3277.3276.6866.13

S13

	39.722		Current Data Parameters NAME BNMR14120670 EXPNO 1 PROCNO 2
			F2 - Acquisition Parameters Date20141217 Time 8.52 UNSTRUM spect PROBHD 5 mm PABBO BB- PULPROG rg TD 65336 SOLVENT CDCI3 NS 128 DS 4 SWH 64102.563 Hz FIDRES 0.978127 Hz AQ 0.5111808 sec RG 198.55 DW 7.800 usec DE 6.50 usec TE 30.31 K D1 1.00000000 sec TD0 2
			CHANNEL (1 SFO1 160.4615792 MHz NUC1 11B P1 9.90 usec PEW1 100.00000000 W
			F2 - Processing parameters SI 32768 SI 32768 SI WDW 615714 MHz WDW EM SI SSB 0 LB SOU Hz GB 0 PC 1.40
150 100 50		-100 -150 ppm	