Supporting Information for

Single-Ion Magnet Behavior in Heptacoordinated Fe(II) Complexes: On the Importance of Supramolecular Organization

Arun Kumar Bar,^{ab} Céline Pichon,^{ab} Nayanmoni Gogoi,^{ab} Carine Duhayon,^{ab} S. Ramasesha,^c and Jean-Pascal Sutter^{*,ab}

 ^a CNRS, LCC, 205 Route de Narbonne, F-31077 Toulouse, France.
^b Université de Toulouse, UPS, INPT, LCC, F-31007 Toulouse, France.
^c Indian Institute of Science, Bangalore 560012, India E-mail : sutter@lcc-toulouse.fr

Experimental Section

Materials and methods:

All reagents and solvents used for the syntheses were used as received from commercial sources. All the solvents used in the air-sensitive reactions were distilled under anaerobic condition and degased by following the freeze and thaw method prior to use. The organic ligand H₂DAPBH¹ was synthesized following reported procedures. Fourier transform infrared (FT-IR) spectroscopy was performed with a Perkin–Elmer spectrum GX 2000 FT-IR spectrometer. Elemental analyses were performed with a Perkin–Elmer 2400 series II instrument.

Magnetic susceptibility measurements were carried out with a Quantum Design MPMS-5S SQUID susceptometer. The magnetic measurements were performed on freshly filtered polycrystalline materials. The polycrystalline powders were mixed with grease and put in gelatin capsules. All the magnetic samples associated with Fe(II) metal ion were prepared under N_2 atmosphere. dc measurements were conducted from 300 to 2 K at 1 kOe and the data were corrected for the diamagnetic contribution of the sample holder, grease and sample by using Pascal's tables.² The field dependences of the magnetization were measured at several temperatures between 2 and 10 K with dc magnetic field up to 5 T. Preliminary ac susceptibility experiments for 1 and 2 were performed at various frequencies ranging from 1 to 1500 Hz with an ac field amplitude of 3 Oe. ac susceptibility was investigated under an oscillating ac field of 3 Oe over the frequency range of 1 to 1500 Hz. High frequency ac experiments were carried out on a Quantum Design PPMS under an oscillating ac field of 3 Oe over the frequency Hz.

Mössbauer measurements were recorded at 80 K using an MD 306 Oxford cryostat on a constant acceleration conventional spectrometer with a 50 mCi source of ⁵⁷Fe (Rh matrix).

¹ T. J. Giordano, G. J. Palenik, R. C. Palenik, D. A. Sullivan, *Inorg. Chem.*, 1979, 18, 2445.

² O. Kahn, *Molecular Magnetism*, VCH, Weinheim, 1993.

The absorber was a powdered sample enclosed in a 20 mm diameter cylindrical, plastic sample holder, the size of which had been determined to optimize the absorption. A leastsquares computer program was used to fit the Mössbauer parameters and determine their standard deviations (given in parentheses). Isomer shift values (δ) are relative to iron foil at 293 K.

X-ray crystallographic studies: Single crystals suitable for X-ray diffraction were coated with paratone oil and mounted onto the goniometer. The X-ray crystallographic data were obtained at low temperature from a Gemini Oxford Diffraction (CuKa radiation source) or an Apex2 Bruker diffractometer (MoKα radiation source) and equipped with an Oxford Cryosystem. The structures have been solved by direct methods using Shelxs or Superflip and refined by means of least-square procedures on F using the PC version of the program CRYSTALS.³ The scattering factors for all the atoms were used as listed in the International Tables for X-ray Crystallography.⁴ Absorption correction was performed using a multi-scan procedure. All non-hydrogen atoms were refined anisotropically. When it was possible, the H atoms were located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry and U~iso~(H) (in the range 1.2-1.5 times U~eq~ of the parent atom), after which the positions were refined with riding constraints. Structures 1 and 3 were disordered. For compound 1, three F atoms were disordered on 2 sites (0.5 : 0.5)occupancy). Moreover, for structure **3** restraints (using the command SAME) were applied for the two parts of the disordered phenyl (0.55 : 0.45 occupancy). For compound 2, the detected electron densities suggested the presence of a half occupancy methanol molecule with high thermal motion The molecule appears disordered over several positions that can be approximated by 4 oxygen positions with occupancies 0.3, 0.3, 0.3, and 0.1. Tentative refinement of the MeOH molecule lead to odd C-O distances, therefore we decided to remove this residual density using the SQUEEZE facility from PLATON.

Computational studies: Single point energy and spin density distribution were computed for 1 and 2 using TD-DFT on GAUSSIAN-09⁵ platform utilizing hybrid UB3LYP⁶ basis functions with mixed basis sets: 6-31G*⁷ for all non-metal elements and the small-core Hay-Wadt pseudopotential (indicated in the Gaussian code as LANL2DZ)⁸ for Fe. The mixing of d and p as well as HOMO and LUMO orbitals were allowed. The crystallographic coordinates of the di-cationic moiety $[Fe(H_2DAPBH)(H_2O)(MeOH)]^{2+}$ for 1 and of the neutral moiety [Fe(H₂DAPBH)Cl₂] for 2 were used for the calculations (Table SI11-12). The S**2

³ P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr., 2003, 36, 1487.

⁴ International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974.

⁵ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. B. Rendell, J. C., S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Żakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09; Gaussian, Inc., Wallingford CT, 2009.

⁶ A. D. J. Becke, J. Chem. Phys., 1993, 98, 5648.

⁷ T. H. J. Dunning, P. J. Hay, In Modern Theoretical Chemistry; Schaefer, H. F., III, Ed.; Plenum: New York, 1976; Vol. 3. ⁸ P. J. Hay, R. J. Wadt, Chem. Phys. Chem., 1985, 82, 299.

values in the output files after normal termination were cross-checked. The S**2 values after annihilations are found to be 6.0000 for 1 and 6.0002 for 2 and thus excluding the spin contaminations. The estimated spin densities are Mulliken atomic spin densities (Table SI13-14). The spin density maps were drawn using GassView4.1 software⁹ and are presented in $4 \times 10^{-4} \mu_B \text{ Å}^3$ isosurface (Figure SI5).

⁹ A. E. Frisch, R. D. Dennington, T. A. Keith, J. Millam, A. B. Nielsen, A. J. Holder, J. Hiscocks, *Gaussian, Inc., Wallingford CT*, 2003.

Synthesis:

[Fe(H₂DAPBH)(H₂O)(MeOH)]•2MeOH•2BF₄, 1: The reaction was carried out at room temperature under N₂ atmosphere using standard Schlenk line technique. In a 50 mL round bottom Schlenk flask, 675 mg (2 mmol) of Fe(BF₄)₂.6H₂O was dissolved in 20 mL of degased MeOH yielding a colorless solution. In a 100 mL Schlenk tube, 2 mmol of the corresponding organic ligand H₂DAPBH (800 mg) in 60 mL of degased MeOH gave a milky slurry. The methanol solution of Fe(II) was then slowly added with a syringe into the slurry. The deep blue solution was stirred at room temperature for 6 h followed by filtering through a frit under N₂ atmosphere into a 250 mL Schlenk tube. The filtrate was concentrated under vacuum to ~150 mL and ca.100 mL of degased diethyl ether was layered over it for slow diffusion. The whole set up was kept undisturbed under inert atmosphere for 10-14 days until the complex crystallized out rendering the mother liquor almost colorless. The polycrystalline solid was filtered off the solvent mixture through frit under N₂ atmosphere, washed twice with 10 mL portions of degased diethyl ether and finally dried under low vacuum to obtain polycrystalline dark blue solid (905 mg; 67 %). Good quality single crystals suitable for X-ray diffraction were picked up before filtering off the crystalline material. IR (cm⁻¹): $v_{C=0} = 1627$ (vs) and 1578 (s); $v_{C=N} = 1522$ (vs). Elemental analysis (%) calcd. for $C_{24}H_{27}N_5O_4B_2F_8Fe$: C 42.46; H 4.01; N 10.31; found: C 41.96; H 4.07; N 10.22. Mössbauer: one symmetric doublet: $\delta =$ 1.289(12) mm/s; $\Delta = 3.0728(23)$ mm/s.

[Fe(H₂DAPBH)Cl₂] •0.5MeOH, **2:** (Adapted from a reported procedure¹⁰) In a 50 mL round bottom Schlenk flask, 397.7 mg (2 mmol) of FeCl₂.4H₂O was dissolved in 20 mL of degased MeOH yielding a greenish yellow solution. In a 100 mL Schlenk tube 2 mmol of the corresponding organic ligand (800 mg of H₂DAPBH) in 60 mL of degased MeOH gave a milky slurry. The methanol solution of FeCl₂ was then slowly added with a syringe into the slurry. The deep blue solution was stirred at room temperature for 6 h followed by filtering through a frit under N₂ atmosphere into a 250 mL Schlenk tube. The filtrate was concentrated under vacuum to ~150 mL and ~100 mL of degased diethyl ether was layered over it for slow diffusion. The whole set up was kept undisturbed under inert atmosphere for 10–14 days until the complex crystallized out rendering the mother liquor almost colorless followed by filtration off the solvent mixture through frit under N₂ atmosphere. The isolated solid was washed twice with 10 mL portions of degased diethyl ether followed by drying under low vacuum to obtain polycrystalline dark blue solid; mass (yield): 810 mg (73 %). Good quality single crystals suitable for X-ray diffraction were picked up before filtering off the crystalline material. IR (cm⁻¹): $\upsilon_{C=0} = 1624$ (vs) and 1579 (s); $\upsilon_{C=N} = 1522$ (vs). Elemental analysis (%) calcd. for C₂₃H₂₁N₅O₂Cl₂Fe: C 52.50; H 4.02; N 13.31; found: C 52.60; H 4.07; N 13.28. Mössbauer: one symmetric doublet: $\delta = 1.27657(87)$ mm/s; $\Delta = 1.6687(17)$ mm/s.

 $[Fe(H_2DAPBH){Ni(CN)_4}]_{\infty}$, 3: A 100 mL columnar Schlenk tube was charged with 241 mg (1 mmol) of K₂Ni(CN)₄ in 15 mL of water under N₂ atmosphere. Additional 5 mL of water was layered over the aqueous solution of K₂Ni(CN)₄, and finally a methanol solution of 1

¹⁰ A. S. M. Al-Shihri, J. R. Dilworth, S. D. Howe, J. Silver, R. M. Thompson, J. Davies, D. C. Povey, *Polyhedron*, 1993, **12**, 2297.

mmol (558 mg) of the complex **2** was slowly layered on top. The whole set up was kept undisturbed under N₂ atmosphere. Slow interdiffusion of these two solutions resulted in pale blue crystals. After 2–3 days, the whole reaction mixture was mechanically stirred and was filtered off through frit under N₂ atmosphere followed by drying under vacuum to obtain a polycrystalline dark blue solid (557 mg; 90 %). Desirable single crystals required for the Xray data collections were picked up from these crystals prior to mechanical stirring. IR (cm⁻¹): $\upsilon_{C=O} = 1631$ (vs) and 1579 (m); $\upsilon_{C=N} = 1526$ (vs); $\upsilon_{CN} = 2134$ (s). Elemental analysis (%) calcd. for C₂₇H₂₁N₉O₂FeNi: C 52.47; H 3.42; N 20.40; Found: C 52.34; H 3.49; N 20.18. Mössbauer: single symmetric doublet; site population 100 %; $\delta = 1.2138(19)$ mm/s; $\Delta = 2.2889(38)$ mm/s.

Table SII. Charact	teristic Infra-R	ed stretching	bands of the	ligands and	l complexes

Ligand/Complex	$\upsilon_{C=O}(cm^{-1})$	$\upsilon_{C=N}(cm^{-1})$	$\upsilon_{C=N}(cm^{-1})$	
H ₂ DAPBH	1662 (vs),	1567 (s)	-	
	1604 (s)			
$K_2[Ni(CN)_4]$	_	_	2119 (s)	
$[Fe(H_2DAPBH)(H_2O)(MeOH)](BF_4)_2 \bullet 2MeOH (1)$	1627 (vs),	1522 (vs)		
	1578 (s)			
$[Fe(H_2DAPBH)Cl_2]$ •MeOH (2)	1624 (vs),	1522 (vs)	-	
	1579 (s)			
$[Fe(H_2DAPBH)]_n[Ni(CN)_4]_n$ (3)	1631 (vs),	1526 (vs)	2134 (vs)	
	1579 (m)			
vs = very strong; $s = strong$; $m = medium$; $w = weak$ and $b = broad$				

	1	2	3
Formula	$C_{26}H_{35}B_2F_8FeN_5O_6^a$	$C_{23}H_{21}Cl_2FeN_5O_2$	$C_{27}H_{21}Fe_1N_9Ni_1O_2$
MW (g mol ^{-1})	743.05	526.20	618.08
Crystal system	triclinic	monoclinic	monoclinic
Space group	PĪ	$P2_{1}/c$	C 2/c
T (K)	100	180	100
<i>a</i> (Å)	7.7688(4)	8.6132(4)	17.3572(6)
<i>b</i> (Å)	8.5125(4)	13.1321(6)	15.1852(4)
<i>c</i> (Å)	24.4247(11)	22.5986(10)	10.1318(2)
α (°)	82.716(2)	-	-
$\beta(^{\circ})$	85.057(2)	108.557(2)	91.117(2)
$\gamma(^{\circ})$	84.926(2)	-	-
$V(Å^3)$	1591.34(13)	2423.22(19)	2669.96(13)
Ζ	2	4	4
$\rho_{\text{calcd.}}$ (g.cm ⁻³)	1.551	1.442	1.538
μ (mm ⁻¹)	0.569	0.873	5.598
Collected reflections	78089	103992	13075
Unique reflections	7192	10233	2550
R _{int}	0.022	0.022	0.038
Final R_1 , $wR_2 (I \ge 3\sigma)^{b, c}$	0.0646	0.0275, 0.0327	0.0604,0.0618
R_1 , wR_2 (all data)	0.0700	0.0370,0.0436	0.0689, 0.0648
GOF on F^d	1.086	0.961	1.131

Table SI2. Selected crystallographic data and refinement parameters of the complexes 1–3

^{*a*} Including co-crystallized solvant molecules. ^{*b*} $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$, ^{*c*} $wR_2 = [\Sigma (w(F_o^2 - F_c^2)^2)/\Sigma ([w(F_o^2)^2]^{1/2}]^{1/2}$ where $w = 1/(\sigma^2(F_o^2) + (aP)^2 + bP)$ with $P = (2F_c^2 + \max(F_o^2, 0))/3$. ^{*d*} GOF $= [\Sigma w(F_o^2 - F_c^2)^2/(n-p)]^{1/2}$, where *n* is the number of reflections and *p* is the number of parameters.

Figure SI1. View of the crystal packing of **1** along the crystallographic *b* axis. Color codes: yellow = Fe; green = F, red = O; blue = N, dark grey = C and pink = B. The H atoms and interstitial solvent molecules are omitted for clarity. Some of the F atoms of the BF_4^- ions have thermal disorder. Only one position of the disordered F atoms is shown for clarity.

Figure SI2. Intermolecular interactions in the solid state packing of **1**. The atoms found by DFT to bear noticeable spin density (see Fig.SI5), and therefore likely to mediate intermolecular interactions, are highlighted in ball-and-stick model. Color codes: yellow = Fe; green = F, red = O; blue = N, dark grey = C and pink = B. The H atoms and interstitial solvent molecules are omitted for clarity.

Fe1—N1	2.2312(18)	Fe1—N2	2.222(3)	C18-C19	1.396(5)
Fe1—N5	2.236(2)	C18—C23	1.403(4)	Fe1—O1	2.2158(16)
C19—C20	1.384(6)	Fe1—O2	2.202(2)	Fe1-030	2.140(2)
C20—C21	1.383(5)	Fe1—O40	2.151(2)	C1—C2	1.404(3)
C21—C22	1.379(6)	C1-C10	1.470(5)	C1—N1	1.347(3)
C22—C23	1.377(6)	C2—C3	1.367(5)	C3—C4	1.394(4)
C24—O30	1.424(3)	C4—C5	1.398(3)	C5—C6	1.489(3)
C25—O6	1.423(5)	C5—N1	1.326(4)	C6—C7	1.476(5)
C6—N2	1.294(3)	C26—O5	1.415(7)	C8—C12	1.488(3)
C8—N32	1.359(3)	N2—N32	1.370(2)	C8—O1	1.231(4)
N5—N42	1.365(4)	C9—C18	1.474(5)	C9—N42	1.367(3)
С9—О2	1.242(4)	C10-C11	1.502(4)	C10—N5	1.296(3)
C12—C13	1.396(4)	C13—C14	1.394(3)	C14—C15	1.383(5)
C15—C16	1.388(4)	C16—C17	1.396(3)		

Table SI3.	Selected	bond	lengths	(Å) 0	f 1.

Table SI4. Selected bond angles (°) of 1

N1—Fe1—N2	69.08(8)	N1—Fe1—N5	69.56(9)
N2—Fe1—N5	138.59(7)	N1—Fe1—O1	139.31(9)
N2—Fe1—O1	70.46(7)	N5—Fe1—O1	150.35(9)
N1—Fe1—O2	139.77(8)	N2—Fe1—O2	150.69(6)
N5—Fe1—O2	70.62(7)	O1—Fe1—O2	80.92(7)
N1—Fe1—O30	92.31(8)	N2—Fe1—O30	86.77(8)
N5—Fe1—O30	96.78(8)	O1—Fe1—O30	89.63(7)
O2-Fe1-O30	86.84(8)	N1—Fe1—O40	98.62(7)
N2—Fe1—O40	96.60(8)	N5—Fe1—O40	87.59(8)
O1-Fe1-O40	81.75(7)	O2—Fe1—O40	85.15(8)
O30-Fe1-O40	169.06(7)	Fe1—N1—C1	119.4(2)
Fe1—N1—C5	120.20(14)	Fe1—N2—C6	123.80(16)
Fe1—N2—N32	115.58(16)	Fe1—N5—C10	122.8(2)
Fe1—N5—N42	115.12(13)	Fe1—O1—C8	118.66(15)
Fe1	117.26(15)	Fe1-030-C24	127.9(2)

Figure SI3. View of the crystal packing of **2** along the crystallographic *a* axis. Color codes: yellow = Fe; green = F, red = O; blue = N, dark grey = C and pink = B. The H atoms and interstitial solvent molecules are omitted for clarity.

Figure SI4. Intermolecular interactions in the solid state packing of **2**. The atoms found by DFT to bear noticeable spin density (see Fig.SI5), and therefore likely to mediate intermolecular interactions, are highlighted in ball-and-stick model. Color codes: yellow = Fe; green = Cl, red = O; blue = N; dark grey = C and light grey = H.

				~	
Table SI5.	Selected	bond	lengths	(Å)	of 2

Fe1—Cl1	2.4847(3)	Fe1—Cl2	2.4865(3)	C8—C12	1.4837(15)
Fe1—O1	2.2318(8)	C9—C18	1.4813(14)	Fe1—O2	2.2667(8)
Fe1—N5	2.2307(9)	O1—C8	1.2374(12)	C12—C13	1.3932(15)
N1—C5	1.3393(13)	C13—C14	1.3883(17)	N2—N3	1.3690(13)
N2C6	1.2886(13)	C14—C15	1.380(2)	N3—C8	1.3678(13)
C15—C16	1.384(2)	N4—N5	1.3656(12)	C16—C17	1.3952(19)
N4—C9	1.3604(13)	N5-C10	1.2898(13)	C18—C19	1.3928(15)
C1—C2	1.3974(14)	C18—C23	1.3953(15)	C1-C10	1.4759(14)
C19—C20	1.3903(16)	C2—C3	1.3860(17)	C20—C21	1.3843(19)
C3—C4	1.3882(17)	C21—C22	1.388(2)	C4—C5	1.3954(14)
C5—C6	1.4801(15)	C22—C23	1.3919(17)	C6—C7	1.4869(16)
O3—C24	1.294(5)	Fe1—N1	2.2290(7)	Fe1—N2	2.2637(7)

Table SI6. Selected bond angles (°) of ${\bf 2}$

Cl1—Fe1—Cl2	170.398(12)
Cl2—Fe1—O1	83.23(2)
Cl2—Fe1—O2	86.52(2)
Cl1—Fe1—N1	92.15(2)
O1—Fe1—N1	138.63(3)
Cl1—Fe1—N2	92.53(2)
O1—Fe1—N2	69.48(3)
N1—Fe1—N2	69.23(3)
Cl2—Fe1—N5	99.78(3)
O2—Fe1—N5	69.41(3)
N2—Fe1—N5	138.30(3)
Fe1—O2—C9	117.97(7)
Fe1—N1—C5	120.35(7)
Fe1—N2—C6	121.37(7)
Fe1—N5—C10	123.29(7)

Cl1—Fe1—O1	87.17(3)
Cl1—Fe1—O2	92.35(2)
O1—Fe1—O2	83.21(3)
Cl2—Fe1—N1	95.06(2)
O2—Fe1—N1	138.10(3)
Cl2—Fe1—N2	84.13(2)
O2—Fe1—N2	151.96(3)
Cl1—Fe1—N5	88.71(3)
O1—Fe1—N5	152.11(3)
N1—Fe1—N5	69.07(3)
Fe1—O1—C8	118.87(7)
Fe1—N1—C1	120.34(7)
Fe1—N2—N3	116.07(6)
Fe1—N5—N4	117.51(6)

Figure SI5: Electron density from spin SCF density (blue = positive spin density presented in 4×10^{-4} μ_B Å³ isosurface; green = negative spin density presented in -4×10^{-4} μ_B Å³ isosurface) of the complexes **1** (*left*) and **2** (*right*) estimated from UB3LYP⁶ DFT calculations employing mixed basis sets with Gaussian 09 program.⁵ The basis set for all non-metal atoms is 6-31G*,⁷ while LANL2DZ⁸ basis set was used for Fe atoms. Analyses revealed that the Mulliken atomic spin densities are 3.784843 (**1**) and 3.742484 (**2**) μ_B on Fe atoms; 0.095831 and 0.083779 μ_B on Cl atoms; 0.031137 and 0.020545 μ_B on axially coordinated O atoms; and 0.005471 and 0.004426 μ_B on the amide N atoms for **1** and 0.001568 and -0.000452 μ_B on the amide N atoms for **2** (See Table S13-14).

Fe1—O1 ⁱ	2.195(2)	C8—C90	1.489(4)	Fe1—N4 ⁱ	2.256(3)
С8—С9	1.528(4)	Fe1—N1 ⁱ	2.139(4)	N4—N5	1.368(4)
Fe1—N1	2.139(4)	Fe1—N3	2.209(4)	C90-C100	1.463(4)
Fe1—N4	2.256(3)	C90—C140	1.322(4)	Fe1—O1	2.195(2)
C100-C110	1.386(4)	Ni1—C1 ⁱⁱ	1.866(4)	Ni1—C2 ⁱⁱ	1.858(3)
C110—C120	1.416(4)	Nil—Cl	1.866(4)	Ni1—C2	1.858(3)
C120—C130	1.333(5)	C1—N1	1.144(5)	C2—N2	1.149(5)
C130—C140	1.412(4)	C3—C4 ⁱ	1.385(4)	C3—C4	1.385(4)
C9—C10	1.418(4)	C4—C5	1.398(4)	C9—C14	1.331(4)
C10-C11	1.389(4)	C5—C6	1.481(4)	C5—N3	1.341(4)
C11—C12	1.413(4)	C6—C7	1.507(4)	C6—N4	1.287(4)
C12—C13	1.342(5)	C13—C14	1.404(4)	C8—N5	1.368(5)
C8—O1	1.237(4)				

Table SI7. Selected bond lengths (Å) of 3

Table SI8. Selected bond angles (°) of 3

70.21(9)
93.72(11)
88.15(11)
88.25(11)
174.36(15)
122.4(2)
115.7(2)
92.82(8)
139.16(14)
119.4(2)
69.58(7)
150.57(10)
87.55(11)
70.21(9)
179.994
91.36(15)
88.64(15)
177.5(3)
1.5-x, 0.5-y, 1-z.

O1 ⁱ —Fe1—N1 ⁱ	87.55(11)
Fe1—N1—C1	167.6(3)
Fe1—N3—C5 ⁱ	120.06(19)
Fe1—N3—C5	120.06(19)
O1 ⁱ —Fe1—N3	139.73(6)
N4 ⁱ —Fe1—N3	69.58(7)
N1 ⁱ —Fe1—N3	92.82(8)
O1 ⁱ —Fe1—N4	150.57(10)
N1 ⁱ —Fe1—N4	88.25(11)
N1—Fe1—N4	93.72(11)
O1 ⁱ —Fe1—O1	80.54(13)
N1 ⁱ —Fe1—O1	88.15(11)
N3—Fe1—O1	139.73(6)
C1 ⁱⁱ —Ni1—C2 ⁱⁱ	88.64(15)
C2 ⁱⁱ —Ni1—C1	91.36(15)
C2 ⁱⁱ —Ni1—C2	179.994
Ni1—C1—N1	178.4(3)

Figure SI6. Representation of the relative orientation of the Fe^{II} heptacoordinate planes (shown in yellow) in **3**. The green lines indicate the $N_{C=N}$ -Fe- $N_{C=N}$ axes. Color codes: yellow = Fe, cyan = Ni, blue = N, dark grey = C and red = O. H atoms are omitted for clarity.

Figure SI7. View of the crystal packing of **3** emphasizing shortest inter-chain and intra-chain Fe \cdots Fe distances. Color codes: yellow = Fe, cyan = Ni, blue = N, dark grey = C and red = O. H atoms are omitted for clarity.

Table SI9. Results of Continuous Shape Measures calculation using SHAPE¹¹ with the closest geometries for each Fe metal center highlighted in blue.

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona

HP-7	1 D _{7h} Heptagon
HPY-7	2 C _{6v} Hexagonal pyramid
PBPY-7	3 D _{5h} Pentagonal bipyramid
COC-7	4 C _{3v} Capped octahedron
CTPR-7	$5 C_{2v}$ Capped trigonal prism
JPBPY-7	6 D _{5h} Johnson pentagonal bipyramid J13
JETPY-7	$7 C_{3v}$ Johnson elongated triangular pyramid J7

	HPY-7	BPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
1_ Fe1	32.228,	20.918	0.733	6.908	4.879	3.697	19.889
2_ Fe1	33.519	23.011	0.912	6.906	5.295	6.209	20.961
3_ Fe1	33.738	22.914	0.344	7.635	5.706	3.313	21.785

Table S10. ZFS parameters of compounds 1-3 from the best fits using the PHI code¹²

Compound	$D (\mathrm{cm}^{-1})$	$E (\mathrm{cm}^{-1})$	g
2	-13.3	0.017	2.31
3	-10.7	0.12	2.22

¹¹ M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, 2.1 ed., University of Barcelona, Barcelona, 2013. D. Casanova, P. Alemany, J. M. Bofill, S. Alvarez, *Chem. Eur. J.*, 2003, 9, 1281.

¹² N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, J. Comput. Chem., 2013, 34, 1164

Figure SI8. Experimental powder X-ray diffractogram of complex **2** measured in a capillary tube at room temperature (blue line) and diffractogram calculated from the single crystal structure data measured at 100 K (red line).

Figure SI9. Solid-state ⁵⁷Fe Mössbauer spectra of **1–3** measured at 80 K shown with circle markers along with the best spectral fits for a high spin Fe^{II} site for the parameters indicated in the text.

Figure SI10. Temperature dependence of the $\chi_M T$ products of 1 (red circles), 2 (blue circles) and 3 (green circles) recorded at 1 kOe along with the best fits (solid lines) for the parameters indicated in the text.

Figure SI11. (*a*): *M* vs. *H* isotherms; (*b*): reduced *M* vs. *H*/*T* isotherms measured between 0–5 T at several temperatures ranging from 2 to 10 K and (*c*): temperature dependence of the in-phase (χ_{M}'') and out-of-phase (χ_{M}'') ac signals recorded at different dc fields with a 3 Oe ac field oscillating at 1000 Hz for **1**. The solid lines are guides for the eyes only.

Figure SI12. *M vs. H* (left) and reduced *M vs. H/T* isotherms (right) for **2** measured between 0-5 T at several temperatures ranging from 2 to 10 K. The solid lines are the best fits for the parameters indicated in the text.

Figure SI13. Compound 2: (a) DC field dependence of the in-phase (χ_M') and out-of-phase (χ_M'') ac signals (H_{ac} = 3 Oe ac, Frq: 1000 Hz); (b) frequency-dependence of the in-phase (χ_M') , and out-of-phase (χ_M'') ac signals as a function of the temperature recorded between 2.2 and 8.0 K at different frequencies with a 3 Oe ac field oscillating between 100 and 10000 Hz under an applied dc field of 3000 Oe ;(c) $\tau vs. T^{-1}$ plot. The solid lines are guides for the eyes only.

Figure SI14. Compound **3**: (left) *M vs. H* isotherms (circles) measured between 0–5 T at several temperatures ranging from 2 to 10 K with the best fits (solid lines) and (right) temperature dependence of the in-phase (χ_{M}') and out-of-phase (χ_{M}'') ac signals recorded at different dc fields with a 3 Oe ac field oscillating at 1000 Hz for **3**. The solid lines (right) are eye guides only.

Figure SI15. Compound 3: Frequency-dependence of the in-phase (χ_M') ac signals as a function of the temperature recorded between 2 and 6 K at different frequencies with a 3 Oe ac field oscillating between 100 and 10000 Hz under an applied dc field of 3000 Oe. The solid lines are guides for the eyes only.

Figure SI16. Cole-Cole plots of **2** (left) between 2.2 and 6.0 K and **3** (right) between 2 and 5.6 K. The solid lines are the best fits for the parameters indicated in the text.

Table SI11: The cr	ystallographic coo	rdinates of the moiet	y [Fe(H ₂ DAPBH)(H	$H_2O)(MeOH)]^{2+}$

Fe	6.06070000	7.61970000	17.39890000
С	5.35680000	10.62790000	16.95150000
С	5.25960000	11.86870000	16.30170000
С	5.69210000	11.97950000	15.01000000
С	6.22400000	10.87070000	14.35330000
С	6.29790000	9.66760000	15.06170000
С	6.88240000	8.42520000	14.48520000
C	7.30770000	8.34850000	13.07350000
Č	7.52100000	5.36140000	16.05310000
Č	5.08760000	7.42620000	20.21110000
Č	4.92850000	10.38770000	18.33700000
Č	4 39410000	11 51040000	19 17910000
C	8 18570000	4 05860000	15 78350000
C	8 12350000	3 10400000	16 80130000
C	8 68800000	1 84550000	16 60340000
C	9 29350000	1.53700000	15 39870000
C	9.36/30000	2 48580000	1/ 38890000
C	8 82120000	2.40300000	14.58820000
C	4.08510000	5.75710000	21 60/10000
C	4.98510000	7 60810000	21.00410000
C	4.20820000	7.00810000	22.30310000
C	4.19740000	6.04400000	23.87050000
C	4.94/80000	6.04490000 5.29210000	24.22780000
C	5.70100000	5.58210000	23.28530000
C	5./15/0000	5.81590000	21.9/680000
C	2.96770000	6./8310000	1/.11650000
N	5.8/680000	9.56090000	16.31450000
N	6.95470000	7.48260000	15.36890000
N	5.09430000	9.15530000	18.70540000
N	7.48800000	6.26510000	15.038/0000
N	4.83650000	8.75010000	19.98260000
0	7.00650000	5.63300000	17.13850000
0	5.40460000	6.67360000	19.27550000
0	4.26030000	6.86170000	16.52540000
0	7.89510000	8.01120000	18.45100000
H	4.91750000	12.61040000	16.74860000
H	5.63070000	12.80070000	14.56470000
Н	6.53190000	10.93350000	13.47040000
Н	6.83910000	8.97880000	12.54270000
Н	7.14170000	7.48440000	12.72870000
Н	8.23800000	8.52810000	13.00170000
Н	5.10070000	12.10380000	19.43010000
Н	3.72650000	11.99710000	18.68120000
Н	3.97930000	11.16190000	19.97120000
Н	7.71250000	3.31500000	17.61340000
Н	8.64190000	1.21490000	17.29210000
Н	9.66890000	0.69840000	15.25810000
Н	9.79480000	2.28660000	13.58390000
Н	8.88940000	4.40200000	13.89800000
Н	3.69680000	8.36750000	22.32900000
Н	3.67760000	7.60000000	24.51530000
Н	4.94820000	5.75250000	25.11200000
Н	6.20120000	4.62170000	23.53690000
Н	6.21160000	5.35400000	21.32650000
Н	2.75070000	5.90190000	17.37430000
Н	2.92130000	7.34850000	17.88640000
Н	2.31990000	7.09600000	16.49980000
Н	4.24550000	6.87600000	15.70500000
Н	7.67650000	6.05250000	14.22410000
Н	7.90600000	8.62160000	18.98320000

Н	8.16630000	7.34970000	18.90590000
Н	4.87440000	9.30790000	20.63320000

Table SI12: The crystallographic coordinates of the moiety $[Fe(H_2DAPBH)Cl_2]$

Fe	1.63070000	7.17710000	7.42720000
Cl	2.54390000	8.79680000	9.07540000
Cl	0.89980000	5.26640000	6.01400000
0	2.58360000	5.56850000	8.64620000
0	3,58590000	7.09660000	6.28310000
Ň	-0 31450000	8 26060000	7 31420000
N	0 15440000	6 33440000	8 92250000
N	0.56330000	5 22460000	9 61170000
н	0.04290000	4 77220000	10 12480000
N	2 84580000	8 89990000	5 14470000
н	2.96880000	9 52470000	4 56750000
N	1 70260000	2.52470000 8 78500000	5 88270000
C	-0.45850000	9 30860000	6 / 92 / 0000
C	1 63300000	9.30800000	6 4560000
	-1.03300000	10.00460000	5 99040000
п	-1.71320000	0.70400000	3.88940000
U U	-2.07810000	9.70490000	7.29220000
H	-3.45240000	10.19180000	1.27980000
C	-2.54/60000	8.59260000	8.11230000
H	-3.24560000	8.32180000	8.68300000
C	-1.33870000	7.89610000	8.09660000
C	-1.08440000	6.68920000	8.91480000
C	-2.21160000	5.97770000	9.57360000
Н	-2.02260000	5.03880000	9.57850000
Н	-3.01820000	6.13140000	9.09860000
Н	-2.30940000	6.26930000	10.47400000
С	1.87610000	4.89870000	9.40880000
С	3.77480000	7.93890000	5.39770000
С	0.70410000	9.55730000	5.61790000
С	0.66500000	10.56070000	4.52100000
Н	0.97440000	11.38550000	4.83320000
Н	-0.23590000	10.67380000	4.19470000
Н	1.25310000	10.27190000	3.80270000
С	2.42040000	3.70300000	10.09850000
С	3.79590000	3.49680000	10.01810000
Н	4.33240000	4.10770000	9.55490000
С	4.38420000	2.40070000	10.63450000
Н	5.32480000	2.30070000	10.58330000
С	3.59800000	1.48960000	11.31150000
Н	3.97580000	0.74070000	11.72300000
С	2.22890000	1.67490000	11.38730000
Н	1.71130000	1.04400000	11.83870000
С	1.62840000	2.78260000	10.78810000
H	0.70620000	2.91270000	10.84040000
C	4 97430000	7 93700000	4 52850000
C	6.06920000	7 16190000	4 90300000
н	6.02500000	6 64090000	5 70080000
C	7 21950000	7 14310000	4 12260000
н	7.9300000	6 63700000	4 38540000
C	7.22570000	7 89120000	2 95900000
н	8 02820000	7 8950000	2.23200000
C	6 17010000	8 6/200000	2.756080000
ч	6 22220000	0.04270000	2.50000000
C	5 02700000	9.12010000 8.66850000	3 3/1/0000
ч	J.02700000	0.00030000	3.04140000
11	7.27210000	2.10200000	0,000000

Table SI13. The Mulliken atomic spin densities (u_p) for $[Fe(H_p D A PBH)(H_p O)(MeOH)]^2$					
	Table SI13:	The Mulliken atomic	spin densities (IIB) for [Fe(H ₂ DA	PBH)(H ₂ O)(MeOH)] ²⁺

1 Fe	3.784843	2 C	0.010041	3 C	-0.014703	4 C	0.009646
5 C -	-0.016017	6 C	0.009848	7 C	-0.028413	8 C	0.003366
9 C -	-0.006974	10 C	-0.00569	611 C	-0.027188	12 C	0.003456
13 C	0.003383	14 C	-0.00117	615 C	0.000420	16 C	-0.000752
17 C	0.000433	18 C	-0.00050	119 C	0.001740	20 C	0.000530
21 C	-0.000030	22 C	0.000693	323 C	-0.000338	24 C	0.000396
25 C	0.000181	26 N	0.039648	827 N	0.048694	28 N	0.045267
29 N	0.005471	30 N	0.004420	531 O	0.038875	32 O	0.035969
33 O	0.031137	34 O	0.020545	535 H	0.001473	36 H	-0.000580
37 H	0.001562	38 H	-0.00001	539 H	-0.000440	40 H	-0.001214
41 H	-0.000870	42 H	-0.00058	043 H	-0.000106	44 H	0.000144
45 H	-0.000022	46 H	0.000050	047 H	0.000033	48 H	0.000025
49 H	-0.000031	50 H	0.000024	451 H	-0.000043	52 H	0.000019
53 H	0.000009	54 H	0.000347	755 H	0.000833	56 H	0.000250
57 H	-0.000301	58 H	0.001035	559 H	-0.000324	60 H	0.000165
61 H	0.001338						

Table SI14: The Mulliken atomic spin densities (μ_B) for [Fe(H₂DAPBH)Cl₂]

1 Fe	3.742484	2 Cl	0.095831	3 Cl	0.083779 4 O	0.030264
50	0.026432	6 N	0.032022	7 N	0.021661 8 N	0.001568
9 H	0.001603	10 N	-0.000452	211 H	0.00185312 N	0.023622
13 C	-0.012667	14 C	0.006107	15 H	0.00024716 C	-0.022304
17 H	0.001512	18 C	0.010797	19 H	-0.00007820 C	-0.018424
21 C	-0.016149	22 C	0.002657	23 H	-0.00028824 H	0.000120
25 H	-0.000991	26 C	-0.007624	27 C	-0.00912428 C	0.001410
29 C	0.001248	30 H	-0.000102	231 H	0.00019532 H	0.000015
33 C	0.003425	34 C	-0.001241	35 H	0.00012836 C	0.000484
37 H	-0.000025	38 C	-0.000906	539 H	0.00006540 C	0.000569
41 H	0.000019	42 C	-0.000886	643 H	0.00003844 C	0.003272
45 C	-0.001405	46 H	0.000156	47 C	0.00055648 H	-0.000030
49 C	-0.001110	50 H	0.000077	51 C	0.00065952 H	0.000007
53 C	-0.001124	54 H	0.000050)		