Supporting Information

Copper Catalyzed Oxidative Coupling Reactions for Trifluoromethylselenolations - Synthesis of R-SeCF₃ Compounds with Air Stable Tetramethylammonium trifluoromethylselenate

Quentin Lefebvre^{ϕ}, Roman Pluta^{ϕ}, Magnus Rueping^{ϕ^*}

^{*p*}Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, D-52068 Aachen, Germany.

1. General information	2
2. Optimization of the conditions for alkynes	3
3. Optimization of the conditions for boronic acids	4
4. Reaction with different nucleophiles	5
5. Trifluoromethylselenolation of terminal alkynes by Me ₄ NSeCF ₃	6
6. Trifluoromethylselenolation of boron derivatives by Me ₄ NSeCF ₃	12
7. ¹ H, ¹³ C and ¹⁹ F NMR spectra of new compounds	20

1. General Information

Pentane was distilled. Other solvents were used as purchased unless otherwise stated. Commercial reagents were used as purchased without further purification. Me_4NSeCF_3 was prepared according to the reported procedure.¹ Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was carried out using Merck Kieselgel 60 silica gel (230-400 mesh). Thin-layer chromatography was carried out using Merck Kieselgel 60 F_{254} (230-400 mesh) fluorescent treated silica and were visualized under UV light (250 and 354 nm) or by staining with aqueous potassium permanganate solution.

¹H NMR spectra were recorded in deuterated solvents on Varian spectrometers at 300, 400 or 600 MHz, with residual protic solvent as the internal standard. ¹³C NMR spectra were recorded in deuterated solvents on Bruker or Varian spectrometers at 75, 100 or 125 MHz, with the central peak of the deuterated solvent as the internal standard. ¹⁹F NMR spectra were recorded in deuterated solvents on Bruker or Varian spectrometers at 376 or 564 MHz. Chemical shifts (δ) are given in parts per million (ppm), and coupling constants (*J*) are given in Hertz (Hz). The ¹H NMR spectra are reported as δ /ppm downfield from tetramethylsilane (multiplicity, number of protons, assignment, coupling constant *J*/Hz). The ¹³C and ¹⁹F NMR spectra were recorded on a Perkin Elmer 1760 FTIR spectrometer, only diagnostic absorbances (λ_{max}) are reported. Low resolution mass spectra were recorded on a Büchi Melting Point M-565 apparatus, at ambient pressure and are uncorrected.

Alkynes 1a, 1b, 1c, 1e, 1f, 1g, 1i, 1j, 1k, 1l and boronic acids 3a, 3b, 3c, 3d, 3f, 3k, 3l were purchased from commercial sources. Boronic acids and esters $5e^2$, $3g^3$, $5h^4$, $3i^5$, $5j^6$, $5m^7$, $5n^8$ and alkynes $1d^9$, $1h^{10}$ were prepared according to reported procedures. All analytical data match previously reported values.

¹ Naumann, D.; Tyrra, W.; Yagupolskii, Y. L. J. Fluorine Chem. 2003, 123, 183-187.

² Fürstner, A.; Seidel, G.; Org. Lett. **2002**, 4, 541 – 543.

³ Diemer, V.; Chaumeil, H.; Defoin, A.; Fort, A.; Boeglin, A.; Carre, C.; Eur. J Org. Chem. 2008, 10, 1767 – 1776.

⁴ Xie, F.; Zhao, H.; Li, D.; Chen, H.; Quan, H.; Shi, X.; Lou, L.; Hu, Y.; J. Med. Chem. 2011, 54, 3200 – 3205.

⁵ Hoffmann, M.; Bischoff, D.; Dahmann, G.; Klicic, J.; Schaenzle, G.; Wollin, S. L. M.; Convers-Reignier, S. G.;

East, S. P.; Marlin, F. J.; McCarthy, C.; Scott, J.; WO2013/14060, 2013.

⁶ Nakagawa, H.; Kawai, S.; Nakashima, T.; Kawai, T.; Org. Lett. 2009, 1475 – 1478.

⁷ Yuan, W.; Ma, S.; Org. Biomol. Chem. **2012**, 10, 7266 – 7268.

⁸ Brown, J. M.; Lloyd-Jones, G. C.; *J. Am. Chem. Soc.* **1994**, 116, 866 – 878.

⁹ Takalo, H.; Kankare, J.; Haenninen, E.; Acta Chem. Scand. B 1988, 42, 448-454.

¹⁰ Ames, D. E.; Bull, D.; Takundwa, C.; *Synthesis* **1981**, 5, 364 – 365.

2. Optimization of the conditions for terminal alkynes

Entry ^a	solvent	Cu source	ligand	additive	Yield (%) ^b
1	THF	Cu(OTf) ₂ (1 equiv)	bpy	-	93
$2^{\rm c}$	THF	$Cu(OTf)_2$ (1 equiv)	bpy	-	<2
3 ^d	THF	$Cu(OTf)_2$ (1 equiv)	bpy	-	94
4	THF	Cu(OTf) ₂ (10 mol%)	bpy	-	<5
5	THF	-	bpy	-	0
6	THF	$Cu(OTf)_2$ (1 equiv)	-	-	9
7	THF	$Cu(OTf)_2$ (1 equiv)	bpy	KF (2 equiv)	53
8	THF	$Cu(OTf)_2$ (1 equiv)	bpy	Cs_2CO_3 (2 equiv)	33
9	THF	$Cu(OTf)_2$ (1 equiv)	bpy	K_3PO_4 (2 equiv)	55
10	DMF	$Cu(OTf)_2$ (1 equiv)	bpy	-	77
11	DMSO	$Cu(OTf)_2$ (1 equiv)	bpy	-	87
12	MeCN	Cu(OTf) ₂ (1 equiv)	bpy	-	93
13	MeOH	$Cu(OTf)_2$ (1 equiv)	bpy	-	86
14	MeOH/H ₂ O 9:1	$Cu(OTf)_2$ (1 equiv)	bpy	-	83
15	DCE	$Cu(OTf)_2$ (1 equiv)	bpy	-	65
16	toluene	$Cu(OTf)_2$ (1 equiv)	bpy	-	16
17	hexane	$Cu(OTf)_2$ (1 equiv)	bpy	-	<5
18	THF	CuSO ₄ (1 equiv)	bpy	-	<5
19	THF	$Cu(acac)_2$ (1 equiv)	bpy	-	<5
20	THF	$Cu(OAc)_2$ (1 equiv)	bpy	-	25
21	THF	CuI (1 equiv)	bpy	-	38
22°	THF	CuI (1 equiv)	bpy	-	0
23	THF	CuTC (1 equiv)	bpy	-	16
24	THF	$Cu(MeCN)_4PF_6$ (1 equiv)	bpy	-	40
25	THF	$Cu(OTf)_2$ (1 equiv)	bpy-OMe	-	86
26	THF	$Cu(OTf)_2$ (1 equiv)	dtbpy	-	88
27	THF	$Cu(OTf)_2$ (1 equiv)	phen	-	74
28	THF	$Cu(OTf)_2$ (1 equiv)	TMEDA	-	81

^a Reaction conditions: Alkyne **1a** (0.10 mmol), Me₄NSeCF₃ (0.11 mmol), Cu(OTf)₂ (0.10 mmol) and bipyridine (0.11 mmol) in THF (1 mL) were stirred at RT for 18h; ^b Yields were determined by ¹⁹F NMR analysis with PhCF₃ as internal standard; ^c Reaction under argon atmosphere; ^d reaction under oxygen atmosphere;

3. Optimization of the conditions for boronic acids

Me_4NSeCF_3	+		DMF, RT, 18h, air	
		3a		4a

Entry ^a	solvent	Cu source	ligand	additive	Yield (%) ^b
1	DMF	Cu(OTf) ₂ (1 equiv)	bpy	-	88
2^{c}	DMF	Cu(OTf) ₂ (1 equiv)	bpy	-	20
3 ^d	DMF	Cu(OTf) ₂ (1 equiv)	bpy	-	90
4	DMF	Cu(OTf) ₂ (10 mol%)	bpy	-	7
5	DMF	-	bpy	-	0
6	DMF	Cu(OTf) ₂ (1 equiv)	-	-	26
7	DMF	Cu(OTf) ₂ (1 equiv)	bpy	KF (2 equiv)	78
8	DMF	$Cu(OTf)_2$ (1 equiv)	bpy	Cs ₂ CO ₃ (2 equiv)	67
9	DMF	$Cu(OTf)_2$ (1 equiv)	bpy	K ₃ PO ₄ (2 equiv)	77
10	DMF	$Cu(OTf)_2$ (1 equiv)	bpy	MS 4Å	81
11	DMSO	$Cu(OTf)_2$ (1 equiv)	bpy	-	82
12	MeCN	$Cu(OTf)_2$ (1 equiv)	bpy	-	73
13	MeOH	Cu(OTf) ₂ (1 equiv)	bpy	-	77
14	MeOH/H ₂ O 9:1	Cu(OTf) ₂ (1 equiv)	bpy	-	82
15	DCE	Cu(OTf) ₂ (1 equiv)	bpy	-	37
16	THF	Cu(OTf) ₂ (1 equiv)	bpy	-	57
17	toluene	Cu(OTf) ₂ (1 equiv)	bpy	-	50
18	hexane	$Cu(OTf)_2$ (1 equiv)	bpy	-	15
19	DMF	CuSO ₄ (1 equiv)	bpy	-	52
20	DMF	$Cu(acac)_2$ (1 equiv)	bpy	-	35
21	DMF	$Cu(OAc)_2$ (1 equiv)	bpy	-	27
22	DMF	CuI (1 equiv)	bpy	-	33
23°	DMF	CuI (1 equiv)	bpy	-	0
24	DMF	CuTC (1 equiv)	bpy	-	64
25	DMF	Cu(MeCN) ₄ PF ₆ (1 equiv)	bpy	-	61
26	DMF	Cu(OTf) ₂ (1 equiv)	bpy-OMe	-	81
27	DMF	Cu(OTf) ₂ (1 equiv)	dtbpy	-	79
28	DMF	$Cu(OTf)_2$ (1 equiv)	phen	-	78
29	DMF	Cu(OTf) ₂ (1 equiv)	TMEDA	-	65

^a Reaction conditions: boronic acid **3a** (0.10 mmol), Me₄NSeCF₃ (0.11 mmol), Cu(OTf)₂ (0.10 mmol) and bipyridine (0.11 mmol) in THF (1 mL) were stirred at RT for 18h; ^b Yields were determined by ¹⁹F NMR analysis with PhCF₃ as internal standard; ^c Reaction under argon atmosphere; ^d Reaction under oxygen atmosphere;

4. Reaction with different nucleophiles:

Me_4NSeCF_3	+	×	Cu(OTf) ₂ (1.0 equiv) bpy (1.1 equiv) DMF, RT, 18h, air	SeCF ₃
				4a
Entry ^a		Х	Yield	(%) ^b
1		-B(OH) ₂	8	8
2		-B(Pin)	8	7
3		-B(Neop)	8	2
4		-B(MIDA)	2	6
5		-B(DEAM)	5	2
6		-BF ₃ K	()
7		-SnMe ₃	2	7

^a Reaction conditions: nucleophile (0.10 mmol), Me₄NSeCF₃ (0.11 mmol), Cu(OTf)₂ (0.10 mmol) and bipyridine (0.11 mmol) in DMF (1 mL) were stirred at RT for 18h; ^b Yields were determined by ¹⁹F NMR analysis with PhCF₃ as internal standard; B(Pin) – boronic acid pinacol ester, B(Neop) – boronic acid neopentyl glycol ester, B(MIDA) – boronic acid *N*-methyliminodiacetic ester, B(DEAM) – boronic acid *N*-methyldiethanolamine ester.

5. Trifluoromethylselenolation of alkynes by Me₄NSeCF₃

General procedure

$$R_{1} \longrightarrow \begin{array}{c} Me_{4}NSeCF_{3} \\ \hline Cu(OTf)_{2}, bipyridine \\ \hline \\ THF, r.t., O_{2} \ 15h \end{array} \qquad R_{1} \longrightarrow \begin{array}{c} R_{1} \longrightarrow \\ R_{1} \longrightarrow \\ \hline \\ R_{2} \longrightarrow \\ R_{2} \longrightarrow \\ R_{3} \longrightarrow \\ R_{4} \longrightarrow \\ R_{1} \longrightarrow \\ R_{2} \longrightarrow \\ R_{3} \longrightarrow \\ R_{4} \longrightarrow$$

The terminal alkyne (0.30 mmol, 1.0 equiv), copper (II) triflate (109 mg, 0.30 mmol, 1.0 equiv), bipyridine (51.5 mg, 0.33 mmol, 1.1 equiv) and tetramethylammonium trifluoromethylselenate (83.3 mg, 0.375 mmol, 1.25 equiv) were loaded into a tube under air and dissolved in THF (2 mL). The tube was closed with a septum, and the deep green solution was stirred at room temperature under oxygen atmosphere (balloon) for 18h. Upon completion of the reaction, the crude mixture was directly loaded onto a silica gel column and eluted with pentane. The fractions containing the product were carefully evaporated under reduced pressure (300 mbar, 30°C). The solvent was then evaporated under reduced pressure (200 mbar, 30°C) to give analytically pure samples.

Preparation and characterisation of 1-(trifluoromethylseleno)ethynyl-4-pentylbenzene 2a

.SeCF₃ Prepared according to the general procedure on 0.3 mmol scale. Colourless oil, 90%.

FT-IR $v_{max}(ATR)$ 3031, 2929, 2860, 2327, 2166, 2064, 1907, 1606, 1506, 1460, 1409, 1377, 1280, 1152, 1088, 828, 739 cm⁻¹; ¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 0.90 (t, 3H, C<u>H</u>₃, J 7.1 Hz), 1.28-1.38 (m, 4H, 2 × C<u>H</u>₂), 1.59-1.64 (m, 2H, C<u>H</u>₂), 2.62 (t, 2H, C<u>H</u>₂, J 7.8 Hz), 7.17 (d, 2H, 2 × Ar-C<u>H</u>, J 8.1 Hz), 7.42 (d, 2H, 2 × Ar-C<u>H</u>, J 8.1 Hz); ¹³C NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 14.1 (<u>C</u>H₃), 22.7 (<u>C</u>H₂), 31.0 (<u>C</u>H₂), 31.6 (<u>C</u>H₂), 36.1 (<u>C</u>H₂), 61.0 (q, <u>C</u>quat., J_{C-F} 3.0 Hz), 107.6 (<u>C</u>quat.), 119.3 (<u>C</u>quat.), 120.9 (q, <u>C</u>quat., J_{C-F} 336.6 Hz), 128.7 (2 × Ar-<u>C</u>H), 132.3 (2 × Ar-<u>C</u>H), 145.1 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ -36.4 (SeC<u>F₃</u>); MS (CI): m/z (%) 299.0 (7) [M-F-2]⁺, 301.0 (16) [M-F]⁺, 317.0 (19) [M-3]⁺, 318.0 (42) [M-2]⁺, 319.0 (32) [M-1]⁺, 320.0 (100) [M]⁺, 321.0 (86) [M+1]⁺; HRMS (EI): calc. for [C₁₄H₁₅F₃⁸⁰Se] 320.0285, measured 320.0284.

Preparation and characterisation of 4-(trifluoromethylseleno)ethynyl-1,2-dimethoxybenzene 2b

Prepared according to the general procedure on 0.14 mmol scale. Colourless oil, 80%. **FT-IR** v_{max} (ATR) 3080, 3004, 2947, 2838, 2679, 2589, 2319, 2156, 1996, 1908, 1734, 1592, 1510, 1445, 1406, 1323, 1254, 1146, 1086, 1023, 947, 855, 808, 743 cm⁻¹; ¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 3.88 (s, 3H, C<u>H</u>₃), 3.90 (s, 3H, C<u>H</u>₃), 6.82 (d, 1H, Ar-C<u>H</u>, J 8.3 Hz), 6.99 (d, 1H, Ar-C<u>H</u>, J 1.8 Hz), 7.13 (dd, 1H, Ar-C<u>H</u>, J 1.8, 8.3 Hz); ¹³**C** NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 56.1 (<u>C</u>H₃), 56.1 (<u>C</u>H₃), 60.3 (q, <u>C</u>quat., J_{C-F} 3.1 Hz), 107.5 (<u>C</u>quat.), 111.0 (Ar-<u>C</u>H), 114.2 (<u>C</u>quat.), 114.9 (Ar-<u>C</u>H), 120.8 (q, <u>C</u>quat., J_{C-F} 336.5 Hz), 126.3 (Ar-<u>C</u>H), 148.7 (<u>C</u>quat.), 150.7 (<u>C</u>quat.); ¹⁹**F** NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ –36.4 (SeC<u>F₃</u>); MS (CI): *m*/*z* (%) 160.9 (48) [M–SeCF₃]⁺, 239.7 (89) [M–CF₃–1]⁺, 240.9 (72) [M–CF₃]⁺, 305.9 (24) [M–4]⁺, 306.8 (30) [M–3]⁺, 308.4 (31) [M–2]⁺, 309.2 (39) [M–1]⁺, 310.0 (38) [M]⁺, 311.0 (41) [M+1]⁺; **HRMS** (EI): calc. for [C₁₁H₉O₂F₃⁸⁰Se] 309.9714, measured 309.9713.

Preparation and characterisation of 1-bromo-2-(trifluoromethylseleno)ethynylbenzene 2c

SeCF₃ Prepared according to the general procedure on 0.14 mmol scale. Colourless oil, 58%.

Br FT-IR v_{max} (ATR) 3066, 2664, 2325, 2172, 2081, 1993, 1922, 1805, 1729, 1619, 1585, 1556, 1466, 1429, 1272, 1226, 1153, 1084, 945, 836, 749, 665 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_H 7.22 (app dt, 1H, Ar-C<u>H</u>, J 1.7, 7.8 Hz), 7.29 (app dt, 1H, Ar-C<u>H</u>, J 1.1, 7.6 Hz), 7.50 (dd, 1H, Ar-C<u>H</u>, J 1.6, 7.7 Hz), 7.60 (dd, 1H, Ar-C<u>H</u>, J 0.8, 8.1 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_C 67.1 (q, <u>C</u>quat., J_{C-F} 3.0 Hz), 105.7 (<u>C</u>quat.), 120.8 (q, <u>C</u>quat., J_{C-F} 336.6 Hz),124.4 (<u>C</u>quat.), 125.7 (<u>C</u>quat.), 127.2 (Ar-<u>C</u>H), 130.6 (Ar-<u>C</u>H), 132.7 (Ar-<u>C</u>H), 133.7 (Ar-<u>C</u>H); ¹⁹F NMR (CDCl₃, 564 MHz) δ_F –35.6 (SeC<u>F₃</u>); MS (CI): m/z (%) 258.3 (22) [M-CF₃]⁺, 259.9 (18) [M-CF₃+1]⁺, 323.9 (42) [M-4]⁺, 325.0 (59) [M-3]⁺, 326.0 (75) [M-2]⁺, 327.2 (100) [M-1]⁺, 328.1 (93) [M]⁺, 329.1 (80) [M+1]⁺, 330.0 (62) [M+2]⁺, 331.0 (40) [M+3]⁺; HRMS (EI): calc. for [C₉H₄⁷⁹BrF₃⁸⁰Se] 327.8608, measured 327.8595.

Preparation and characterisation of 4-(trifluoromethylseleno)ethynylbenzophenone 2d

Prepared according to the general procedure on 0.3 mmol scale. Colourless solid, 95%.

m.p. 68-70 °C; **FT-IR** ν_{max}(ATR) 3066, 2320, 2170, 2073, 1930, 1738, 1643, 1596, 1446, 1402, 1278, 1142, 1082, 924, 846, 788, 736,

691 cm⁻¹; ¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.49 (t, 2H, 2 × Ar-C<u>H</u>, J 8.7 Hz), 7.57-7.61 (m, 3H, 3 × Ar-C<u>H</u>), 7.77-7.79 (m, 4H, 4 × Ar-C<u>H</u>); ¹³C NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 65.6 (q, <u>C</u>quat., J_{C-F} 3.0 Hz), 106.5 (<u>C</u>quat.), 120.7 (q, <u>C</u>quat., J_{C-F} 336.5 Hz), 126.0 (<u>C</u>quat.), 128.5 (2 × Ar-<u>C</u>H), 130.1 (2 × Ar-<u>C</u>H), 131.6 (2 × Ar-<u>C</u>H), 132.8 (Ar-<u>C</u>H), 137.2 (<u>C</u>quat.), 137.9 (<u>C</u>quat.), 195.8 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ –35.7 (SeC<u>F₃</u>); MS (CI): *m/z* (%) 69.2

(74) $[CF_3]^+$, 105.2 (16) $[C_6H_5CO]^+$, 351.5 (43) $[M-3]^+$, 352.5 (76) $[M-2]^+$, 353.6 (89) $[M-1]^+$, 354.6 (100) $[M]^+$, 355.5 (98) $[M+1]^+$. Analytical data in accordance with literature.¹¹

Preparation and characterisation of methyl 4-(trifluoromethylseleno)ethynylbenzoate 2e

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale. Colourless solid, 87%. m.p. 38-40 °C; FT-IR ν_{max}(ATR) 2953, 2325, 2087, 1997, 1927, 1722, 1604, 1559, 1437, 1277, 1153, 1087, 966, 854, 764, 693 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_H 3.92 (s, 3H,

C<u>H</u>₃), 7.52 (d, 2H, 2 × Ar-C<u>H</u>, J 8.3 Hz), 8.01 (d, 2H, 2 × Ar-C<u>H</u>, J 8.3 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_{C} 52.5 (<u>C</u>H₃), 65.5 (q, <u>C</u>quat., J_{C-F} 3.0 Hz), 106.5 (<u>C</u>quat.), 120.7 (q, <u>C</u>quat., J_{C-F} 336.6 Hz), 126.5 (<u>C</u>quat.), 129.7 (2 × Ar-<u>C</u>H), 130.6 (<u>C</u>quat.), 131.7 (2 × Ar-<u>C</u>H), 166.4 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_{F} -35.8 (SeC<u>F₃</u>); MS (CI): m/z (%) 69.2 (84) [CF₃]⁺, 304,2 (33) [M-4]⁺, 305.2 (50) [M-3]⁺, 306.1 (63) [M-2]⁺, 307.2 (100) [M-1]⁺, 308.2 (95) [M]⁺, 309.2 (93) [M+1]⁺; HRMS (EI): calc. for [C₁₁H₇O₂F₃⁸⁰Se] 307.9557, measured 307.9555.

Preparation and characterisation of 4-(trifluoromethylseleno)ethynyl-1-nitrobenzene 2f

Prepared according to the general procedure on 0.3 mmol scale. Yellow solid, 91%.**m.p.** 68-70 °C; **FT-IR** $v_{max}(ATR)$ 3108, 2935, 2861, 2171, 1939, 1734, 1597, 1528, 1347, 1286, 1148, 1082, 855, 738, 683 cm⁻¹; ¹**H NMR** (CDCl₃, 600 MHz) δ_{H} 7.61 (d, 2H, 2 × Ar-

C<u>H</u>, J 8.9 Hz), 8.22 (d, 2H, 2 × Ar-C<u>H</u>, J 8.9 Hz); ¹³C NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 68.6 (q, <u>C</u>quat., J_{C-F} 2.9 Hz), 105.4 (<u>C</u>quat.), 120.7 (q, <u>C</u>quat., J_{C-F} 336.6 Hz), 123.8 (2 × Ar-<u>C</u>H), 128.6 (<u>C</u>quat.), 132.4 (2 × Ar-<u>C</u>H), 147.7 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ –35.4 (SeC<u>F₃</u>); MS (CI): m/z (%) 69.3 (58) [CF₃]⁺, 291.3 (68) [M–4]⁺, 292.4 (46) [M–3]⁺, 293.4 (94) [M–2]⁺, 294.2 (73) [M–1]⁺, 295.1 (76) [M]⁺, 296.0 (100) [M+1]⁺. Analytical data in accordance with literature.¹¹

$Preparation \ and \ characterisation \ of \ 6-(trifluoromethyl seleno) ethynyl-2-methoxynaph thalene$

2g

Prepared according to the general procedure on 0.3 mmol scale. Colourless solid, 84%. **m.p.** 109-111 °C; **FT-IR** $v_{max}(ATR)$ 3063, 2937, 2846, 2644, 2323, 2153, 1918, 1739, 1618, 1481,

¹¹ Cheng, C. et al., Chem, Eur. J., 2014, 20, 657-661

¹¹ Cheng, C. et al., *Chem, Eur. J.*, **2014**, 20, 657-661

1388, 1240, 1142, 1079, 1031, 938, 895, 846, 810, 732, 664 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 3.93 (s, 3H, C<u>H</u>₃), 7.10 (d, 1H, Ar-C<u>H</u>, J 2.5 Hz), 7.18 (dd, 1H, Ar-C<u>H</u>, J 2.5, 8.9 Hz), 7.49 (dd, 1H, Ar-C<u>H</u>, J 1.6, 8.4 Hz), 7.69 (m, 2H, 2 × Ar-C<u>H</u>), 7.96 (s, 1H, Ar-C<u>H</u>); ¹³C NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 55.5 (<u>C</u>H₃), 61.3 (q, <u>C</u>quat., J_{C-F} 3.0 Hz), 105.9 (Ar-<u>C</u>H), 108.0 (<u>C</u>quat.), 116.9 (<u>C</u>quat.), 119.8 (Ar-<u>C</u>H), 120.9 (q, <u>C</u>quat., J_{C-F} 336.4 Hz), 127.1 (Ar-<u>C</u>H), 128.3 (<u>C</u>quat.), 129.0 (Ar-<u>C</u>H), 129.7 (Ar-<u>C</u>H), 132.6 (Ar-<u>C</u>H), 134.9 (<u>C</u>quat.), 158.9 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ – 36.3 (SeC<u>F₃</u>); MS (CI): m/z (%) 69.1 (67) [CF₃]⁺, 327.5 (37) [M-3]⁺, 328.4 (63) [M-2]⁺, 329.4 (56) [M-1]⁺, 330.5 (100) [M]⁺, 331.5 (60) [M+1]⁺; HRMS (EI): calc. for [C₁₄H₉OF₃⁸⁰Se] 329.9765, measured 329.9762.

Preparation and characterisation of 3-(trifluoromethylseleno)ethynylquinoline 2h

Prepared according to the general procedure on 0.3 mmol scale. Colourless solid, 81%. **m.p.** 67-69 °C; **FT-IR** v_{max} (ATR) 3459, 3014, 2308, 2184, 2110, 2030, 1980, 1910, 1738, 1614, 1565, 1484, 1442, 1365, 1217, 1098, 903, 746 cm⁻¹; ¹**H NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.57

(app t, 1H, Ar-C<u>*H*</u>, *J* 7.5 Hz), 7.74 (ddd, 1H, Ar-C<u>*H*</u>, *J* 1.3, 7.0, 8.3 Hz), 7.77 (d, 1H, Ar-C<u>*H*</u>, *J* 8.2 Hz), 8.09 (d, 1H, Ar-C<u>*H*</u>, *J* 8.5 Hz), 8.27 (d, 1H, Ar-C<u>*H*</u>, *J* 1.7 Hz), 8.92 (d, 1H, Ar-C<u>*H*</u>, *J* 2.0 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_{C} 65.9 (q, <u>*C*</u>quat., *J*_{*C*-*F*} 3.0 Hz), 104.6 (<u>*C*</u>quat.), 116.2 (<u>*C*</u>quat.), 120.8 (q, <u>*C*</u>quat., *J*_{*C*-*F*} 336.6 Hz), 127.0 (<u>*C*</u>quat.), 127.7 (Ar-<u>*C*</u>H), 127.9 (Ar-<u>*C*</u>H), 129.6 (Ar-<u>*C*</u>H), 130.9 (Ar-<u>*C*</u>H), 139.6 (Ar-<u>*C*</u>H), 147.3 (<u>*C*</u>quat.), 151.8 (Ar-<u>*C*</u>H); ¹⁹F NMR (CDCl₃, 564 MHz) δ_{F} – 35.7 (SeC<u>*F*₃); MS (CI): *m*/*z* (%) 69.2 (2) [CF₃]⁺, 297.9 (56) [M–3]⁺, 299.2 (46) [M–2]⁺, 300.1 (78) [M–1]⁺, 301.1 (54) [M]⁺, 302.0 (100) [M+1]⁺; HRMS (EI): calc. for [C₁₂H₆NF₃⁸⁰Se] 300.9612, measured 300.9614.</u>

Preparation and characterisation of (trifluoromethylseleno)ethynylferrocene 2i

Prepared according to the general procedure on 0.3 mmol scale. Orange solid, 54%. m.p. 74-76 °C; FT-IR $v_{max}(ATR)$ 3931, 3101, 3015, 2653,

2306, 2149, 1906, 1739, 1368, 1228, 1140, 1083, 924, 819, 733 cm⁻¹; ¹H **NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 4.24 (s, 5H, 5 × Ar-C<u>H</u>), 4.29 (s, 2H, 2 × Ar-C<u>H</u>), 4.53 (s, 2H, 2 × Ar-C<u>H</u>); ¹³C **NMR** (CDCl₃, 150 MHz) $\delta_{\rm C}$ 57.5 (q, <u>C</u>quat., J_{C-F} 3.0 Hz), 63.0 (<u>C</u>quat.), 69.8 (2 × Ar-<u>C</u>H), 70.3 (5 × Ar-<u>C</u>H), 72.6 (2 × Ar-<u>C</u>H), 107.9 (<u>C</u>quat.), 120.3 (q, <u>C</u>quat., J_{C-F} 336.9 Hz); ¹⁹F **NMR** (CDCl₃, 564 MHz) $\delta_{\rm F}$ –37.2 (SeC<u>F₃</u>); **MS** (CI): m/z (%) 209.1 (18) [M–SeCF₃]⁺, 288.0 (27) $[M-CF_3-1]^+$, 289.1 (18) $[M-CF_3]^+$, 355.5 (50) $[M-3]^+$, 356.5 (78) $[M-2]^+$, 357.6 (91) $[M-1]^+$, 358.5 (100) $[M]^+$, 359.6 (52) $[M+1]^+$. Analytical data in accordance with literature.¹¹

Preparation and characterisation of 3-phthalimido-1-(trifluoromethylseleno)propyne 2j

Prepared according to the general procedure on 0.3 mmol scale. Colourless solid, 52%. **m.p.** 71-73 °C; **FT-IR** $v_{max}(ATR)$ 3463, 3281, 3031, 2928, 2324, 2110, 1892, 1707, 1465, 1390, 1338, 1294, 1085, 929, 848, 794, 711 cm⁻¹; ¹**H NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 4.66 (s, 2H,

 $C\underline{H}_2$), 7.74 (dd, 2H, *J* 3.0, 5.4 Hz), 7.88 (dd, 2H, *J* 3.0, 5.4 Hz); ¹³**C NMR** (CDCl₃, 150 MHz) δ_C 28.4 (\underline{C} H₂), 57.2 (q, \underline{C} quat., J_{C-F} 3.0 Hz), 102.1 (\underline{C} quat.), 120.6 (q, \underline{C} quat., J_{C-F} 336.0 Hz), 123.8 (2 × Ar- \underline{C} H), 132.0 (2 × \underline{C} quat.), 134.4 (2 × Ar- \underline{C} H), 167.0 (2 × \underline{C} quat.); ¹⁹**F NMR** (CDCl₃, 564 MHz) δ_F –35.5 (SeC \underline{F}_3); **MS** (CI): m/z (%) 69.2 (1) [CF₃]⁺, 185.1 (2) [M–SeCF₃]⁺, 262.7 (13) [M–CF₃–1]⁺, 263.7 (18) [M–CF₃]⁺, 330.2 (42) [M–3]⁺, 331.3 (43) [M–2]⁺, 332.3 (74) [M–1]⁺, 333.4 (59) [M]⁺, 334.2 (100) [M+1]⁺; **HRMS** (EI): calc. for [C₁₂H₆O₂N₁F₃⁸⁰Se] 332.9510, measured 332.9519.

Preparation and characterisation of 2-((3-((Trifluoromethyl)seleno)prop-2-yn-1yl)oxy)tetrahydro-2H-pyran 2k

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale. Yellow oil, 50%. FT-IR $v_{max}(ATR)$ 3455, 2941, 2866, 2323, 2099, 1994, 1737, 1443, 1352, 1268, 1148, 1088, 1029, 899, 870, 812, 740 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 1.52-1.66 (m, 4H, 2 × CH₂), 1.72-1.85 (m, 2H, CH₂), 3.52-3.55 (m, 1H, CH_aH_b), 3.81-3.85 (m, 1H, CH_aH_b), 4.43-4.49 (m, 2H, AA' system), 4.81 (t, 1H, CH, J 3.4 Hz); ¹³C NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 19.1 (CH₂), 25.4 (CH₂), 30.3 (CH₂), 55.1 (CH₂) 59.5 (q, Cquat., J_{C-F} 3.0 Hz), 62.2 (CH₂), 97.1 (CH), 105.3 (Cquat.), 120.7 (q, Cquat., J_{C-F} 336.0 Hz); ¹⁹F NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ -36.1 (SeCF₃); MS (CI): m/z (%) 85.1 (39) [C₅H₉O]⁺, 139.1 (2) [M-SeCF₃]⁺, 169.2 (100) [C₁₀H₁₇O₂]⁺, 217.0 (1) [M-CF₃-2]⁺, 219.0 (1) [M-CF₃]⁺, 286.9 (1) [M-1]⁺, 288.9 [M+1]⁺; HRMS (EI): calc. for [C₉H₁₁O₂F₃⁸⁰Se] 287.9870, measured 287.9874.

Preparation and characterisation of 1-(trifluoromethylseleno)ethynylcyclohexene 21

SeCF₃ Pre

Prepared according to the general procedure on 0.3 mmol scale. Colourless oil, 58%. **FT-IR** $v_{max}(ATR)$ 3029, 2934, 2863, 2668, 2327,

¹¹ Cheng, C. et al., Chem, Eur. J., 2014, 20, 657-661

2148, 1987, 1736, 1625, 1437, 1347, 1271, 1329, 1148, 1087 918, 843, 798, 739, 668 cm⁻¹; ¹H **NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 1.57-1.61 (m, 2H, C<u>H</u>₂), 1.63-1.67 (m, 2H, C<u>H</u>₂), 2.13-2.16 (m, 4H, 2 × C<u>H</u>₂), 6.24-6.26 (m, 1H, C<u>H</u>); ¹³C **NMR** (CDCl₃, 150 MHz) $\delta_{\rm C}$ 21.4 (<u>C</u>H₂), 22.2 (<u>C</u>H₂), 25.9 (<u>C</u>H₂), 28.8 (<u>C</u>H₂), 58.6 (q, <u>C</u>quat., J_{C-F} 2.9 Hz), 109.3 (<u>C</u>quat.), 120.5 (<u>C</u>quat.), 120.8 (q, <u>C</u>quat., J_{C-F} 336.4 Hz), 138.5 (<u>C</u>H); ¹⁹F **NMR** (CDCl₃, 564 MHz) $\delta_{\rm F}$ -36.8 (SeC<u>F₃</u>); **MS** (CI): *m/z* (%) 69.1 (16) [CF₃]⁺, 105.1 (55) [M–SeCF₃]⁺, 233.0 (20) [M–F–2]⁺, 234.9 (38) [M–F]⁺, 250.9 (33) [M–3]⁺, 252.0 (17) [M–2]⁺, 252.9 (60) [M–1]⁺, 253.9 (19) [M]⁺, 254.9 (52) [M+1]⁺; **HRMS** (EI): calc. for [C₉H₉F₃⁸⁰Se] 253.9816, measured 253.9817.

One-pot procedure for reaction with terminal alkynes:

SeCF₂CF₃

A suspension of red selenium (380 mg, 4.8 mmol, 1.6 equiv) in 10 mL of dry THF under air was cooled to -40 °C. TMSCF₃ (0.75 mL, 5.1 mmol, 1.7 equiv) was added followed by Me₄NF (450 mg, 4.8 mmol, 1.6 equiv). The reaction mixture was stirred for 10 min at -40 °C, warmed up to room temperature and stirred for further 30 min. 1-ethynyl-4-pentylbenzene (0.58 ml, 3.0 mmol, 1 equiv), bipyridine (515 mg, 3.3 mmol, 1.1 equiv) and Cu(OTf)₂ (1.085 g, 3 mmol, 1 equiv) were added and the flask was closed with a rubber septum. A balloon of oxygen was connected via needle and the reaction mixture was stirred at room temperature for 15h. The mixture was filtered through Celite eluting with diethyl ether (50 mL). The filtrate was washed with water (2 x 50 mL) and brine, the organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, pentane) to provide **2a** (543 mg, 56%) as yellow oil.

Preparation and characterisation of 1-(pentafluoroethylseleno)ethynyl-4-pentylbenzene 12a:

A suspension of red selenium (38.0 mg, 0.48 mmol, 1.6 equiv) in 1 mL of dry THF under air was cooled to -40 °C. TMSC₂F₅ (84 µL, 0.48 mmol, 1.6 equiv) was added

followed by Me₄NF (45 mg, 0.48 mmol, 1.6 equiv). The reaction mixture was stirred for 10 min at -40 °C, warmed up to room temperature and stirred for further 30 min. 1-ethynyl-4-pentylbenzene (58 µl, 0.3 mmol, 1 equiv), bipyridine (51.5 mg, 0.33 mmol, 1.1 equiv) and Cu(OTf)₂ (108.5 mg, 0.3 mmol, 1 equiv) were added and the flask was closed with a rubber septum. A balloon of oxygen was connected via needle and the reaction mixture was stirred at room temperature for 15h. The mixture was filtered through Celite eluting with diethyl ether (25 mL). The filtrate was concentrated under reduced pressure to ca. 1 mL and directly purified by column chromatography (SiO₂, pentane) to provide **11a** (56 mg, 51%) as pale yellow oil. **m.p.** 34-36 °C, **FT-IR** v_{max}(ATR) 2934, 2863, 2158, 1925, 1738, 1603, 1502, 1463, 1411, 1322, 1207, 1106, 1018, 931, 836, 739 cm⁻¹; ¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 0.91 (t, 3H, C<u>H</u>₃, *J* 7.1 Hz), 1.27-1.39 (m, 4H, 2 × C<u>H</u>₂),

1.58-1.66 (m, 2H, C<u>H</u>₂), 2.62 (t, 2H, C<u>H</u>₂, *J* 7.8 Hz), 7.17 (d, 2H, 2 × Ar-C<u>H</u>, *J* 8.2 Hz), 7.41 (d, 2H, 2 × Ar-C<u>H</u>, *J* 8.2 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_{C} 14.0 (<u>C</u>H₃), 22.5 (<u>C</u>H₂), 30.9 (<u>C</u>H₂), 31.4 (<u>C</u>H₂), 35.9 (<u>C</u>H₂), 61.2 (t, <u>C</u>quat., *J*_{C-F} 6.0 Hz), 107.2 (<u>C</u>quat.), 114.7 (tq, <u>C</u>quat. *J*_{C-F} 308.7, 42.4 Hz), 118.5 (qt, <u>C</u>quat., *J*_{C-F} 286.1, 34.1 Hz), 119.1 (<u>C</u>quat.), 128.5 (2 × Ar-<u>C</u>H), 132.1 (2 × Ar-<u>C</u>H), 145.0 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_{F} –92.9 (q, 2F, SeC<u>F₂CF₃, *J*_{F-F} 3.4 Hz), – 83.3 (t, 3F, SeCF₂C<u>F₃</u>, *J*_{F-F} 3.4 Hz); MS (CI): *m*/*z* (%) 171.0 (6) [M-SeC₂F₅]⁺, 250.9 (11) [M-C₂F₅]⁺, 251.9 (11) [M-C₂F₅+1]⁺, 366.9 (30) [M-3]⁺, 367.9 (50) [M-2]⁺, 368.9 (54) [M-1]⁺, 370.0 (85) [M]⁺, 371.0 (100) [M+1]⁺; HRMS (EI): calc. for [C₁₅H₁₅F₅⁸⁰Se] 370.0253, measured 370.0253.</u>

6. Trifluoromethylselenolation of boron derivatives by Me₄NSeCF₃

General procedure

The boron derivative (boronic acid or pinacol ester, 0.30 mmol, 1.0 equiv), copper (II) triflate (109 mg, 0.30 mmol, 1.0 equiv), bipyridine (51.5 mg, 0.33 mmol, 1.1 equiv) and tetramethylammonium trifluoromethylselenate (83.3 mg, 0.375 mmol, 1.25 equiv) were loaded into a tube under air and dissolved in DMF (2 mL). The tube was closed with a septum, and the deep green solution was stirred at room temperature under oxygen atmosphere (balloon) for 18h. Upon completion of the reaction, the crude mixture was directly loaded onto a silica gel column and eluted with pentane. The fractions containing the product were carefully evaporated under reduced pressure (200-300 mbar, 30°C). to give analytically pure samples.

Preparation and characterisation of 1-(trifluoromethylseleno)naphthalene 4a

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid. Yellow oil, 73%. **FT-IR** v_{max} (ATR) 3167, 3059, 2172, 1737, 1612, 1503, 1375, 1323, 1253, 1083, 959, 872, 793, 769 cm⁻¹; ¹H **NMR** (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.48 (dd, 1H, Ar-C<u>*H*</u>, *J* 7.2, 8.2 Hz), 7.58 (ddd, 1H, Ar-C<u>*H*</u>, *J* 1.2, 6.9, 8.1 Hz), 7.65 (ddd, 1H, Ar-C<u>*H*</u>, *J* 1.4, 6.9, 8.4 Hz), 7.89 (d, 1H, Ar-C<u>*H*</u>, *J* 8.1 Hz), 8.00 (d, 1H, Ar-C<u>*H*</u>, *J* 8.2 Hz), 8.09 (dd, 1H, Ar-C<u>*H*</u>, *J* 1.0, 7.2 Hz), 8.51 (d, 1H, Ar-C<u>*H*</u>, *J* 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 122.1 (q, <u>*C*</u>quat.</u>, *J*_{C-F} 1.3 Hz), 122.6 (q, <u>*C*</u>quat.</u>, *J*_{C-F} 334.1 Hz), 125.8 (Ar-<u>*C*H), 126.7 (Ar-<u>*C*H), 127.6 (Ar-<u>*C*H), 128.1 (Ar-<u>*C*H), 128.6 (Ar-<u>*C*H), 132.0 (Ar-<u>*C*H), 134.4 (<u>*C*</u>quat.), 135.3 (<u>*C*</u>quat.), 138.5 (Ar-<u>*C*H); ¹⁹F NMR (CDCl₃, 376 MHz) $\delta_{\rm F}$ –35.9 (SeC<u>*F*₃); MS</u></u></u></u></u></u></u></u>

(CI): m/z (%) 128.1 (12) $[M-SeCF_3+1]^+$, 255.0 (9) $[M-F-2]^+$, 256.9 (20) $[M-F]^+$, 273.0 (10) $[M-3]^+$, 274.0 (28) $[M-2]^+$, 275.0 (13) $[M-1]^+$, 276.0 (100) $[M]^+$, 277.0 (53) $[M+1]^+$; **HRMS** (EI): calc. for $[C_{11}H_7F_3^{80}Se]$ 275.9659, measured 275.9663.

Preparation and characterisation of 4-(trifluoromethylseleno)biphenyl 4b

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid. Colourless oil, 63%. **FT-IR** $v_{max}(ATR)$ 3023, 2330, 2078, 1911, 1743, 1590, 1473, 1389, 1276, 1087, 1002, 832, 751, 691 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_H 7.40 (t, 1H, Ar-C<u>H</u>, J 7.4 Hz), 7.48 (t, 2H, 2 × Ar-C<u>H</u>, J 7.6 Hz), 7.60-7.63 (m, 4H, 4 × Ar-C<u>H</u>), 7.82 (d, 2H, 2 × Ar-C<u>H</u>, J 8.3 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_C 121.3 (<u>C</u>quat.), 122.7 (q, <u>C</u>quat., J_{C-F} 332.9 Hz), 127.7 (2 × Ar-<u>C</u>H), 128.2 (2 × Ar-<u>C</u>H), 128.4 (2 × Ar-<u>C</u>H), 129.1 (2 × Ar-<u>C</u>H), 137.6 (Ar-<u>C</u>H), 139.9 (<u>C</u>quat.), 143.5 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_F -36.1 (SeC<u>F</u>₃); MS (CI): m/z (%) 69.2 (17) [CF₃]⁺, 153.3 (8) [M-SeCF₃]⁺, 232.8 (13) [M-CF₃]⁺, 300.0 (88) [M-2]⁺, 301.2 (85) [M-1]⁺, 302.2 (100) [M]⁺, 303.2 (54) [M+1]⁺. Analytical data in accordance with literature.¹¹

Preparation and characterisation of 4-(trifluoromethylseleno)toluene 4c

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid. Colourless oil, 62%.

FT-IR $v_{max}(ATR)$ 3458, 2924, 2856, 2651, 2324, 2107, 1987, 1909, 1739, 1448, 1367, 1216, 1090, 902, 792, 714 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_{H} 2.39 (s, 3H, C<u>H</u>₃), 7.20 (d, 2H, 2 × Ar-C<u>H</u>, *J* 8.1 Hz), 7.63 (d, 2H, 2 × Ar-C<u>H</u>, *J* 8.1 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_{C} 21.5 (<u>C</u>H₃), 119.2 (q, <u>C</u>quat., *J*_{C-F} 0.9 Hz), 122.7 (q, <u>C</u>quat., *J*_{C-F} 332.8 Hz), 130.5 (2 × Ar-<u>C</u>H), 137.2 (2 × Ar-<u>C</u>H), 140.9 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_{F} -36.6 (SeC<u>F₃</u>); MS (CI): *m/z* (%) 91.2 (100) [M-SeCF₃]⁺, 169.2 (17) [M-CF₃-2]⁺, 171.2 (25) [M-CF₃]⁺, 237.1 (13) [M-3]⁺, 238.1 [M-2]⁺, 239.1 (31) [M-1]⁺, 240. 0 (12) [M]⁺, 241.1 (55) [M+1]⁺. Analytical data in accordance with literature.

Preparation and characterisation of 4-chloro-1-(trifluoromethylseleno)benzene 4d

 $\begin{array}{c} \text{SeCF}_3 \\ \text{Cl} \end{array} \begin{array}{c} \text{Prepared according to the general procedure on 0.3 mmol scale from the} \\ \text{corresponding boronic acid. Colourless oil, 58\%. FT-IR } \nu_{max}(\text{ATR}) \ 3459, \end{array}$

¹¹ Cheng, C. et al., Chem, Eur. J., 2014, 20, 657-661

3014, 2929, 2856, 2653, 2319, 2108, 1986, 1739, 1583, 1440, 1366, 1217, 1093, 902 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.37 (d, 2H, 2 × Ar-C<u>H</u>, J 8.4 Hz), 7.67 (d, 2H, 2 × Ar-C<u>H</u>, J 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 120.7 (q, <u>C</u>quat., J_{C-F} 1.1 Hz), 122.5 (q, <u>C</u>quat., J_{C-F} 332.9 Hz), 130.0 (2 × Ar-<u>C</u>H), 137.3 (<u>C</u>quat.), 138.5 (2 × Ar-<u>C</u>H); ¹⁹F NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ -36.2 (SeC<u>F₃</u>); MS (CI): m/z (%) 69.2 (57) [CF₃]⁺, 189.0 (29) [M- CF₃-2]⁺, 191.0 (52) [M-CF₃]⁺, 192.9 (77) [M- CF₃+2]⁺, 239.0 (30) [M-F-2]⁺, 241.0 (49) [M-F]⁺, 243.0 (22) [M-F+2]⁺, 257 (12) [M-3]⁺, 257.9 (15) [M-2]⁺, 259.0 (31) [M-1]⁺, 259.9 (17) [M]⁺, 260.9 (54) [M+1]⁺, 261.9 (10) [M+2]⁺, 263.9 (26) [M+3]⁺. Analytical data in accordance with literature.¹²

Preparation and characterisation of 4-(trifluoromethylseleno)benzophenone 4e

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid pinacol ester. Colourless oil, 70%. **FT-IR** $v_{max}(ATR)$ 3069, 2929, 2647, 2290, 2102, 1926, 1738, 1650, 1586, 1448, 1389, 1277, 1091, 921, 843, 789, 728, 693 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_{H} 7.50 (t, 2H, 2 × Ar-C<u>H</u>, J 7.8 Hz), 7.62 (t, 1H, Ar-C<u>H</u>, J 7.5 Hz), 7.79-7.81 (m, 4H, 4 × Ar-C<u>H</u>), 7.85 (d, 2H, 2 × Ar-C<u>H</u>, J 8.3 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_{C} 122.5 (q, <u>C</u>quat., *J_{C-F}* 332.8 Hz), 127.4 (q, <u>C</u>quat, *J_{C-F}* 1.0 Hz), 128.6 (2 × Ar-<u>C</u>H), 130.20 (2 × Ar-<u>C</u>H), 130.9 (2 × Ar-<u>C</u>H), 133.1 (Ar-<u>C</u>H), 136.5 (2 × Ar-<u>C</u>H), 137.0 (<u>C</u>quat.), 139.1 (<u>C</u>quat.), 195.8 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_{F} -35.2 (SeC<u>F₃</u>); MS (CI): m/z (%) 69.2 (11) [CF₃]⁺, 261.0 (9) [M-CF₃]⁺, 262.0 (11) [M-CF₃+1]⁺, 328.3 (69) [M-2]⁺, 329.4 (96) [M-1]⁺, 330.4 (100) [M]⁺, 331.4 (99) [M+1]⁺; HRMS (EI): calc. for [C₁₄H₉OF₃⁸⁰Se] 329.9765, measured 329.9767.

Preparation and characterisation of methyl 4-(trifluoromethylseleno)benzoate 4f

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid. Colourless oil, 69%. **FT-IR** $v_{max}(ATR)$ 3438, 2954, 2663, 2322, 2088, 1994, 1928, 1725, 1593, 1437, 1394, 1276, 1094, 1013, 966, 845, 754, 689 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_{H} 3.94 (s, 3H, C<u>H</u>₃), 7.80 (d, 2H, 2 × Ar-C<u>H</u>, J 8.3 Hz), 8.04 (d, 2H, 2 × Ar-C<u>H</u>, J 8.3 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_{C} 52.6 (<u>CH₃</u>), 122.5 (q, <u>C</u>quat., J_{C-F} 332.7 Hz), 128.2 (q, <u>C</u>quat., J_{C-F} 1.0 Hz), 130.6 (2 × Ar-<u>C</u>H), 131.9 (<u>C</u>quat.), 136.6 (2 × Ar-<u>C</u>H), 166.3 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_{F} –35.3 (SeC<u>F₃</u>); MS (CI): m/z (%) 69.2 (100) [CF₃]⁺, 282.1 (29) [M-2]⁺, 283.0 (54) [M-1]+, 284.0 (34) [M]⁺, 284.9 (41) [M+1]⁺; HRMS (EI): calc. for [C₉H₇O₂F₃⁸⁰Se] 283.9557, measured 283.9558.

¹² Blond, G., Billard, T., Langlois, B. R., *Tetrahedron Lett.*, 2001, 42, 2473-2475

Preparation and characterisation of 2,6-di(tert-butyl)-4-(trifluoromethylseleno)anisole 4g

Prepared according to the general procedure on 0.1 mmol scale from the corresponding boronic acid. Colourless oil, 67%. **FT-IR** $v_{max}(ATR)$ 3363, 2956, 2319, 2167, 2104, 2010, 1942, 1671, 1597, 1457, 1402, 1256, 1221, 1091, 1013, 877, 804, 741, 695 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_{H}

1.43 (s, 18H, $6 \times C\underline{H}_3$), 3.71 (s, 3H, $C\underline{H}_3$), 7.58 (s, 2H, $2 \times \text{Ar-C}\underline{H}$); ¹³C NMR (CDCl₃, 150 MHz) δ_C 32.0 ($6 \times \underline{C}H_3$), 36.0 ($2 \times \underline{C}$ quat.), 64.6 ($\underline{C}H_3$), 116.6 (q, \underline{C} quat., J_{C-F} 0.8 Hz), 122.8 (q, \underline{C} quat., J_{C-F} 333.0 Hz), 135.8 ($2 \times \text{Ar-C}H$), 145.5 ($2 \times \underline{C}$ quat.), 161.7 (\underline{C} quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_F –36.6 (SeC \underline{F}_3); MS (CI): m/z (%) 83.1 (100) [H₃Se]⁺, 347.6 (23) [M-F-2]⁺, 349.2 (51) [M-F]⁺, 365.6 (47) [M-2]⁺, 366.8 (42) [M-1]⁺, 367.8 (65) [M]⁺, 368.8 (69) [M+1]⁺, 369.7 (61) [M+2]⁺. Analytical data in accordance with literature.

Preparation and characterisation of N-methyl-5-(trifluoromethylseleno)indole 4h

Prepared according to the general procedure on 0.1 mmol scale from the corresponding boronic acid. Colourless solid, 84%.

m.p. 54-56 °C; **FT-IR** v_{max} (ATR) 2937, 2658, 2325, 2100, 1867, 1711, 1600, 1472, 1425, 1327, 1276, 1242, 1087, 880, 792, 722 cm⁻¹; ¹**H NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 3.82 (s, 3H, C<u>H</u>₃), 6.53 (d, 1H, Ar-C<u>H</u>, J 3.1 Hz), 7.11 (d, 1H, Ar-C<u>H</u>, J 3.1 Hz), 7.33 (d, 1H, Ar-C<u>H</u>, J 8.5 Hz), 7.57 (dd, 1H, Ar-C<u>H</u>, J 1.3, 8.5 Hz), 8.05 (d, 1H, Ar-C<u>H</u>, J 1.3 Hz); ¹³**C NMR** (CDCl₃, 150 MHz) $\delta_{\rm C}$ 33.1 (<u>C</u>H₃), 101.6 (Ar-<u>C</u>H), 110.4 (Ar-<u>C</u>H), 112.0 (q, <u>C</u>quat., J_{C-F} 0.9 Hz), 122.9 (q, <u>C</u>quat., J_{C-F} 333.1 Hz), 129.6 (<u>C</u>quat.), 130.2 (Ar-<u>C</u>H), 130.3 (Ar-<u>C</u>H), 131.1 (Ar-<u>C</u>H), 137.4 (<u>C</u>quat.); ¹⁹**F NMR** (CDCl₃, 564 MHz) $\delta_{\rm F}$ -37.3 (SeC<u>F₃</u>); **MS** (CI): *m*/*z* (%) 130.5 (100) [M-SeCF₃]⁺, 275.0 (29) [M-4]⁺, 276.1 (29) [M-3]⁺, 277.1 (44) [M-2]⁺, 278.1 (49) [M-1]⁺, 279.1 (41) [M]⁺, 280.0 (39) [M+1]⁺; **HRMS** (EI): calc. for [C₁₀H₈NF₃⁸⁰Se] 278.9768, measured 278.9764.

Preparation and characterisation of 2-methyl-6-(trifluoromethylseleno)quinoline 4i

F₃CSe Prepared according to the general procedure on 0.1 mmol scale from the corresponding boronic acid pinacol ester. Colourless solid, 75%. **m.p.** 84-86 °C; **FT-IR** v_{max} (ATR) 2926, 2856, 2218, 2023, 1921, 1737, 1601, 1481, 1375, 1301, 1216, 1093, 975, 914, 822, 731 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_H 2.78 (s, 3H, C<u>H</u>₃), 7.37 (d, 1H, Ar-C<u>H</u>, *J* 8.4 Hz), 7.96 (dd, 1H, Ar-C<u>H</u>, *J* 1.7, 8.7 Hz), 8.03 (d, 1H, Ar-C<u>H</u>, *J* 8.7 Hz), 8.07 (d, 1H, Ar-C<u>H</u>, J 8.4 Hz), 8.21 (d, 1H, Ar-C<u>H</u>, J 1.7 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_{C} 25.6 (<u>C</u>H₃), 119.7 (<u>C</u>quat.), 122.7 (q, <u>C</u>quat., J_{C-F} 333.1 Hz), 123.1 (Ar-<u>C</u>H), 127.0 (<u>C</u>quat.), 130.0 (Ar-<u>C</u>H), 136.4 (Ar-<u>C</u>H), 136.8 (Ar-<u>C</u>H), 137.2 (Ar-<u>C</u>H), 148.0 (<u>C</u>quat.), 161.2 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_{F} –35.8 (SeC<u>F₃</u>); MS (CI): m/z (%) 269.9 (34) [M-F-2]⁺, 271.5 (53) [M-F]⁺, 286.7 (47) [M-4]⁺, 288.1 (61) [M-3]⁺, 289.2 (28) [M-2]⁺, 290.0 (100) [M-1]⁺, 291.2 (60) [M]⁺, 292.0 (71) [M+1]⁺; HRMS (EI): calc. for [C₁₁H₈NF₃⁸⁰Se] 290.9768, measured 290.9766.

Preparation and characterisation of 3-(trifluoromethylseleno)benzothiophene 4j

Prepared according to the general procedure on 0.1 mmol scale from the corresponding boronic acid pinacol ester. Colourless oil, 76%. **FT-IR** $v_{max}(ATR)$ 3102, 2926, 1676, 1572, 1418, 1313, 1255, 1084, 936, 823, 740 cm⁻¹; ¹**H NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.43-7.46 (m, 1H, Ar-C<u>H</u>), 7.50-7.53 (m, 1H, Ar-C<u>H</u>), 7.92 (d, 1H, Ar-C<u>H</u>, *J* 8.1 Hz), 7.97 (s, 1H, Ar-C<u>H</u>), 8.02 (d, 1H, Ar-C<u>H</u>, *J* 8.1 Hz); ¹³**C NMR** (CDCl₃, 150 MHz) $\delta_{\rm C}$ 112.9 (*C*quat.), 122.3 (q, *C*quat., *J*_{*C*-F} 334.6 Hz), 122.8 (Ar-*C*H), 124.0 (Ar-*C*H), 125.4 (Ar-*C*H), 125.4 (Ar-*C*H), 137.5 (Ar-*C*H), 139.6 (*C*quat.), 140.3 (*C*quat.); ¹⁹**F NMR** (CDCl₃, 564 MHz) $\delta_{\rm F}$ - 35.7 (SeC*F*₃); **MS** (CI): *m/z* (%) 69.2 (13) [CF₃]⁺, 134.2 (34) [M-SeCF₃+1]⁺, 261.0 (47) [M-F-2]⁺, 262.9 (42) [M-F]⁺, 278.2 (35) [M-4]⁺, 279.1 (69) [M-3]⁺, 280.2 (95) [M-2]⁺, 281.0 (100) [M-1]⁺, 282.0 (91) [M]⁺, 282.9 (74) [M+1]⁺; **HRMS** (EI): calc. for [C₉H₅F₃³²S⁸⁰Se] 281.9223, measured 281.9210.

Preparation and characterisation of 2-(trifluoromethylseleno)benzofuran 4k

Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid. Colourless oil, 62%. **FT-IR** $v_{max}(ATR)$ 3067, 2681, 2325, 2100, 1993, 1740, 1610, 1527, 1438, 1358, 1250, 1142, 1090, 918, 878, 819, 742 cm⁻¹; ¹**H NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.25-7.30 (m, 2H, 2 × Ar-C<u>H</u>), 7.37-7.40 (m, 1H, Ar-C<u>H</u>), 7.55 (d, 1H, Ar-C<u>H</u>, J 8.4 Hz), 7.62 (d, 1H, Ar-C<u>H</u>, J 7.9 Hz); ¹³**C NMR** (CDCl₃, 150 MHz) $\delta_{\rm C}$ 111.8 (Ar-<u>C</u>H), 120.7 (Ar-<u>C</u>H), 121.6 (Ar-<u>C</u>H), 121.8 (q, <u>C</u>quat., J_{C-F} 335.7 Hz), 123.6 (Ar-<u>C</u>H), 126.4 (Ar-<u>C</u>H), 128.0 (<u>C</u>quat.), 136.4 (q, <u>C</u>quat., J_{C-F} 1.7 Hz), 158.1 (<u>C</u>quat.); ¹⁹**F NMR** (CDCl₃, 564 MHz) $\delta_{\rm F}$ -35.4 (SeC<u>F₃</u>); **MS** (CI): *m/z* (%) 118.0 (56) [M-SeCF₃]⁺, 194.9 (19) [M-CF₃-2]⁺, 196.9 (38) [M-CF₃]⁺, 244.9 (33) [M-F-2]⁺, 246.8 (69) [M-F]⁺, 262.9 (22) [M-3]⁺, 263.8 (23) [M-2]⁺, 264.9 (51) [M-1]⁺, 265.9 (17) [M]⁺, 266.9 (100) [M+1]⁺; **HRMS** (EI): calc. for [C₉H₅OF₃⁸⁰Se] 265.9452, measured 265.9446.

Preparation and characterisation of β -(trifluoromethylseleno)styrene 41

SeCF₃

Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid. Yellow oil, 75%.

FT-IR $v_{max}(ATR)$ 3038, 2663, 2320, 2101, 1880, 1741, 1574, 1493, 1445, 1367, 1283, 1218, 1092, 951, 809, 731, 689 cm⁻¹; ¹**H NMR** (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.10 (d, 1H, *J* 15.6 Hz, AA' system), 7.16 (d, 1H, *J* 15.6 Hz, AA' system), 7.31-7.42 (m, 5H, 5 × Ar-C<u>H</u>); ¹³**C NMR** (CDCl₃, 100 MHz) $\delta_{\rm C}$ 109.4 (q, <u>C</u>H, *J*_{C-F} 2.3 Hz), 122.3 (q, <u>C</u>quat., *J*_{C-F} 332.5 Hz), 126.8 (2 × Ar-<u>C</u>H), 128.8 (2 × Ar-<u>C</u>H), 129.1 (Ar-<u>C</u>H), 135.7 (<u>C</u>quat.), 143.4 (q, <u>C</u>H, *J*_{C-F} 1.1 Hz); ¹⁹**F NMR** (CDCl₃, 376 MHz) $\delta_{\rm F}$ -36.1 (SeC<u>F</u>₃); **MS** (CI): *m*/*z* (%) 69.2 (20) [CF₃]⁺, 103.1 (54) [M–SeCF₃]⁺, 181.0 (26) [M–CF₃–2]⁺, 182.9 (48) [M–CF₃]⁺, 249.0 (14) [M–3]⁺, 250.0 (14) [M–2]⁺, 250.9 (32) [M–1]⁺, 251.9 (13) [M]⁺, 253.0 (56) [M+1]⁺; **HRMS** (EI): calc. for [C₉H₇F₃⁸⁰Se] 251.9659, measured 251.9658.

Preparation and characterisation of β -methyl- β -(trifluoromethylseleno)styrene 4m

SeCF₃ Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid pinacol ester. Colourless oil, 62%. **FT-IR** $v_{max}(ATR)$ 3029, 2924, 2661, 2325, 2084, 1994, 1742, 1589, 1490, 1442, 1378, 1273 ,1101, 919, 865, 747, 697 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ_H 2.48 (s, 3H, C<u>H</u>₃), 7.23 (s, 1H, C<u>H</u>), 7.29-7.33 (m, 3H, 3 × Ar-C<u>H</u>), 7.39 (t, 2H, 2 × Ar-C<u>H</u>, J 7.6 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_C 23.9 (<u>CH</u>₃), 123.2 (q, <u>C</u>quat., J_{C-F} 333.6 Hz), 124.6 (<u>C</u>quat.), 128.1 (Ar-<u>C</u>H), 128.6 (2 × Ar-<u>C</u>H), 128.9 (2 × Ar-<u>C</u>H), 136.2 (<u>C</u>quat.), 142.8 (q, <u>C</u>H, J_{C-F} 1.1 Hz); ¹⁹F NMR (CDCl₃, 564 MHz) δ_F -34.3 (SeC<u>F</u>₃); MS (CI): m/z (%) 69.2 (100) [CF₃]⁺, 117.2 (13) [M-SeCF₃]⁺, 263.0 (7) [M-3]⁺, 264.1 (10) [M-2]⁺, 265.0 (11) [M-1]⁺, 265.9 (10) [M]⁺, 266.9 (5) [M+1]⁺; HRMS (EI): calc. for [C₁₀H₉F₃⁸⁰Se] 265.9816, measured 265.9817.

Preparation and characterisation of β -(trifluoromethylseleno)vinylferrocene 4n

Prepared according to the general procedure on 0.3 mmol scale from the corresponding boronic acid pinacol ester. Orange oil, 71%. **FT-IR** $v_{max}(ATR)$ 3924, 3093, 2924, 2667, 2323, 2095, 1996, 1768, 1595, 1457, 1410, 1289,

1232, 1094, 952, 817, 736 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 4.17 (s, 5H, 5 × C<u>H</u>), 4.34 (s, 2H, 2 × C<u>H</u>), 4.43 (s, 2H, 2 × C<u>H</u>), 6.62 (d, 1H, C<u>H</u>, J 14.7 Hz), 7.06 (d, 1H, C<u>H</u>, J 14.7 Hz); ¹³C NMR (CDCl₃, 150 MHz) $\delta_{\rm C}$ 67.5 (2 × <u>C</u>H), 69.5 (5 × <u>C</u>H), 70.0 (2 × <u>C</u>H), 80.7 (<u>C</u>quat.), 103.1 (<u>C</u>H), 122.0 (q, <u>C</u>quat., J_{C-F} 333.1 Hz), 146.1 (<u>C</u>H); ¹⁹F NMR (CDCl₃, 564 MHz) $\delta_{\rm F}$ –36.6

(SeC<u>F</u>₃); **MS** (CI): m/z (%) 211.2 (60) [M–SeCF₃]⁺, 289.2 (35) [M–CF₃–2]⁺, 291.4 (39) [M–CF₃]⁺, 355.8 (40) [M–4]⁺, 356.7 (27) [M–3]⁺, 357.7 (63) [M–2]⁺, 358.5 (53) [M–1]⁺, 359.5 (91) [M]⁺, 360.5 (100) [M+1]⁺; **HRMS** (EI): calc. for [C₁₃H₁₁F₃⁵⁶Fe⁸⁰Se] 359.9322, measured 359.9326.

One-pot procedure for reaction with boronic acids:

A suspension of red selenium (380 mg, 4.8 mmol, 1.6 equiv) in 10 mL of dry DMF under air was cooled to -40 °C. TMSCF₃ (0.75 mL, 5.1 mmol, 1.7 equiv) was added followed by Me₄NF (450 mg, 4.8 mmol, 1.6 equiv). The reaction mixture was stirred for 10 min at -40 °C, warmed up to room temperature and stirred for further 30 min. 1-naphthylboronic acid (516 mg, 3.0 mmol, 1 equiv), bipyridine (515 mg, 3.3 mmol, 1.1 equiv) and Cu(OTf)₂ (1.085 g, 3 mmol, 1 equiv) were added and the flask was closed with a rubber septum. A balloon of oxygen was connected via needle and the reaction mixture was stirred at room temperature for 15h. The mixture was filtered through Celite eluting with diethyl ether (50 mL). The filtrate was washed with water (2 x 50 mL) and brine. the organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, pentane) to provide **4a** (660 mg, 80%) as a light yellow oil.

Oxidation of 4a to 1-(trifluoromethylseleninyl)naphthalene 13a

³ 1-trifluoromethylselenonaphthalene **2a** (27.5 mg, 0.1 mmol, 1.0 equiv) was dissolved in 1 mL of dry DCM under argon. The reaction mixture was cooled to 0 °C, and *m*-CPBA (\leq 77% purity, 24.7 mg, 0.11 mmol, 1.1 equiv) was added in one portion. The mixture was stirred at 0 °C for 30 minutes, and at room-

temperature for 30 additional minutes. The organic phase was washed with a saturated aqueous solution of potassium carbonate (1 mL) and the aqueous phase was extracted with DCM (3 × 1 mL). The organics were combined and concentrated under reduced pressure. The residue was purified by column chromatography (pentane/ethyl acetate 10:1 to 1:1) to provide **13a** (25 mg, 86%) as a colourless solid. **m.p.** 110-112 °C; **FT-IR** v_{max}(ATR) 3426, 3050, 2924, 2853, 2664, 2324, 2193, 2105, 1931, 1725, 1588, 1504, 1458, 1375, 1265, 1144, 1093, 971, 920, 827, 797, 758, 731 cm⁻¹; ¹**H** NMR (CDCl₃, 600 MHz) δ_H 7.63-7.69 (m, 2H, 2 × Ar-C<u>H</u>), 7.75 (t, 1H, Ar-C<u>H</u>, *J* 7.7 Hz), 7.97-8.01 (m, 2H, 2 × Ar-C<u>H</u>), 8.11 (d, 1H, Ar-C<u>H</u>, *J* 8.1 Hz), 8.38 (d, 1H, Ar-C<u>H</u>, *J* 7.3 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_C 122.2 (Ar-<u>C</u>H), 123.0 (q, <u>C</u>quat., *J*_{C-F} 363.5 Hz), 126.0 (Ar-<u>C</u>H), 126.3 (Ar-<u>C</u>H), 127.4 (Ar-<u>C</u>H), 128.4 (Ar-<u>C</u>H), 129.4 (Ar-<u>C</u>H), 131.4 (<u>C</u>quat.), 132.8 (<u>C</u>quat.), 133.5 (Ar-<u>C</u>H), 134.1 (<u>C</u>quat.); ¹⁹F NMR (CDCl₃, 564 MHz) δ_F -62.7 (Se(O)C<u>F₃); MS</u> (CI): *m/z* (%) 128.0 (18) [M-SeCF₃+1]⁺, 221.0 (21) [M-CF₃-2]⁺, 222.0 (18) [M-CF₃-1]⁺, 223.0

(32) $[M-CF_3]^+$, 223.9 (37) $[M-CF_3+1]^+$, 273.9.0 (20) $[M-O-2]^+$, 275.9 (23) $[M-O]^+$, 288.9 (54) $[M-3]^+$, 289.9 (50) $[M-2]^+$, 290.9 (96) $[M-1]^+$, 291.9 (18) $[M]^+$, 292.9 (100) $[M+1]^+$, **HRMS** (EI): calc. for $[C_{11}H_7OF_3^{80}Se]$ 291.9608, measured 291.9610.

Preparation and characterisation of 1-(pentafluoroethylseleno)naphthalene 12a:

SeCF₂CF₃ A suspension of red selenium (38.0 mg, 0.48 mmol, 1.6 equiv) in 1 mL of dry THF under air was cooled to -40 °C. TMSC₂F₅ (84 μ L, 0.48 mmol, 1.6 equiv) was added followed by Me₄NF (45 mg, 0.48 mmol, 1.6 equiv). The reaction mixture was stirred for 10 min at -40 °C, warmed up to room temperature and stirred for further 30 min. 1a (58 µl, 0.30 mmol, 1 equiv), bipyridine (51.5 mg, 0.33 mmol, 1.1 equiv) and Cu(OTf)₂ (108.5 mg, 0.3 mmol, 1 equiv) were added and the flask was closed with a rubber septum. A balloon of oxygen was connected via needle and the reaction mixture was stirred at room temperature for 15h. The mixture was filtered through Celite eluting with diethyl ether (25 mL). The filtrate was concentrated under reduced pressure to ca. 1 mL and directly purified by column chromatography (SiO₂, pentane) to provide **12a** (68 mg, 69%) as pale yellow oil.**FT-IR** v_{max} (ATR) 3058, 2930, 2663, 2325, 2090, 1998, 1933, 1738, 1590, 1501, 1448, 1372, 1319, 1205, 1094, 931, 767 cm⁻¹; ¹**H NMR** (CDCl₃, 600 MHz) δ_H 7.47 (dd, 1H, Ar-C<u>H</u>, J 7.1, 8.1 Hz), 7.58 (ddd, 1H, Ar-CH, J 1.1, 6.8, 8.2 Hz), 7.65 (ddd, 1H, Ar-CH, J 1.2, 6.8, 8.5 Hz), 7.89 (d, 1H, Ar-CH, J 8.1 Hz), 8.01 (d, 1H, Ar-CH, J 8.2 Hz), 8.07 (d, 1H, Ar-CH, J 7.1 Hz, 1H), 8.51 (d, 1H, Ar-CH, J 8.5 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ_C 116.0 (tq, <u>C</u>quat. J_{C-F} 42.0, 304.7 Hz), 118.9 (qt, <u>C</u>quat., J_{C-F} 34.6, 285.6 Hz), 121.0 (t, Cquat., J_{C-F} 2.5 Hz), 125.7 (Ar-CH), 126.7 (Ar-CH), 127.6 (Ar-CH), 128.2 (Ar-CH), 128.6 (Ar-CH), 132.2 (Ar-CH), 134.2 (Cquat.), 135.8 (Cquat.), 139.2 (Ar-CH); ¹⁹**F NMR** (CDCl₃, 564 MHz) δ_F –91.1 (q, 2F, SeCF₂CF₃ J_{F-F} 4.1 Hz), –83.3 (t, 3F, SeCF₂CF₃ J_{F-F} 4.1 Hz); MS (CI): m/z (%) 128.1 (100) [M-SeC₂F₅+1]⁺, 204.9 (10) [M-C₂F₅-2]⁺, 206.9 (18) $[M-C_{2}F_{5}]^{+}$ 322.9 (12) $[M-3]^{+}$, 323.9 (23) $[M-2]^{+}$, 324.9 (14) $[M-1]^{+}$, 325.9 (25) $[M]^{+}$, 326.9 (28) $[M+1]^+$; **HRMS** (EI): calc. for $[C_{12}H_7F_5^{80}Se]$ 325.9627, measured 325.9631.

7. ¹H, ¹³C and ¹⁹F NMR spectra of new compounds

¹⁹F NMR spectrum of 1-(trifluoromethylseleno)ethynyl-4-pentylbenzene 2a

¹⁹F NMR spectrum of 4-(trifluoromethylseleno)ethynyl-1,2-dimethoxybenzene 2b

¹⁹F NMR spectrum of 4-(trifluoromethylseleno)ethynyl-1-nitrobenzene 2f

¹⁹F NMR spectrum of 6-(trifluoromethylseleno)ethynyl-2-methoxynaphthalene 2g

¹⁹F NMR spectrum of 3-(trifluoromethylseleno)ethynylquinoline 2h

¹⁹F NMR spectrum of (trifluoromethylseleno)ethynylferrocene 2i

¹⁹F NMR spectrum of 3-phthalimido-1-(trifluoromethylseleno)propyne 2j

¹H NMR spectrum of 2-((3-((Trifluoromethyl)seleno)prop-2-yn-1-yl)oxy)tetrahydro-2H-pyran 2k

¹⁹F NMR spectrum of 2-((3-((Trifluoromethyl)seleno)prop-2-yn-1-yl)oxy)tetrahydro-2H-pyran 2k

¹⁹F NMR spectrum of 1-(pentafluoroethylseleno)ethynyl-4-pentylbenzene 11a

¹⁹F NMR spectrum of 1-(trifluoromethylseleno)naphthalene 4a

¹⁹F NMR spectrum of 4-(trifluoromethylseleno)biphenyl 4b

¹⁹F NMR spectrum of 4-(trifluoromethylseleno)toluene 4c

- 36 -

¹⁹F NMR spectrum of 4-(trifluoromethylseleno)benzophenone 4e

¹⁹F NMR spectrum of 2,6-di(*tert*-butyl)-4-(trifluoromethylseleno)anisole 4g

¹⁹F NMR spectrum of *N*-methyl-5-(trifluoromethylseleno)indole 4h

¹⁹F NMR spectrum of 2-methyl-6-(trifluoromethylseleno)quinoline 4i

¹⁹F NMR spectrum of 3-(trifluoromethylseleno)benzothiophene 4j

¹⁹F NMR spectrum of β -methyl- β -(trifluoromethylseleno)styrene 4m

¹⁹F NMR spectrum of 1-(trifluoromethylseleninyl)naphthalene 13a

¹⁹F NMR spectrum of 1-(pentafluoroethylseleno)naphthalene 12a