# **Supporting Information**

## For

# Visible-light-induced photocatalytic oxytrifluoromethylation of N-allylamides for the synthesis of CF<sub>3</sub>-containing oxazolines and benzoxazines

Qiao-Hui Deng,<sup>a</sup> Jia-Rong Chen,<sup>\*a</sup> Qiang Wei,<sup>a</sup> Quan-Qing Zhao,<sup>a</sup> Liang-Qiu Lu<sup>a</sup> and Wen-Jing Xiao<sup>\*a,b</sup>

<sup>[a]</sup>Key Laboratory of Pesticide & Chemical Biology, Ministry of

Education, College of Chemistry, Central China Normal University,

152 Luoyu Road, Wuhan, Hubei 430079, China

<sup>[b]</sup> State Key Laboratory of Applied Organic Chemistry Lanzhou

University, Lanzhou 730000, China

E-mail: <u>chenjiarong@mail.ccnu.edu.cn;</u> <u>wxiao@mail.ccnu.edu.cn</u>

# **Table of Contents**

- 1. General Information
- 2. Materials
- 3. Detailed Optimization of Reaction Conditions
- Time Profile of Photocatalytic Oxytrifluoromethylation of 1a with 2a
- 5. Crystal Structure of **5f**
- 6. Preparation and Date of Substrates
- 7. General Procedures and Data of Products
- 8. Copies of <sup>1</sup>H NMR, <sup>13</sup>C NMR Spectra and <sup>19</sup>F NMR

### **1. General Information**

<sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra were recorded on 400/600 MHz spectrophotometers. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) relative to residual solvent signals (CDCl<sub>3</sub>, 7.26 ppm for <sup>1</sup>H NMR, CDCl<sub>3</sub>, 77.0 ppm for <sup>13</sup>C NMR). Data are reported as follows: chemical shift ( $\delta$ ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet, br = broad signal), coupling constants (Hz). Mass spectra were measured on MS spectrometer (EI) or LC/MS/MS (ESI-MS). HRMS was recorded on Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer.

### 2. Materials

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods.<sup>1</sup> Flash column chromatography was performed using 200-300 mesh silica gel. The *N*-allylamides were prepared according to literature procedures from commercially available substrates.<sup>2,3</sup>

#### References

- 1 D. D. Perrin, W. L. F.Armarego, Purification of Laboratory Chemicals, 4th ed.; Pergamon Press, Oxford, 1997.
- 2 A. Jaganathan, A. Garzan, D. C. Whitehead, R. J. Staples and B. Borhan, *Angew. Chem. Int. Ed.*, 2011, **50**, 2593.
- 3 Y.-M. Wang, J. Wu, C. Hoong, V. Rauniyar and F. D. Toste, J. Am. Chem. Soc., 2012, 134, 12928.

## 3. Detailed Optimization of Reaction Conditions

Table S1. Studies of the effect of photocatalysts<sup>*a*</sup>



| entry | Catalyst                                                            | <i>t</i> (h) | yield (%) <sup>b</sup> |
|-------|---------------------------------------------------------------------|--------------|------------------------|
| 1     | Ru(bpy) <sub>3</sub> Cl <sub>2</sub> <sup>+</sup> 6H <sub>2</sub> O | 5            | 86                     |
| 2     | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                        | 5            | 88                     |
| 3     | Ir(dF(CF <sub>3</sub> )ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>    | 5            | 60                     |
| 4     | <i>fac</i> -Ir(ppy) <sub>3</sub>                                    | 5            | 85                     |
| 5     | EosinY                                                              | 5            | 0                      |
| 6     | Ir(ppy) <sub>2</sub> (bpy)PF <sub>6</sub>                           | 5            | 91                     |
| 7     | Ru(bpm) <sub>3</sub> (BArF) <sub>2</sub>                            | 5            | 0                      |
| 8     | 2,4,6-triphenylpyrylium tetrafluoroborate                           | 5            | 0                      |
| 9     | Ru(bpy) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub>                | 5            | 93                     |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol), catalyst (5 mol%), Na<sub>2</sub>HPO<sub>4</sub> (0.2 mmol) in CH<sub>3</sub>CN (1.0 mL) under Ar with 3 W blue LEDs irradiation at room temperature. <sup>b</sup> GC yield using biphenyl as an internal standard.

#### Table S2. Studies of the effect of solvents<sup>*a*</sup>

| Ph H Ph<br>O 1a | +<br>S<br>CF <sub>3</sub><br>Umemoto's reagen | $\Rightarrow \frac{\text{Ru}(\text{bpy})_3(\text{PF}_6)_2}{3} (2)$ $\Rightarrow \frac{\text{Na}_2\text{HPO}_4}{3} (2.0 \text{ equiv})_3 \text{ W blue LEDs},$ $\text{t 2a}$ | RT, Ar Ph      |
|-----------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| entry           | solvent                                       | <i>t</i> (h)                                                                                                                                                                | yield $(\%)^b$ |
| 1               | CH <sub>3</sub> CN                            | 5                                                                                                                                                                           | 93             |
| 2               | DMF                                           | 5                                                                                                                                                                           | 59             |
| 3               | DMSO                                          | 5                                                                                                                                                                           | 33             |
| 4               | $CH_2Cl_2$                                    | 5                                                                                                                                                                           | 85             |
| 5               | CHCl <sub>3</sub>                             | 5                                                                                                                                                                           | 66             |
| 6               | DCE                                           | 5                                                                                                                                                                           | 90             |
| 7               | EtOH                                          | 5                                                                                                                                                                           | 20             |
| 8               | Toluene                                       | 5                                                                                                                                                                           | 0              |
| 9               | THF                                           | 5                                                                                                                                                                           | 9              |
| 10              | Et <sub>2</sub> O                             | 24                                                                                                                                                                          | 0              |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol),  $Ru(bpy)_3(PF_6)_2$  (5 mol%),  $Na_2HPO_4$  (0.2 mmol) in the solvent (1.0 mL) under Ar with 3 W blue LEDs irradiation at room temperature. <sup>*b*</sup> GC yield using biphenyl as an internal standard.

S5

#### Table S3. Studies of the effect of bases<sup>*a*</sup>

| Ph H Ph | +<br>+<br>CF <sub>3</sub>        | $ \begin{array}{c} & Ru(bpy)_3(PF_6)_2 (5 \\ base (2.0 \ equiv), (7 \\ G \\ G \\ G \end{array} \\ \end{array} $ | $(T, Ar \rightarrow Ph \rightarrow N)$ |
|---------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1a      | Umemoto's reage                  | nt 2a                                                                                                           | За                                     |
| entry   | base                             | <i>t</i> (h)                                                                                                    | yield (%) <sup>b</sup>                 |
| 1       | Na <sub>2</sub> HPO <sub>4</sub> | 5                                                                                                               | 93                                     |
| 2       | NaHCO <sub>3</sub>               | 5                                                                                                               | 95                                     |
| 3       | K <sub>2</sub> CO <sub>3</sub>   | 5                                                                                                               | 73                                     |
| 4       | Cs <sub>2</sub> CO <sub>3</sub>  | 5                                                                                                               | 26                                     |
| 5       | NaOH                             | 5                                                                                                               | 29                                     |
| 6       | <sup>t</sup> BuOK                | 5                                                                                                               | 0                                      |
| 7       | K <sub>2</sub> HPO <sub>4</sub>  | 5                                                                                                               | 91                                     |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol), Ru(bpy)<sub>3</sub>(PF<sub>6</sub>)<sub>2</sub> (5 mol%), Base (0.2 mmol) in the CH<sub>3</sub>CN (1.0 mL) under Ar with 3 W blue LEDs irradiation at room temperature. <sup>b</sup> GC yield using biphenyl as an internal standard.

# 4. Time profile of photocatalytic oxytrifluoromethylation of 1a with 2a

The oxytrifluoromethylation of **1a** was performed with/without visible light irradiation. The time profile is shown in Figure S1. As a result, continuous irradiation of visible light is essential for efficient reaction. Furthermore, the result of this experiment suggests that radical chain propagation mechanism isn't main component in this reaction.



Figure S1.

## 5. Crystal Structure of 5f



Figure S2.

#### 6. Spectral Data of Substrates

**2,4,6-Trimethyl-***N*-(2-phenylallyl)benzamide (1f)<sup>2</sup>: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) **1**f **2**,48 (d, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.30 (s, 1H), 6.77 (s, 2H), 5.63 (br s, 1H), **5**,48 (s, 1H), **5**.34 (s, 1H), 4.56 (d, *J* = 5.6 Hz, 2H), 2.23 (s, 3H), 2.13 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 170.2, 144.4, 138.2, 138.2, 134.6, 134.1, 128.4, 128.0, 128.0, 126.2, 114.6, 43.3, 20.9, 18.9; HRMS (ESI): calculated for [C<sub>19</sub>H<sub>21</sub>NO+Na]<sup>+</sup> requires 302.1515, found 302.1518.

Ph 
$$n_{g}$$
  
 $Ig$   
 $N-(2-phenylallyl)furan-2-carboxamide (1g)2: 1H NMR (600 MHz, CDCl3)  $\delta$  (ppm) 7.48 (d  
 $J = 7.5$  Hz, 2H), 7.39 (s, 1H), 7.36 (t,  $J = 7.4$  Hz, 2H), 7.30 (t,  $J = 7.3$  Hz, 1H), 7.12 (d,  $J = 3.0$   
Hz, 1H), 6.48 (s, 1H), 6.45 (br s, 1H), 5.52 (s, 1H), 5.31 (s, 1H), 4.50 (d,  $J = 5.8$  Hz, 2H); <sup>13</sup>C$ 

NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 158.1, 147.6, 143.9, 143.8, 138.2, 128.4, 128.0, 125.9, 114.2, 113.8, 112.0, 42.6; HRMS (ESI): calculated for  $[C_{14}H_{13}NO_2+Na]^+$  requires 250.0838, found 250.0837.

 $N-(2-(4-methoxyphenyl)allyl)benzamide (1j)<sup>2</sup>: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) \delta (ppm)$ 7.71 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 7.45 - 7.37 (m, 4H), 6.89 (d, J = 8.5 Hz, 2H), 6.17 (br s, 1H), 5.45 (s, 1H), 5.23 (s, 1H), 4.52 (d, J = 5.5 Hz, 2H), 3.81 (s, 3H); <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 167.3, 159.4, 143.4, 134.3, 131.3, 130.6, 128.4, 127.1, 126.8, 113.8, 112.2, 55.1,

5.32 (s, 1H), 4.53 (d, J = 5.5 Hz, 2H), 3.81 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 167.3, 159.6, 144.0, 139.8, 134.3, 131.4, 129.4, 128.4, 126.8, 118.4, 113.8, 113.5, 111.7, 55.1, 43.5; HRMS (ESI): calculated for  $[C_{17}H_{17}NO_2+Na]^+$  requires 290.1151, found 290.1157.

 $N-(2-(naphthalen-2-yl)allyl)benzamide (1n)<sup>2</sup>: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) \delta (ppm) 7.92 (s, 1H), 7.86 - 7.80 (m, 3H), 7.71 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.5 Hz, 1H), 7.49 - 7.43 (m, 3H), 7.38 (t, J = 7.5 Hz, 2H), 6.26 (br s, 1H), 5.67 (s, 1H), 5.43 (s, 1H), 4.66 (d, J = 5.4 Hz, 2H) (132 Hz) (1$ 

Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 167.4, 143.8, 135.5, 134.2, 133.2, 132.9, 131.3, 128.4, 128.2, 128.0, 127.4, 126.9, 126.2, 126.1, 124.8, 124.1, 114.2, 43.6; HRMS (ESI): calculated for  $[C_{20}H_{17}NO+Na]^+$  requires 310.1202, found 310.1203.

<sup>Ph</sup>  $H_{1q}$  <sup>Ph</sup>  $H_{1q}$  <sup>Ph</sup> N-(3-phenylbut-3-en-1-yl)benzamide (1q)<sup>2</sup>: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.65 (d, J = 7.2 Hz, 1H), 6.16 (br s, 1H), 7.49 – 7.44 (m, 3H), 7.40 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.31 (d, J = 7.2 Hz, 1H), 6.16 (br s, 1H), 5.43 (s, 1H), 5.19 (s, 1H), 3.59 (q, J = 6.3 Hz, 2H), 2.86 (t, J = 6.6 Hz, 2H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 167.5, 145.4, 140.0, 134.4, 131.3, 128.5, 128.4, 127.7, 126.7, 126.0, 114.3, 38.7, 34.8; HRMS (ESI): calculated for [C<sub>17</sub>H<sub>17</sub>NO+Na]<sup>+</sup> requires 274.1202, found 274.1220.

 $N-(4-chloro-2-(1-phenylvinyl)phenyl)benzamide (4c)<sup>3</sup>: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) \delta (ppm)$  $8.47 (d, J = 8.8 Hz, 1H), 7.73 (br s, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.42 - 7.37 (m, 6H), 7.34 (d, J = 2.4 Hz, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 5.93 (s, 1H), 5.45 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) \delta (ppm) 164.9, 145.2, 138.2, 134.4, 134.1, 133.1, 131.7, 130.2, 129.2, 129.0, 128.8, 128.5, 126.7, 126.6, 122.2, 118.5, 109.7; HRMS (ESI): calculated for <math>[C_{21}H_{16}CINO+Na]^+$  requires 356.0813, found 356.0805.

### 7. General Procedures and Data of Products

**Conditions A:** To a 10 mL schlenk tube equipped with a magnetic stir bar were added substrate **1** or **4** (0.30 mmol, 1.0 equiv), Umemoto's reagent **2** (0.33 mmol, 1.1 equiv),  $Ru(bpy)_3(PF_6)_2$  (0.0015 mmol, 0.005 equiv), NaHCO<sub>3</sub> (0.60 mmol, 2.0 equiv) and dry CH<sub>3</sub>CN (3.0 mL) under Ar. The resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times). Then the reaction mixture was stirred under irradiation with the 3 W blue LEDs. The reaction was monitored via TLC (petroleum ether : ethyl acetate). Upon consumption of the starting materials, the solvent was evaporated under reduced pressure, the residue was purified by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4:1) to give the desired product **3** 

or 5.

Conditions B: To a 10 mL schlenk tube equipped with a magnetic stir bar were added substrate 1 or 4 (0.30 mmol, 1.0 equiv), BrCH(CO<sub>2</sub>Et)<sub>2</sub> 2b (0.6 mmol 2.0 equiv), Ru(bpy)<sub>3</sub>Cl<sub>2</sub> 6H<sub>2</sub>O (0.003 mmol, 0.01 equiv), 4-methoxy-N,N-diphenylaniline (0.60 mmol, 2.0 equiv), 4 Å MS (100 mg), Na<sub>2</sub>HPO<sub>4</sub> (0.60 mmol, 2.0 equiv) and dry CH<sub>3</sub>CN (3.0 mL) under Ar. The resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times). Then the reaction mixture was stirred under irradiation with the 3 W blue LEDs. The reaction was monitored via TLC (petroleum ether : ethyl acetate). Upon consumption of the starting materials, the solvent was evaporated under reduced pressure, the residue was purified by flash chromatography on silica gel (petroleum ether : ethyl acetate = 5:1) to give the desired product **3** or **5**.



2,5-Diphenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3a): Colorless oil, 88% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm) 8.05 (d, *J* = 7.3 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.42 – 7.37 (m, 4H), 7.34 – 7.29 (m, 1H), 4.39 (d, J = 14.8 Hz, 1H), 4.23 (d, J = 14.9 Hz, 1H), 2.95 – 2.85 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 162.9, 142.5, 131.7, 128.7, 128.5, 128.2,

127.9, 127.3, 124.8 (q, J = 277.2 Hz) 124.3, 84.6, 68.2, 44.2 (q, J = 26.9 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -61.61 (s, 3F); IR (in KBr): 3438, 3065, 2938, 1655, 1450, 1377, 1349, 1262, 1133, 1084, 696 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{17}H_{14}F_{3}NO+Na]^{+}$  requires 328.0920, found 328.0923.



2-(4-Methoxyphenyl)-5-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (**3b**): Colorless oil, 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm) 7.99 (d, J = 8.6 Hz, 2H), 7.38 (m, 4H), 7.31 (m, 1H), 6.96 (d, J = 8.6 Hz, 2H), 4.35 (d, J = 14.7 Hz, 1H), 4.18 (d, J

= 14.7 Hz, 1H), 3.85 (s, 3H), 2.92 – 2.85 (m, 2H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 162.7, 162.3, 142.6, 130.0, 128.6, 127.8, 124.8 (q, J = 276.9 Hz), 124.3, 119.7, 113.8, 84.4, 68.2, 55.3, 44.1 (q, J = 27.3 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) -61.59 (s, 3F); IR (in KBr): 3441, 2936, 1654, 1609, 1514, 1350, 1259, 1169, 1133, 1078, 1030, 913, 841, 744, 702 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{18}H_{16}F_3NO_2+Na]^+$  requires 358.1025, found 358.1042.



5-Phenyl-2-(p-tolyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3c): White solid, 89% yield. M.P.: 39 - 41 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.94 (d, J = 8.1 Hz, 2H), 7.41 - 7.36 (m, 4H), 7.32 - 7.29 (m, 1H), 7.28 - 7.24 (m, 2H), 4.36 (d, J = 14.7 Hz, 1H), 4.20 (d,

J = 14.7 Hz, 1H), 2.89 – 2.86 (m, 2H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.0, 142.6, 142.1, 129.2, 128.6, 128.2, 127.9, 124.8 (q, J = 277.4 Hz) 124.5, 124.3, 84.5, 68.1, 44.1 (q, J = 27.1 Hz), 21.5; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) -61.60 (s, 3F); IR (in KBr): 3425, 2927, 1654, 1377, 1349, 1262, 1133, 1079, 913, 745, 676 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{18}H_{16}F_3NO+Na]^+$  requires 342.1076, found 342.1092.

2-(4-Bromophenyl)-5-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole(3d): Colorless

oil, 95% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.91 (d, *J* =8.5 Hz, 2H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.40 – 7.38 (m, 4H), 7.34 – 7.32 (m, 1H), 4.38 (d, *J* = 14.9, 1H), 4.21 (d, *J* = 14.9 Hz, 1H), 2.95 – 2.84 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 162.0, 142.3, 131.7, 129.7, 128.7, 128.0, 126.4, 126.2, 124.8 (q, *J* = 276.9 Hz), 124.2, 84.9, 68.1,44.1 (q, *J* = 27.5 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -61.67 (s, 3F); IR (in KBr): 3424, 2928, 1656, 1593, 1488, 1398, 1377, 1348, 1262, 1134, 1079, 1011, 837, 727, 703 cm<sup>-1</sup>; HRMS (ESI): calculated for [C<sub>17</sub>H<sub>13</sub>BrF<sub>3</sub>NO+H]<sup>+</sup> requires 384.0205, found 384.0204.

Ph  $No_2$   $No_2$  Solid3e 2Ub

**2-(4-Nitrophenyl)-5-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole** (3e): White Solid, 69% yield. M.P.: 93 - 95 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.32 (d, *J* = 8.4 Hz, 2H), 8.22 (d, *J* = 8.5 Hz, 2H), 7.44 - 7.38 (m, 4H), 7.35 (t, *J* = 6.8 Hz, 1H), 4.47 (d, *J* = 15.5

Hz, 1H), 4.30 (d, J = 15.4 Hz, 1H), 3.00 – 2.84 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 161.0, 149.6, 142.1, 133.0, 129.2, 128.9, 128.2, 124.7 (q, J = 276.7 Hz), 124.1, 123.7, 85.5, 68.1, 44.2 (q, J = 27.2 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -61.72 (s, 3F); IR (in KBr): 3438, 2973, 1655, 1630, 1601, 1526, 1378, 1343, 1261, 1133, 1081, 1043, 911, 867, 742, 703 cm<sup>-1</sup>; HRMS (ESI): calculated for [C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>+H]<sup>+</sup> requires 351.0951, found 351.0963.

**2-Mesityl-5-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3f):** Colorless oil, 75% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.46 – 7.36 (m, 4H), 7.33 (s, 1H), 6.90 (s, 2H), 4.42 (d, J = 14.6 Hz, 1H), 4.35 (d, J = 14.7 Hz, 1H), 2.93 – 2.88 (m, 2H), 2.30 (s, 3H), 2.29

(s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.3, 142.5, 139.5, 137.0, 128.6, 128.3, 127.9, 125.5, 124.7 (q, J = 276.7 Hz) 124.6, 84.2, 68.1, 45.0 (q, J = 27.1 Hz), 21.1, 19.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -61.37 (s, 3F); IR (in KBr): 3425, 2925, 1670, 1376, 1260, 1131, 1062, 1036, 744, 703 cm<sup>-1</sup>, HRMS (ESI): calculated for  $[C_{20}H_{20}F_3NO+Na]^+$  requires 370.1389, found 370.1371.

**2-(Furan-2-yl)-5-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3g):** Colorless oil, 45% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.60 (d, J = 0.9 Hz, 1H), 7.41 – 7.37 (m, 4H), 7.35 – 7.31 (m, 1H), 7.10 (d, J = 3.4 Hz, 1H), 6.54 (dd, J = 3.4 Hz, J = 1.8 Hz, 1H), 4.39 (d, J = 14.9 Hz, 1H), 4.23 (d, J = 14.9 Hz, 1H), 2.91 – 2.88 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 155.2, 145.6, 142.5, 142.0, 128.7, 128.1, 124.7 (q, J = 276.8 Hz), 124.3, 114.9, 111.6, 85.0, 67.7, 44.0 (q, J = 27.0 Hz); <sup>19</sup>F NMR (376

MHz, CDCl<sub>3</sub>) δ (ppm) -61.73 (s, 3F); IR (in KBr): 3435, 2930, 1678, 1483, 1378, 1261, 1140, 1093, 750, 701 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{15}H_{12}F_{3}NO_{2}+Na]^{+}$  requires 318.0712, found 318.0699.

**5-Phenyl-2-(pyridin-2-yl)-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3h)**: Colorless oil, 94% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm) 9.26 (s, 1H), 8.82 – 8.72 (m, 1H), 8.31 (d, *J* = 7.9 Hz, 1H), 7.44 – 7.39 (m, 5H), 7.36 – 7.33 (m, 1H), 4.44 (d, *J* = 15.0 Hz, 1H), 4.26 (d, *J* = 15.1 Hz,

1H), 2.96 – 2.86 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 160.8, 152.2, 149.3, 142.2, 135.5, 128.7, 128.1, 124.8 (q, J = 280.4 Hz), 124.1, 123.4, 123.3, 85.0, 67.8, 44.1 (q, J = 27.0 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -61.70 (s, 3F); IR (in KBr): 3441, 2925, 1659, 1592, 1379, 1352, 1261, 1129, 1083, 1021, 705 cm<sup>-1</sup>; HRMS

(ESI): calculated for  $[C_{16}H_{13}F_{3}N_{2}O+H]^{+}$  requires 307.1047, found 307.1033.



2-Phenyl-5-(p-tolyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3i): Colorless oil, 94% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.08 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 4.38 (d, J = 14.8

Hz, 1H), 4.22 (d, J = 14.8 Hz, 1H), 2.95 – 2.83 (m, 2H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 162.8, 139.6, 137.6, 131.6, 129.3, 128.4, 128.2, 127.4, 124.9 (q, *J* = 276.8 Hz), 124.2, 84.6, 68.1,44.1 (q, *J* = 27.2 Hz), 20.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -61.57 (s, 3F); IR (in KBr): 3402, 2975, 2928, 1655, 1451, 1377, 1350, 1263, 1134, 1086, 1027, 911, 741, 696 cm<sup>-1</sup>; HRMS (ESI): calculated for [C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO+Na]<sup>+</sup> requires 342.1076, found 342.1087.

> 5-(4-Methoxyphenyl)-2-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3j): Colorless oil, 81% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.04 (d, J = 7.4 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.8

Hz, 2H), 4.36 (d, J = 14.7 Hz, 1H), 4.21 (d, J = 14.8 Hz, 1H), 3.81 (s, 3H), 2.91 – 2.85 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 162.8, 159.2, 134.5, 131.6, 128.4, 128.2, 127.4, 125.6, 124.9 (q, *J* = 276.9 Hz), 114.0, 84.5, 68.0, 55.2, 44.2 (q, J = 27.0 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) -61.79 (s, 3F); IR (in KBr): 3431, 2968, 1655, 1614, 1515, 1377, 1349, 1259, 1179, 1134, 1084, 1030, 912, 744, 696 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{18}H_{16}F_{3}NO_{2}+Na]^{+}$  requires 358.1025, found 358.0969.

5-(3-Methoxyphenyl)-2-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole

(3k): Colorless oil, 92% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.04 (d, J = 7.8 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.9 Hz, 1H), 7.06 - 6.90 (m, 2H),

6.85 (d, J = 8.3 Hz, 1H), 4.37 (d, J = 14.9 Hz, 1H), 4.21 (d, J = 14.9 Hz, 1H), 3.82 (s, 3H), 2.94 - 2.83 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 162.8, 159.8, 144.2, 131.6, 129.8, 128.4, 128.2, 127.3, 124.8 (q, J = 276.9Hz), 116.6, 112.6, 110.8, 84.5, 68.2, 55.2, 44.1 (q, J = 27.0 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -61.65 (s, 3F); IR (in KBr): 3440, 2942, 1656, 1607, 1585, 1491, 1377, 1349, 1264, 1231, 1129, 1085, 1058, 1026, 911, 745, 695 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{18}H_{16}F_3NO_2+Na]^+$  requires 358.1025, found 358.1052.



5-(4-Chlorophenyl)-2-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (31): Colorless oil, 94% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.03 (d, J = 7.9 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.38 – 7.34 (m, 4H), 4.37 (d, J = 14.8 Hz, 1H), 4.18 (d, J = 14.8 Hz, 1H), 2.91 – 2.86 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 162.7, 140.9, 133.8, 131.8, 128.9, 128.5,

128.2, 127.0, 125.8, 124.7 (q, J = 275.1 Hz), 84.2, 68.3, 44.1 (q, J = 27.2 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) -61.55 (s, 3F); IR (in KBr): 3446, 2937, 1656, 1494, 1377, 1349, 1261, 1133, 1086, 1065, 1022, 909, 744, 695 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{17}H_{13}ClF_{3}NO+H]^{+}$  requires 340.0705, found 340.0708.



5-(Furan-2-yl)-2-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (3m): Colorless oil,

48% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.96 (d, J = 7.2 Hz, 2H), 7.56 – 7.35 (m, 4H), 6.43 (d, J = 3.3 Hz, 1H), 6.37 (m, 1H), 4.43 (d, J = 15.3 Hz, 1H), 4.28 (d, J = 15.3 Hz, 1H), 3.11 – 2.99 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 162.6, 152.2, 143.4, 131.7, 128.4, 128.2, 127.0, 124.7 (q, J = 276.0 Hz), 110.5, 107.4, 80.3, 64.0, 41.0 (q, J = 27.8 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -62.48 (s, 3F); IR (in KBr): 3434, 2948, 1655, 1408, 1371, 1348, 1260, 1132, 1092, 1026, 913, 743, 696 cm<sup>-1</sup>; HRMS (ESI): calculated for [C<sub>15</sub>H<sub>12</sub>F<sub>3</sub>NO<sub>2</sub>+H]<sup>+</sup> requires 296.0893, found 296.0899.

 $\begin{array}{c} \textbf{S-(Naphthalen-2-yl)-2-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole} \\ \textbf{(3n):} \\ \textbf{($ 

**5-Methyl-2-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydrooxazole (30):** Colorless oil, 35% yield. **i** H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.93 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 4.01 (d, J = 14.8 Hz, 1H), 3.85 (d, J = 14.9 Hz, 1H), 2.69 – 2.53 (m, 2H), 1.60 (s, 3H); **i**<sup>3</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 162.8, 131.5, 128.3, 128.1, 127.5, 125.2 (q, J = 276.0 Hz) 81.8, 66.3, 43.1 (q, J = 27.4 Hz), 25.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -62.20 (s, 3F); IR (in KBr): 3430, 2976, 2877, 1651, 1452, 1378, 1350, 1270, 1220, 1167, 1108, 1085, 1062, 1026, 911, 779, 741, 695 cm<sup>-1</sup>; HRMS (ESI): calculated for [C<sub>12</sub>H<sub>12</sub>F<sub>3</sub>NO+Na]<sup>+</sup> requires 266.0763, found 266.0784.

**2,5-Diphenyl-5-(1,1,1-trifluoropropan-2-yl)-4,5-dihydrooxazole (3p):** Colorless oil, 70% yield, dr = 1.1:1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) major + minor: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.03 (m, 4H), 7.50 (m, 2H), 7.47 – 7.41 (m, 6H), 7.40 – 7.34 (m, 6H), 7.31 –

7.29 (m, 2H), 4.60 (d, J = 15.2 Hz, 1H), 4.49 (d, J = 15.2 Hz, 1H), 4.35 (d, J = 15.1 Hz, 1H), 4.28 (d, J = 15.1 Hz, 1H), 3.00 – 2.80 (m, 2H), 1.28 (d, J = 7.0 Hz, 3H), 1.20 (d, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 162.9, 162.6, 142.5, 141.9, 131.6, 131.5, 128.6, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.4, 127.2, 127.0 (q, J = 267.0 Hz), 126.8 (q, J = 264.0 Hz), 125.2, 125.0, 87.8, 87.5, 67.1, 65.7, 47.5 (q, J = 24.0 Hz), 46.7 (q, J = 24.5 Hz), 10.4, 9.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) -66.82 (s, 3F), -66.98 (s, 3F); IR (in KBr): 3424, 2973, 1658, 1451, 1348, 1267, 1175, 1120, 1084, 1047, 913, 745, 696 cm<sup>-1</sup>; calculated for [C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO+H]<sup>+</sup> requires 320.1257, found 320.1259.



**2,6-Diphenyl-6-(2,2,2-trifluoroethyl)-5,6-dihydro-4***H***-1,3-oxazine** (**3q**): Colorless oil, 78% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm) 8.11 – 8.05 (m, 2H), 7.51 – 7.42 (m, 3H), 7.38 – 7.34 (m, 2H), 7.34 – 7.29 (m, 3H), 3.64 – 3.54 (m, 1H), 3.17 – 2.98 (m, 1H), 2.89 – 2.77 (m, 2H), 2.39 –

2.35 (m, 1H), 2.27 – 2.22 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 154.3, 141.1, 133.1, 130.8, 128.8, 128.2, 128.0, 127.0, 125.0 (q, J = 276.9 Hz), 124.4, 77.4, 45.8 (q, J = 26.3 Hz), 40.0, 31.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) -60.70 (s, 3F); IR (in KBr): 3432, 3064, 2931, 1659, 1448, 1379, 1262, 1126, 1069, 911, 699 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{18}H_{16}F_3NO+Na]^+$  requires 342.1076, found 342.1068.

Diethyl 2-((2,5-diphenyl-4,5-dihydrooxazol-5-yl)methyl)malonate (3r): Brown oil, 82% EtO<sub>2</sub>C. .CO<sub>2</sub>Et yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm) 7.99 (d, J = 7.7 Hz, 2H), 7.51 (d, J = 7.1 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.39 - 7.35 (m, 4H), 7.30 (d, J = 5.9 Hz, 1H), 4.27 (d, J = 14.8 Hz, 1H), 4.17 (d, J = 15.0 Hz, 1H), 4.15 - 3.93 (m, 3H), 3.87 - 3.82 (m, 1H), 3.43 (t, J = 6.3 Hz, 1H), 2.78 (d, J = 6.4 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 169.0, 168.9, 162.6, 142.9, 131.4, 128.6, 128.3, 128.1, 127.6, 127.5, 124.7, 87.8, 68.5, 61.5 (overlap), 48.2, 39.8, 13.8, 13.7; IR (in KBr): 3429, 2977, 2932, 1733, 1653, 1633, 1448, 1370, 1268, 1151, 1050, 1026, 778, 697 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{23}H_{25}NO_5+Na]^+$  requires 418.1625, found 418.1612.

EtO<sub>2</sub>C CO<sub>2</sub>Et Diethyl 2-((2-phenyl-5-(p-tolyl)-4,5-dihydrooxazol-5-yl)methyl)malonate (3s): Brown oil, 85% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.98 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 5.5 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.23 (d, J = 14.6 Hz, 1H), 4.17 - 4.10 (m, 2H), 4.09 - 3.98 (m, 2H), 3.89 - 3.82 (m, 1H), 3.41 (t, J = 6.4 Hz, 1H), 2.75 (d, J = 6.4 Hz, 2H), 2.34 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) 169.0, 168.8, 162.6, 139.8, 137.2, 131.3, 129.2, 128.2, 128.0, 127.5, 124.5, 87.8, 68.4, 61.4 (overlap), 48.1, 39.7, 20.8, 13.7, 13.6; IR (in KBr): 2982, 2933, 2871, 1733, 1653, 1580, 1514, 1449, 1347, 1269, 1236, 1152, 1099, 1053, 1025, 818, 696 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{24}H_{27}NO_5+Na]^+$  requires 432.1781, found 432.1771.

> Diethyl 2-((5-(naphthalen-2-yl)-2-phenyl-4,5-dihydrooxazol-5-yl)methyl)malonate (3t): Brown oil, 77% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm) 8.04 (d, J = 7.5 Hz, 2H), 7.91 -7.86 (m, 2H), 7.84 (t, J = 8.1 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.51 - 7.45 (m, 4H), 7.42 (d, J

= 8.6 Hz, 1H), 4.34 (d, J = 14.7 Hz, 1H), 4.26 (d, J = 14.7 Hz, 1H), 4.18 - 4.12 (m, 1H), 4.11 - 4.04 (m, 1H), 3.94- 3.89 (m, 1H), 3.74 - 3.69 (m, 1H), 3.47 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), 2.92 - 2.83 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 6.3 Hz, 1H), J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 169.0, 168.8, 162.7, 139.8, 132.8, 132.5, 131.5, 128.7, 128.3, 128.1, 128.1, 127.5, 126.4, 126.2, 123.5, 122.7, 88.0, 68.3, 61.5, 61.4, 48.2, 39.6, 13.8, 13.5; IR (in KBr): 3441, 2981, 2852, 1732, 1653, 1448, 1334, 1269, 1151, 1053, 1025, 859, 778, 696 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{27}H_{27}NO_5+Na]^+$  requires 468.1781, found 468.1773.

CO<sub>2</sub>Et

EtO<sub>c</sub>C

EtO<sub>2</sub>C

Diethyl 2-((5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazol-5-yl)methyl)malonate (3u): Brown oil, 42% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 9.17 (s, 1H), 8.74 (d, J = 4.8 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.42 – 7.36 (m, 5H), 7.31 (t, J = 6.7 Hz, 1H), 4.28 (d, J = 15.0Hz, 1H), 4.20 – 4.09 (m, 3H), 4.05 – 4.00 (m, 1H), 3.92 – 3.85 (m, 1H), 3.41 (t, J = 6.4 Hz, 1H), 2.79 (d, J = 6.4 Hz, 1H), 2.79 (d, J = 6.4 Hz, 1H), 2.79 (d, J = 6.4 Hz, 1H), 3.41 (t, J = 6.4 Hz, 1H)

Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ (ppm) 169.0, 168.7, 160.6, 152.1, 149.2, 142.3, 135.5, 128.7, 127.8, 124.6, 123.6, 123.2, 88.4, 68.4, 61.6, 61.6, 48.0, 39.7, 13.8, 13.7; IR (in KBr): 3450, 2982, 2934, 1732, 1657, 1592, 1447, 1332, 1272, 1236, 1153, 1081, 1023, 745, 706 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{22}H_{24}N_2O_5+Na]^+$  requires 419.1577, found 419.1562.

Diethyl 2-(2,6-diphenyl-5,6-dihydro-4H-1,3-oxazin-6-yl)malonate (3v): Brown oil, 55% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.01 (d, J = 7.3 Hz, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.36 - 7.32 (m, 2H), 7.28 (d, J = 8.0 Hz, 3H), 4.15 - 4.08 (m, 2H), 4.01 - 3.95 (m, 1H), 3.91 - 3.84 (m, 1H), 3.61 - 3.54 (m, 1H), 3.47 (t, J = 6.2 Hz, 1H), 3.16 - 3.03 (m, 1H), 2.72 (d, J = 6.2 Hz, 2H), 2.32 – 2.20 (m, 1H), 2.15 – 2.05 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 169.3, 169.0, 154.3, 141.6, 133.6, 130.5, 128.7, 128.0, 127.6, 127.0, 124.8, 80.0, 61.5 (overlap), 47.3, 40.7, 40.5, 32.4, 13.9, 13.8; IR (in KBr): 3435, 2981, 2935, 1732, 1658, 1493, 1447, 1370, 1349, 1279, 1140, 1099, 1067, 1029, 765, 699 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{24}H_{27}NO_5+Na]^+$  requires 432.1781, found 432.1768.



4-Methyl-2-phenyl-4-(2,2,2-trifluoroethyl)-4H-benzo[d][1,3]oxazine (5a): White Solid, 74% yield. M.P.: 66 - 68 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.17 (d, J = 7.3 Hz, 2H), 7.49 (t, J = 7.3 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.36 - 7.30 (m, 2H), 7.23 - 7.21 (m, 1H), 7.11 (d, J = 7.6 Hz, 1H), 2.89 – 2.81 (m, 1H), 2.64 – 2.55 (m, 1H), 1.90 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 155.6, 138.3, 132.2, 131.5, 129.3, 128.2, 128.0, 126.9, 125.6, 125.9, 125.1 (q, J = 275.7 Hz), 122.5, 76.6, 43.6 (q, J = 27.1 Hz), 26.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) -60.99 (s, 3F); IR (in KBr): 3443, 1628, 1600, 1574, 1485, 1452, 1370, 1323, 1258, 1154, 1133, 1066, 1089, 913, 764, 747, 696 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{17}H_{14}F_3NO+Na]^+$ requires 328.0920, found 328.0887.



**2,4-Diphenyl-4-(2,2,2-trifluoroethyl)-4***H***-benzo**[*d*][**1,3**]**oxazine (5b):** White Solid, 94% yield. M.P.: 97 - 99 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.35 (d, *J* = 8.0 Hz, 2H), 7.59 - 7.55 (m,

1H), 7.53 (t, J = 7.2 Hz, 2H), 7.45 – 7.40 (m, 4H), 7.33 (t, J = 7.4 Hz, 2H), 7.32 – 7.26 (m, 3H), 3.37 – 3.29 (m, 2H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ (ppm) 155.4, 141.5, 138.6, 131.9, 131.6, 129.4, 128.5, 128.4, 128.3, 127.9, 126.5, 126.2, 125.8, 125.4, 124.8 (q, J = 277.7 Hz), 124.2, 80.0, 43.3 (q, J = 27.2 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) -59.65 (s, 3F); IR (in KBr): 3442, 1628, 1598, 1574, 1485, 1453, 1375, 1321, 1264, 1129,  $1082, 912, 764, 745, 697 \text{ cm}^{-1};$  HRMS (ESI): calculated for  $[C_{22}H_{16}F_3NO+H]^+$  requires 368.1251, found 368.1270.



6-Chloro-2,4-diphenyl-4-(2,2,2-trifluoroethyl)-4H-benzo[d][1,3]oxazine (5c): White Solid, 98% yield. M.P.: 118 - 120 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm) 8.23 (d, J = 7.4 Hz, 2H), 7.56 - 7.50 (m, 1H), 7.50 - 7.42 (m, 2H), 7.38 - 7.25 (m, 7H), 7.17 (d, J = 6.2 Hz, 1H), 3.33 -

3.15 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm) 155.6, 140.9, 137.3, 131.8, 131.6, 129.6, 128.7, 128.6, 128.4, 128.0, 127.7, 127.2, 125.3, 124.6 (q, J = 277.5 Hz), 124.3, 79.8, 43.3 (q, J = 27.6 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) -59.74 (s, 3F); IR (in KBr): 3446, 3065, 1626, 1576, 1474, 1374, 1315, 1260, 1133, 1082, 911, 833, 743,

695 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{22}H_{15}ClF_{3}NO+H]^{+}$  requires 402.0867, found 402.0908.



**2-(Tert-butyl)-4-phenyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine (5d):** Colorless oil, 88% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ (ppm) 7.34 – 7.29 (m, 4H), 7.28 – 7.25 (m, 2H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 3.25 – 3.16 (m, 2H), 1.24 (s,

9H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 166.1, 142.9, 138.6, 129.2, 128.5, 128.3, 125.9, 125.8, 125.6, 124.9, 124.8 (q, J = 277.7 Hz), 124.0, 79.3, 43.5 (q, J = 27.0 Hz ), 37.2, 27.5; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) - 59.67 (s, 3F); IR (in KBr): 3423, 2975, 1638, 1601, 1485, 1456, 1372, 1306, 1261, 1129, 914, 768, 746, 698 cm<sup>-1</sup>; HRMS (ESI): calculated for [C<sub>20</sub>H<sub>20</sub>F<sub>3</sub>NO+Na]<sup>+</sup> requires 370.1389, found 370.1386.

 $\begin{array}{l} \textbf{Diethyl 2-((2,4-diphenyl-4H-benzo[d][1,3]oxazin-4-yl)methyl)malonate (5e): White solid, 56\% \\ \textbf{yield. M.P.: 107 - 109 °C; ^{1}H NMR (600 MHz, CDCl_3) \delta (ppm) 8.18 (d, J = 7.7 Hz, 2H), 7.50 (t, J = 7.1 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.40 - 7.37 (m, 1H), 7.35 (d, J = 4.6 Hz, 2H), 7.33 - 7.28 \\ \textbf{(m, 3H), 7.25 - 7.18 (m, 3H), 4.15 - 4.03 (m, 3H), 3.90 - 3.83 (m, 1H), 3.68 - 3.64 (m, 1H), 3.29 \\ - 3.22 (m, 1H), 3.18 - 3.11 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) \end{array}$ 

δ (ppm) 169.5, 169.1, 155.8, 142.8, 139.8, 132.1, 131.5, 129.3, 128.3, 128.2, 127.8, 126.6, 126.2, 125.9, 125.8, 125.4, 124.2, 83.4, 61.7, 61.4, 48.8, 39.1, 13.8, 13.7; IR (in KBr): 3450, 3063, 2982, 1732, 1626, 1598, 1573, 1480, 1451, 1370, 1319, 1262, 1181, 1152, 1089, 1048, 913, 767, 745, 697 cm<sup>-1</sup>; HRMS (ESI): calculated for  $[C_{28}H_{27}NO_5+Na]^+$  requires 480.1781, found 480.1766.



**Diethyl** 2-((2-(tert-butyl)-4-phenyl-4*H*-benzo[*d*][1,3]oxazin-4-yl)methyl)malonate (5f): White solid, 55% yield. M.P.: 105 - 107 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.34 (t, *J* = 7.3 Hz, 1H), 7.26 - 7.23 (m, 4H), 7.23 - 7.18 (m, 4H), 4.29 - 4.24 (m, 1H), 4.14 - 4.01 (m, 3H), 3.64 - 3.60 (m, 1H), 3.29 - 3.22 (m, 1H), 3.05 - 3.01 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* 

= 7.1 Hz, 3H), 1.14 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 169.2, 167.2, 143.0, 140.2, 129.2, 128.2, 128.0, 126.3, 126.2, 126.1, 125.4, 124.7, 124.7, 82.8, 61.7, 61.4, 48.8, 38.4, 37.2, 27.4, 13.9, 13.8; IR (in KBr): 3452, 2979, 2933, 1734, 1633, 1600,1580, 1484, 1454, 1369, 1265, 1185, 1148, 1030, 804, 770, 700, 588 cm<sup>-1</sup>; HRMS (ESI): calculated for [C<sub>26</sub>H<sub>31</sub>NO<sub>5</sub>+Na]<sup>+</sup> requires 460.2054, found 460.2058.























































































































































































