Catalytic epoxidation by perrhenate through the formation of organic-phase supramolecular ion pairs

Mirza Cokoja^{b,*} Iulius I. E. Markovits,^b Michael H. Anthofer,^b Saner Poplata,^b Alexander Pöthig,^b Danny S. Morris,^a Peter A. Tasker,^a Wolfgang A. Herrmann,^b Fritz E. Kühn^{b,*} and Jason B. Love^{a,*}

^a EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ UK. Tel: +44 131 650 4762, e-mail: jason.love@ed.ac.uk

^b Catalysis Research Center and Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer-Straße 1, D-85747 Garching bei München (Germany). Tel: +49 89 289 13478, e-mail: mirza.cokoja@ch.tum.de; fritz.kuehn@ch.tum.de

Supporting Information

Table of contents

1. Synthesis and characterization of the [HL ⁿ][ReO ₄] SIPs		2
1.1. Genera	al remarks	2
1.2. Genera	al synthesis of $[HL^n][ReO_4]$ (n = 1, 2, 3)	3
2. Spectroso	copic data	4
2.1. IR spec	ctrum of [HL¹][ReO₄]	4
2.2. NMR e	xperiments	5
2.3. Spectro	oscopic study of [HL ¹][ReO ₄] in catalysis	12
2.4. ESI-MS	S data	15
2.5. TG-MS	data	
3. Catalysis	experiments	18
3.1. Experin	nental	
3.2. Influence	ce of the reaction temperature on the catalytic activity	
3.3. Influence	ce of the catalyst:substrate ratio	
3.4. Influence	ce of the substrate:oxidant ratio	
3.5. Solvent	t influence	20
3.6. Recycli	ing studies	20
4. X-ray sing	gle crystal diffraction data	22
4.1. Measur	rement and refinement details	
4.2. Crystal	lographic data of compound [HL ¹][ReO ₄]	23
5. Reference	es	25

1. Synthesis and characterization of the [HLⁿ][ReO₄] SIPs

1.1. General remarks

All preparations were carried out in the air. Perrhenic acid 99.99% (trace metal basis), 76.5% solution in water and cis-cyclooctene (95%) were purchased from Acros Organics and used without further purification. Hydrogen peroxide solution 50 wt. % in H_2O was purchased from Sigma Aldrich. 2-(4,6-di-tert-butylpyridin-2-yl)-N,N'-dihexylmalonamide (L¹), N-[(Di-n-hexylamino)methyl]benzamide (L²) and N-[(Di-n-hexylamino)methyl]benzamide (L²) and N-[(Di-n-hexylamino)methyl]-3,5,5-trimethylhexanamide (L³) were synthesized according to literature procedures.^[S1,S2]

Microanalyses of the obtained products were carried out in the Mikroanalytisches Labor of the Technische Universität München in Garching.

¹H- and ¹³C{¹H} NMR spectra were recorded in CDCl₃ and toluene-d₈ with a 400-MHz Bruker Avance DPX-400 spectrometer (¹H: 400 MHz; ¹³C{¹H} 101 MHz). DOSY NMR spectra were recorded using a Bruker Avance 500 spectrometer in C_6D_6 and CD_3CN .

IR spectra were recorded on a Varian IR FT670 using a diamond crystal ATR cell.

Catalytic runs were monitored by GC on a Hewlett-Packard HP 5890 Series II chromatograph equipped with a FID, a Supelco column Alphadex 120 and a Hewlett-Packard integration unit 3396 Series II.

TGA-MS experiments were carried out on a Netzsch STA 409 PC instrument with argon as carrier gas and a temperature step rate of 10 °C per minute in the range of 25-1000 °C.

The melting point of [HL¹][ReO₄] was determined on a MPM-H2 melting point meter.

ESI FT-ICR MS experiments were recorded on a Bruker 12 T SolariX FT-ICR MS in positive-ion mode with the source temperature set to 50 °C.

1.2. General synthesis of [HLⁿ][ReO₄] (n = 1, 2, 3)

To a stirred solution of 500 mg (1.0 mmol, 1.0 equiv.) L¹ in 1 mL toluene, 0.15 mL (1.0 mmol, 1.0 equiv.) of perrhenic acid (76.5% solution in H₂O) was added and stirred for 16 h at room temperature. (**[HL²][ReO₄]**: 319 mg (1.0 mmol, 1.0 equiv.) L² and 0.15 mL (1.0 mmol, 1.0 equiv.) of perrhenic acid (76.5% solution in H₂O); **[HL³][ReO₄]**: 355 mg (1.0 mmol, 1.0 equiv.) L³ and 0.15 mL (1.0 mmol, 1.0 equiv.) of perrhenic acid (76.5% solution in H₂O); **[HL³][ReO₄]**: (76.5% solution in H₂O). Afterwards the organic phase was separated, washed with H₂O, dried over Na₂SO₄ and evaporated to dryness under vacuum. The resulting residue was washed three times with *n*-hexane to yield the analytically pure, toluene-soluble perrhenate salts [HLⁿ][ReO₄] (n = 1, 2, 3).

[HL¹][ReO₄]: colorless solid; Yield: 90 %; ¹H NMR (CDCl₃): δ(ppm) = 14.67 (s, 1H, py-N*H*), 7.97 – 7.82 (m, 3H, 2NH, arom.-*H*), 7.64 (s, 1H, arom.-*H*), 5.32 (s, 1H, C*H*CO), 3.31 (dq, ³J(H,H)=13.5,7.1 Hz, 2H, NC*H*₂), 3.18 (dq, ³J(H,H)=13.5, 7.1 Hz, 2H, NC*H*₂), 1.58 (s, 9H, tBu), 1.56 (m, 4HNC*H*₂C*H*₂), 1.42 (s, 9H, tBu), 1.38–1.22 (m, 12H, CH₃C*H*₂C*H*₂C*H*₂), 0.92–0.82 (m, 6H, C*H*₃CH₂). ¹³C{¹H} NMR (CDCl₃): δ(ppm) = 172.89, 164.55, 162.03, 147.29, 122.82, 118.97, 53.53, 40.97, 37.20, 36.83, 31.50, 30.39, 29.33, 28.99, 26.60, 22.68, 14.17; m.p. 148 °C; IR (ATR, neat): $\tilde{\nu}$ = 914 cm⁻¹ (Re=O asymmetric), 900 cm⁻¹ (Re=O asymmetric), 887 cm⁻¹ (Re=O asymmetric); m.p. decomp. 210 °C; elemental analysis (%): calcd. C 47.31, H 7.09, N 5.91, Re 26.19; found C 47.43, H 7.18, N 5.94, Re 26.40.

[HL²][ReO₄]: colorless oil; Yield: 60 %; ¹H NMR (toluene-*d*₈) δ (ppm) = 9.02 (t, ³J(H,H) = 6.8 Hz, 1H, NH), 8.26 (d, ³J(H,H) = 7.0 Hz, 2H, arom.-*H*), 7.30 – 7.23 (m, 2H, arom.-*H*), 7.22 – 7.16 (m, 1H, arom.-*H*), 4.70 (d, ³J(H,H) = 6.8 Hz, 2H, NHCH₂N⁺H), 2.58 (t, ³J(H,H) = 8.0 Hz, 4H, NCH₂CH₂), 1.65 (m, 4H, NCH₂CH₂), 1.47–1.10 (m, 12H, CH₂CH₂CH₂CH₂CH₃), 0.91 (m, 6H, CH₂CH₃); ¹³C{¹H} NMR (toluene-*d*₈): δ (ppm) = 168.89, 132.62, 131.55, 128.95, 128.06, 58.09, 48.46, 31.41, 26.29, 23.74, 22.47, 13.88; m.p. decomp. 172 °C; IR (ATR, neat): $\tilde{\nu}$ = 924 cm⁻¹ (Re=O asymmetric), 905 cm⁻¹ (Re=O asymmetric), 882 cm⁻¹ (Re=O asymmetric); elemental analysis (%): calcd. C 42.16, H 6.19, N 4.92, Re 32.68; found C 40.61, H 6.25, N 4.66, Re 34.23.

[HL³][ReO₄]: colorless oil; Yield: 89 %; ¹H NMR (toluene- d_8): δ (ppm) = 8.36 (t, ³J(H,H) = 7.0 Hz, 1H, NHCH₂N⁺H), 7.93 (s, multiple signal NHCH₂N⁺H), 6.60 (s, multiple signal NHCH₂N⁺H), 5.99 (s, multiple signal NHCH₂N⁺H), 4.51 (d, ³J(H,H) = 7.0 Hz, 2H

NHC H_2 N⁺H), 2.67–2.63 (m, 4H, NC H_2 CH₂), 2.55–1.96 (m, 2H, NHCOC H_2 CH), 1.94– 1.78 (m, 1H, NHCOCH₂CH), 1.80–1.46 (m, 4H, N(CH₂C H_2)₂), 1.46–0.78 (m, 34H, aliphatic protons); ¹³C{¹H} NMR (toluene- d_8): δ (ppm) = 174.21, 57.08, 50.96, 50.43, 48.31, 45.37, 39.20, 31.30, 29.90, 27.10, 26.23, 23.97, 22.38, 13.80; m.p. decomp. 192 °C; IR (ATR, neat): $\tilde{\nu}$ = 923 cm⁻¹ (Re=O asymmetric), 905 cm⁻¹ (Re=O asymmetric), 879 cm⁻¹ (Re=O asymmetric); elemental analysis (%): calcd. C 43.62, H 7.82, N 4.62, Re 30.74; found C 43.56, H 7.88, N 4.65, Re 30.68.

2. Spectroscopic data

2.1. IR spectrum of [HL¹][ReO₄]

Figure S1. (-) FTIR spectrum of $[HL^1][ReO_4]$ between 1050 and 750 cm⁻¹; (a) deconvoluted spectrum.

2.2. NMR experiments

Figure S2. ¹H-NMR spectra of partially decomposed $[HL^2][ReO_4]$ (top) and $[HL^3][ReO_4]$ (bottom) in toluene-d₈.

Figure S3. COSY NMR spectra of [HL³][ReO₄] in toluene-d₈.

Figure S4. $^{1}H_{-}^{15}N_{-}HSQC$ NMR spectrum of $[HL^{3}][ReO_{4}]$ in toluene-d₈ in the range of 9.0 ppm to 5.2 ppm.

Figure S5. DOSY NMR spectra of L^1 (top) and $[HL^1][ReO_4]$ (bottom) in C_6D_6 .

Figure S6. DOSY NMR spectrum of $[HL^1][ReO_4]$ in CD₃CN.

Figure S7. DOSY NMR spectrum of [HL²][ReO₄] in C₆D₆.

Figure S8. DOSY NMR spectrum of $[HL^2][ReO_4]$ in CD_3CN .

Figure S9. DOSY NMR spectrum of $[HL^3][ReO_4]$ in C_6D_6 .

Figure S10. DOSY NMR spectrum of $[HL^3][ReO_4]$ in CD₃CN.

2.3. Spectroscopic study of [HL¹][ReO₄] in catalysis

Figure S11. ¹H NMR spectra of (A) $[HL^1][ReO_4]$ after 6 catalytic cycles and (B) $[HL^1][ReO_4]$ between 16 and 2 ppm in CDCl₃.

Figure S12. FTIR spectrum of (A) $[HL^1][ReO_4]$ after 6 catalytic cycles and (B) $[HL^1][ReO_4]$ before catalysis, in the range between 4000 and 500 cm⁻¹.

Figure S13. ¹⁷O NMR spectra of (A) ¹⁷O labeled [HL¹][ReO₄]; (B) cyclooctene oxide in n-hexane after synthesis with ¹⁷O labeled [HL¹][ReO₄] as catalyst.

2.4. ESI-MS data

Figure S14. ESI-MS data for [HL²][ReO₄] in CH₃CN.

Figure S15. ESI-MS data for [HL³][ReO₄] in CH₃CN.

2.5. TG-MS data

Figure S16. TG-MS data of [HL¹][ReO₄] between 25 °C and 1000 °C.

Figure S17. TG-MS data of [HL²][ReO₄] between 25 °C and 1000 °C.

Figure S18. TG-MS data of [HL³][ReO₄] between 25 °C and 1000 °C.

3. Catalysis experiments

3.1. Experimental

In a Radleys reaction tube with magnetic stir bar 0.5 mmol $[HL^n][ReO_4]$ (n = 1, 2, 3) was weighed in and placed in a Radleys Carousel reaction station. After addition of first 10.0 mmol cyclooctene followed by 25.0 mmol aqueous H₂O₂ (50 wt.-% in H₂O) the round bottom flask was plugged and the two-phase mixture was heated to the desired temperature. For determining the yield and selectivity of the catalytic reaction samples were taken from the organic phase and analyzed by GC.

3.2. Influence of the reaction temperature on the catalytic activity

Figure S19. Influence of the reaction temperature on the epoxidation of cyclooctene using [HL¹][ReO₄] as catalyst; Reaction conditions: 5:100:250 cat: substrate: oxidant ratio, neat.

3.3. Influence of the catalyst:substrate ratio

Figure S20. Influence of the catalyst:substrate ratio on the epoxidation of cyclooctene using [HL¹][ReO₄] as catalyst; Reaction conditions: substrate:oxidant 100:250, 70 °C.

3.4. Influence of the substrate:oxidant ratio

Figure S21. Influence of substrate:oxidant ratio. Reaction conditions: 5 mol % [HL¹][ReO₄], 70 °C.

3.5. Solvent influence

Figure S22. Influence of the solvent on the catalytic activity; Reaction conditions: 5 mol% [HL¹][ReO₄], 5:100:250 cat: substrate: oxidant ratio, 70 °C.

3.6. Recycling studies

For recycling studies, after 4 h at 70 °C, the SIP catalyst and cyclooctene oxide were separated from the excess peroxide with and water by extraction into toluene. Thereupon, cyclooctene oxide was distilled from the organic phase and the next catalytic run started by adding additional olefin (10.0 mmol) and oxidant (25 mmol).

Figure S23. Illustration of the reusability of SIP epoxidation catalysts. Reaction conditions: 5 mol % [HL¹][ReO₄], aqueous H_2O_2 as oxidant, cat:substrate:oxidant ratio 5:100:250, 70 °C, 4 h.

Figure S24. Comparison of the catalytic activity of $[HL^1][ReO_4]$, $[HL^1][Br]$ and L^1 ; Reaction conditions: aqueous H_2O_2 as oxidant, cat:substrate:oxidant ratio 5:100:250, 70 °C, 4 h.

4. X-ray single crystal diffraction data

4.1. Measurement and refinement details

Data were collected on a Bruker APEX II X-ray single crystal diffractometer equipped with a κ -CCD detector, a Bruker AXS FR591 rotating anode with MoK_a radiation $(\lambda = 0.71073 \text{ Å})$, and a Montel mirror by using the APEX 2 software package.^[S3] The measurements were carried out on a single crystal coated with perfluorinated ether that was fixed on the top of a glass fiber, transferred to the diffractometer, and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.^[S4] Absorption corrections, including odd and even-ordered spherical harmonics were performed using SADABS.^[S4] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structure. The structure was solved by direct methods with the aid of successive difference Fourier maps,^[S3] and refined against all data using SHELXL-97^[S5] in conjunction with SHELXLE.^[S6] Non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms were placed in ideal positions using the SHELXL riding model. Full-matrix leastsquares refinements were carried out by minimizing $\Sigma w (F_0^2 - F_c^2)^2$ with SHELXL-97^[S5] weighting scheme. Neutral atom-scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[S8] Images of the crystal structures were generated by PLATON.^[S7] Crystallographic data for the structure of compound [HL¹][ReO₄] have been deposited with the Cambridge Crystallographic Data Centre (CCDC No. 1030881). Copies of the data can be obtained free of charge from the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax (+44)1223-336-033; e-mail deposit@ccdc.cam.ac.uk).

4.2. Crystallographic data of compound [HL¹][ReO₄]

Figure S25. Solid-state structure of $[HL^1][ReO_4]$ (displacement ellipsoids are drawn at 50 % probability).^[S5] For clarity, hydrogen atoms are omitted except for those at N1, N2 and N3. Selected bond lengths (Å) and angles (°): Re1–O3 1.701(2), Re1–O4 1.715(2), Re1–O5 1.715(2), Re1–O6 1.738(2), O3-Re1–O4 108.25(11), O3–Re1–O5 108.34(10), O4–Re1–O5 109.58(11), O3–Re–O6 110.61(10), O4–Re–O6 110.21(10), O5–Re1–O6 109.81(10), N1…O1 2.717, N1…O2 2.710.

Table ST. Sample and crystal data for compound $ \Pi L ReO_4$	Table	S1.	Sample	and cr	vstal data	a for com	npound	[HL ¹][ReO₄]
---	-------	-----	--------	--------	------------	-----------	--------	---------------------	-------

Chemical formula	C ₂₈ H ₅₀ N ₃ O ₆ Re		
Formula weight	710.91		
Temperature	123(2) K		
Wavelength	0.71073 Å		
Crystal size	0.060 x 0.260 x 0.310 mm		
Crystal habit	colorless prism		
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 11.2427(2) Å	$\alpha = 90^{\circ}$	
	b = 25.9864(4) Å	$\beta = 90.415(2)^{\circ}$	
	c = 11.3945(2) Å	γ = 90°	
Volume	3191.75(9) Å ³		
Z	4		
Density (calculated)	1.497 g/cm ³		
Absorption coefficient	3.848 mm ⁻¹		
F(000)	1448		

Table S2. Data collection and structure refinement for compound [HL¹][ReO₄].

Diffractometer	Bruker Kappa APEX	II CCD	
Radiation source	Fine-focus tube, Mo		
Theta range for data collection	2.02 to 25.39°		
Index ranges	-13<=h<=13, -31<=k	<=31, -13<=l<=13	
Reflections collected	74426		
Independent reflections	5865 [R _{int} = 0.0454]		
Coverage of independent reflections	99.8%		
Absorption correction	multi-scan		
Max. and min. transmission	0.7908 and 0.3788		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldri	ck, 2008)	
Refinement method	Full-matrix least-squa	ares on F ²	
Refinement program	SHELXL-97 (Sheldright	ck, 2008) and SHELXLE (Huebschle, 2011)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	5865 / 0 / 351		
Goodness-of-fit on F ²	1.034		
Δ/σ_{max}	0.003		
Final R indices	4973 data; I>2σ(I)	R ₁ = 0.0218, <i>w</i> R ₂ = 0.0383	
	all data	R ₁ = 0.0324, <i>w</i> R ₂ = 0.0409	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0128) where P=(F_o^2 +2 F_c^2)/3	3P) ² +3.2365P] 3	
Largest diff. peak and hole	0.674 and -0.436 eÅ	-3	
R.M.S. deviation from mean	0.076 eÅ ⁻³		

5. References

- [S1] Ellis, R. J.; Chartres, J.; Henderson, D. K.; Cabot, R.; Richardson, P. R.; White, F. J.; Schröder, M.; Turkington, J. R.; Tasker, P. A.; Sole, K. C. *Chem. Eur. J.* 2012, *18*, 7715–7728.
- [S2] Turkington, J. R.; Cocalia, V.; Kendall, K.; Morrison, C. A.; Richardson, P.; Sassi,
 T.; Tasker, P. A.; Bailey, P. J.; Sole, K. C. *Inorg. Chem.* **2012**, *51*, 12805–12819.
- [S3] APEX suite of crystallographic software. "APEX 2" Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
- [S4] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
- [S5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, 1998.
- [S6] Huebschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Cryst. 2011, 44, 1281– 1284.
- [S7] Spek, A. L. "PLATON", a Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2010.
- [S8] International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502),
 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C. (Ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.