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For each chain length L we performed all-atom Metropolis Monte Carlo with several 109

steps at constant temperatures in the range from 220 K to 340 K using SIMONAS1 with

GAFF force field parameters.S2 Calculations of the gyration radius and the shape measures

are applied only to the polystyrene chain excluding α and ω end groups. The shape of the

α–ω complex does not change significantly between the closed configurations because of the
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strong hydrogen bonding. The hydrodynamic radius of the polymer was computed using the

HYDROPRO computer program.S3

S1 CA–HW recognition pair

The polymer has two hydrogen bonding recognition units based on six-point cyanuric acid

(CA)–Hamilton wedge (HW) interaction. We compute an optimized configuration of the

recognition CA–HW pair using a semiempirical quantum chemistry PM7 method.S4 The

optimized geometry configuration is shown in Fig. S1. The computed difference in the total

energy between the bound configuration in Fig. S1 and an unbound configuration is equal

to ∆E = 0.6 eV = 13.8 kcal/mol.

Figure S1: Six-point CA–HW geometry. The dashed lines show hydrogen bonds.

S2 Molecular mechanics

To sample the conformations of the whole polymer, we use a molecular mechanics approach

and generate GAFFS2 force field parameters using the acpype toolS5 with the partial charges

computed according to the AM1-BCCS6,S7 method. To take implicitly into account the effect

of van der Waals (vdW) interaction with a solvent and the resulting cancellation of dispersion
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forces, we scale the vdW contribution in the force field by factor 0.1. This approach and

the scaling factor are motivated by the recent experimental measurementS8 of the vdW

dispersion forces between alkyl chains in different solvents. The experimental data show

that the vdW interaction energies in solutions are an order of magnitude smaller than the

estimated energies between alkyl chains in vacuum.

The electrostatic interaction is calibrated by the binding energy of the CA–HW recogni-

tion pair. From the quantum mechanical (QM) calculation in Sec. S1 we know the energy

difference between the bound and unbound CA and HW molecules. Using the force field

parameters introduced above, for the dielectric constant ε = 1 we have obtained the energy

difference ∆E = 31.2 kcal/mol which is larger than ∆E = 13.8 kcal/mol predicted by QM.

In order to match the QM energy difference in the force field calculations, the value of the

dielectric constant has to be equal to ε = 2.6. This value of the dielectric constant was used

for the simulations of the whole polymer chain.

The Monte Carlo simulations are carried out using the SIMONA software package.S1

S3 Free energy and transition temperature

From a Monte Carlo trajectory at a given temperature T we can compute a probability

density function p(E) as function of the potential energy E. Fig. S2 shows the probability

density at different temperatures for the polymers of different lengths. The free energy F as

a function of the potential energy can be obtained from p(E) by

F (E) = −RT ln p(E), (1)

where R is the gas constant. The probability density and the free energy at two temperatures

for the polymer with L = 50 are shown in Fig. S3.

The maxima of the probability density and the corresponding minima of the free energy

represent the closed and open configurations of the polymer. The whole profile p(E) can be
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Figure S2: Energy probability density for polymers with (a) L = 10, (b) L = 20, (c) L = 30
and (d) L = 50. The dashed line corresponds to the transition temperature.
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Figure S3: Probability density and free energy for the polymer with L = 50.

divided into the two states A (closed) and B (open) by means of the transition point at the

energy E0 as indicated in Fig. S4. Then the probabilities to find the system in state A or B
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Figure S4: Definition of the two states A and B by the transition point at E0.

are given by

PA =

E0∫
−∞

p(E)dE, PB =

+∞∫
E0

p(E)dE (2)

with the average potential energies of the two states obtained as

HA =

E0∫
−∞

p(E)EdE, HB =

+∞∫
E0

p(E)EdE (3)

and the free energies of the states

FA = −RT lnPA, FB = −RT lnPB. (4)

From the quantities defined in Eqs. (3) and (4) we can compute difference in the free energy

∆F , in the potential energy ∆H and in the entropy ∆S:

∆F = FB − FA = −RT ln
PB
PA

, (5a)

∆H = HB −HA, (5b)

∆S = SB − SA =
∆H −∆F

T
. (5c)

For the temperatures below the transition temperature Tm, the closed configuration is
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thermodynamically favorable one because of lower value of the free energy. For the temper-

atures T > Tm, the open configuration becomes more favorable than the closed. We obtain

the value of Tm defined by the condition ∆F (Tm) = 0 and the values of ∆H(Tm) and ∆S(Tm)

by linear interpolation between the data for two temperatures T1 < Tm and T2 > Tm.

A comparison with scaling theory of polymers can be made on basis of simple two-state

model. Let us define the closed conformation as the state with end-to-end distance Ree = a

for a chain with monomer size a. All other conformations correspond to the open state.

Then the probability PA to find the chain in the closed conformation scales with the chain

size L � 1 as PA ∼ L−α, where α = 3/2 for the ideal chain and α ≈ 1.97 for the “real”

chain (with excluded-volume effects) in good solvent.S9 Correspondingly, the probability of

the open conformation is PB = 1 − PA = 1 − O(L−α). Using the two-state model we can

estimate the entropy difference between the closed and open states as

∆S̃

R
= ln

PB
PA
∼ α lnL. (6)

Fig. S5 shows three fits of the scaling law in Eq. (6) to the simulation data. The first fit to

the all simulation points leads to the scaling exponent α = 1.55 close to the value α = 3/2

for the ideal chain, but with a large scattering. Taking into account the transition in the

reduced fluctuation of the gyration radius (Fig. 3 in the main text), two sets of the simulation

data (small and large chain lengths) are fitted separately with α = 2.41 and α = 1.88. The

two fits show much better agreement with the simulation data that the single overall fit.

In Ref.S10 transition of hard-sphere chain from open to closed conformation have been

studied numerically and the scaling exponent α = 2 was found from simulation data.

S4 Shape measures of polymer chain

Consideration only of the eigenvalues of the gyration tensor limits the image of a polymer

chain to an ellipsoidal shape. Several additional shape measures have been introduced to

S6



10 20 30 40 50 60
20

21

22

23

24

Chain length

E
n
tr

o
p
y
 l
o
s
s

 

 

simulation

α=1.55

α=2.41

α=1.88

Figure S5: Scaling of the entropy loss ∆S with the chain length L.

Table S1: Transition temperature, changes in enthalpy and entropy, mean radius of gyration
of the closed ensemble and the width of its distribution.

L Tm ∆H ∆S Rg σ
10 299.0 12.21 0.0408 0.662 0.0317
12 294.5 12.27 0.0417 0.729 0.0364
14 292.9 12.38 0.0423 0.795 0.0423
16 292.7 12.61 0.0431 0.855 0.0500
18 292.8 12.44 0.0425 0.917 0.0582
20 292.0 12.58 0.0431 0.982 0.0666
30 290.5 12.58 0.0433 1.251 0.0856
50 276.9 12.91 0.0466 1.736 0.1175

characterize the shape of polymer chains in terms of anisotropy, asphericity and acylindric-

ity.S11

Let us assume that the eigenvalues of the gyration tensor are defined as R1 > R2 > R3

and the radius of gyration R is

R2 = R2
1 +R2

2 +R2
3. (7)

Following the definitions in Ref.S11 we introduce the asphericity b,

bR2 = R2
1 −

R2
2 +R2

3

2
, (8)

the acylindricity c,

cR2 = R2
2 −R2

3, (9)
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and the relative shape anisotropy κ,

κ2 =
b2 + 3

4
c2

R4
. (10)

The relative shape anisotropy κ is varying between 0 and 1. The limit κ = 0 corresponds to

a case when all points are distributed spherically symmetric and the limit κ = 1 corresponds

to the points lying on a line.

Many closed conformations for the polymer with chain length L = 50 feature a disk-like

shaped polystyrene chain (refer to Fig. S7 a, d, f). Hairpin configurations are also present

with low acylindricity and high asphericity as noted in Fig. S7 c.

An alternative way to characterize the structure is to define a distance between the parts

of the CA–HW recognition pair. As the measure, we use average value of two interatomic

distances as indicated in Fig. S9. The CA–HW distance and the chain radius of gyration

along the MC trajectory for L = 50 are shown in Fig. S10.
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Figure S6: Radius of gyration, asphericity, acylindricity and relative shape anisotropy of
closed (left) and open (right) chain conformations with L = 50 for the MC trajectory at
T = 270 K. The number along x-axis indicates the index of the distinct closed or open
configuration along the trajectory.
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a) d)

b) e)

c) f)

Figure S7: Representative closed conformations for the polymer with chain length L = 50.
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a) b)

c) d)

Figure S8: Representative closed conformations for the polymer with chain length L = 10.

Figure S9: Definition of the distance between the CA and HW.
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Figure S10: CA–HW distance and chain radius of gyration along the MC trajectory at
T = 270 K and L = 50.
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