Supporting Information

AIEE Active Perylene Bisimide Supported Mercury Nanoparticles for Synthesis of Amides via Aldoximes/Ketoximes Rearrangement

Sandeep Kaur, Manoj Kumar and Vandana Bhalla*

Department of Chemistry, UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India

Email Address: vanmanan@yahoo.co.in

- **S5-6** General experimental procedures.
- S7-9 Synthetic scheme of compounds.
- **S10** Comparison of present method over other reported procedure in literature for the preparation of HgNPs.
- **S11** Comparison of catalytic activity HgNPs for the formation of primary amides via aldoximes over other reported methods.
- **S12** Comparison of catalytic activity HgNPs for the formation of secondary amides from ketoximes over other reported methods.
- S13 Fluorescence spectra of derivatives 3 (5 μ M) showing the variation of intensity in mixtures H₂O/THF mixtures, spectra of derivative 3 showing the variation of fluorescence intensity in H₂O/THF mixture and Dynamic light scattering (DLS) results showing the variation in particle size diameter with increasing water content in THF solution of 3.
- S14 Polarized optical micrographs, SEM images of derivative 3 at room temperature through crossed polarizing filters in water/THF solution (1:1 v/v) and fluorescence spectra of derivatives 3 showing the variation of fluorescence intensity in mixtures THF/TEG mixtures and increase in temperature in H_2O/THF mixture.
- **S15** Time resolved fluorescence decays of **3** with increasing water fraction upto 50% and the table showing the radiative, non-radiative decay rate constants.
- **S16** Concentration dependent ¹H NMR spectrum of compound **3**.

- S17 UV-vis spectra of compound 3 upon additions of various metal ions as their chloride and perchlorate salt in H_2O/THF (1:1, v/v).
- **S18** UV–vis spectra of compound **3** (5 μ M) showing the response to the Hg²⁺ ion (0-18 equiv.) in H₂O/THF (1:1, v/v) mixture and graphical representation of rate constant of formation of HgNPs.
- S19 Fluorescence spectrum of derivative 1b, derivative 3, 3-Hg²⁺ showing in H₂O/THF mixtures (1:1v/v). $\lambda ex = 485$ nm and fluorescence excitation spectrum of 3 in H₂O/THF (1:1, v/v) mixture addition of Hg²⁺ions for the emission at 570 nm ($\lambda_{em} = 570$ nm).
- **S20** Detection limit of Hg^{2+} by using compound **3** in H_2O/THF (1:1, v/v).
- S21 Competitive and selectivity graph of derivative 3 towards various metal ions as their chloride and perchlorate salt in H_2O/THF (1:1, v/v).
- S22 Time resolved fluorescence decays of 3 in H_2O/THF (1:1, v/v) mixture on addition of Hg^{2+} ions.
- **S23** Dynamic light scattering (DLS) results showing the particle size diameter of HgNPs in H₂O/THF (1:1, v/v), polarized optical micrographs and confocal image of compound **3** in the H₂O-THF (1:1, v/v) solvent mixture in presence of Hg²⁺ ions.
- S24 Overlay ¹H NMR spectra of **3** and Hg nanoparticles of **3** after filtration with THF.
- S25 UV-vis spectra of compound 3 (5 μ M) showing the response to the Hg²⁺ ion in pure THF and catalyst-reusability in rearrangement reaction of 4-methoxy acetophenone oxime (6b).
- **S26** HgNPs catalysed Beckmann rearrangement of various ketoximes to corresponding amides/lactams.
- S27 UV-vis spectra for rate of conversion of 4-methoxyacetophenone oxime (6b) to 4methoxy acetanilide (7b) by *in situ* generated HgNPs and graphical representation of rate constant of formation of 4-methoxy acetanilide.

- **S28** UV-vis spectra for conversion of 4-methylacetophenone oxime (6c) to 4-methyl acetanilide (7c) by *in situ* generated HgNPs and graphical representation of rate constant of formation of 4-methyl acetanilide.
- **S29** Proposed Mechanism for rearrangement aldoximes/ketoximes to primary/secondary amide.
- **S30** HgNPs catalyzed Beckmann reaction of 4-methoxyacetophenone oxime (**6b**) using various amount of HgNPs and synthesis of phenanthroline and cyclopentadieneone based amides using Beckmann rearrangement in the presence of HgNPs.
- **S31** ¹H NMR spectrum of derivative **1b**.
- **S32** ¹³C NMR spectrum of derivative **1b**.
- S33 Mass spectrum of derivative 1b.
- **S34** FT-IR spectrum of derivative **1b**.
- **S35** ¹H NMR spectrum of derivative **3**.
- **S36** 13 C NMR spectrum of derivative **3**.
- S37 Mass spectrum of derivative 3.
- **S38** FT-IR spectrum of derivative **3**.
- **S39** ¹H NMR and ¹³C NMR spectrum of derivative **4a**.
- **S40** ¹H NMR and ¹³C NMR spectrum of derivative **5a**.
- S41 ¹H NMR and ¹³C NMR spectrum of derivative 4b.
- **S42** ¹H NMR and ¹³C NMR spectrum of derivative **5b**.
- S43 ¹H NMR and ¹³C NMR spectrum of derivative 4c.
- S44 ¹H NMR and ¹³C NMR spectrum of derivative 5c.
- S45 ¹H NMR and ¹³C NMR spectrum of derivative 4d.
- **S46** ¹H NMR and ¹³C NMR spectrum of derivative **5d**.

S47	¹ H NMR and ¹³ C NMR spectrum of derivative 4e .
S48	¹ H NMR and ¹³ C NMR spectrum of derivative 5e .
S49	¹ H NMR and ¹³ C NMR spectrum of derivative 4f .
S50	¹ H NMR and ¹³ C NMR spectrum of derivative 5f .
S51	¹ H NMR and ¹³ C NMR spectrum of derivative 6a .
S52	¹ H NMR and ¹³ C NMR spectrum of derivative 7a .
S53	¹ H NMR and ¹³ C NMR spectrum of derivative 6b .
S54	¹ H NMR and ¹³ C NMR spectrum of derivative 7b .
S55	¹ H NMR and ¹³ C NMR spectrum of derivative 6c .
S56	¹ H NMR and ¹³ C NMR spectrum of derivative 7c .
S 57	¹ H NMR and ¹³ C NMR spectrum of derivative 6d .
S58	¹ H NMR and ¹³ C NMR spectrum of derivative 7d .
S59	¹ H NMR and ¹³ C NMR spectrum of derivative 6e .
S60	¹ H NMR and ¹³ C NMR spectrum of derivative 7e .
S61	¹ H NMR and ¹³ C NMR spectrum of derivative 6f .
S62	¹ H NMR and ¹³ C NMR spectrum of derivative 7f .
S63	¹ H NMR and ¹³ C NMR spectrum of derivative 6g .
S64	¹ H NMR and ¹³ C NMR spectrum of derivative 7g .
S65	¹ H NMR and ¹³ C NMR spectrum of derivative 8 .
S66	¹ H NMR and ¹³ C NMR spectrum of derivative 9 .

- **S67** ¹H NMR and ¹³C NMR spectrum of derivative **10**.
- **S68** ¹H NMR and ¹³C NMR spectrum of derivative **11**.

General Experimental Procedures:

Materials and reagents: All reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium and benzophenone as an indicator. UV–vis studies were performed in THF, distilled water and HEPES buffer (0.05 M) (pH = 7.05).

Instrumentation:

All reagents were purchased from Aldrich and were used without further purification. The UV/vis and fluorescence spectra were recorded with Shimdzu UV-2450 spectrophotometer and Shimadzu RF-5301(PC) spectrofluorophotometer, respectively. The SEM images were recorded from Scanning Electron Microscope (SEM)-Zeiss EV040. The TEM mages was recorded from Transmission Electron Microscope (TEM) - JEOL 2100F. The FT-IR spectra were recorded with VARIAN 660 IR Spectrometer. The dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). The Time resolved fluorescence spectra were recorded with a HORIBA Time Resolved Fluorescence Spectrometer. Elemental analysis was done using a Flash EA 1112 CHNS/O analyzer from Thermo Electron Corporation. ¹H and ¹³C NMR was recorded on a JOEL-FT NMR-AL 300 and Bruker-AVANCE-II FT NMR-AL 500 MHz spectrophotometer using CDCl₃ as solvent and tetramethylsilane SiMe₄ as internal standards. Data are reported as follows: chemical shifts in ppm (δ), multiplicity (s = singlet, d = doublet, br s = broad singlet m = multiplet), coupling constants *J* (Hz), integration, and interpretation. Silica gel 60 (60-120 mesh) was used for column chromatography.

Calculations for quantum yield¹:

Fluorescence quantum yield was determined using optically matching solutions of rhodamine B ($\Phi_{fr} = 0.65$ in ethanol) as standard at an excitation wavelength of 530 nm and quantum yield is calculated using the equation:

$$\Phi_{\rm fs} = \Phi_{\rm fr} \quad \times \quad \frac{1 \text{--} 10^{\text{-}ArLr}}{1 \text{--} 10^{\text{-}AsLs}} \times \quad \frac{N_s^2}{N_r^2} \times \frac{D_s}{D_r}$$

 Φ_{fs} and Φ_{fr} are the radiative quantum yields of sample and the reference respectively, A_s and A_r are the absorbance of the sample and the reference respectively, D_s and D_r the respective areas of emission for sample and reference. L_s and L_r are the lengths of the absorption cells of

¹J. N. Deams, G. A. Grosby, J. Phys. Chem., 1971, 75, 991.

sample and reference respectively. N_s and N_r are the refractive indices of the sample and reference solutions (pure solvents were assumed respectively).

UV-vis and fluorescence titrations:

The concentration of HEPES buffer (pH = 7.05) is 0.05 M. For each experiment we have taken 3 ml solution which contains solution of derivative **3** in THF and 1.5 ml HEPES buffer (0.05 M, pH = 7.05) or double distilled water. UV-vis and fluorescence titrations were performed with 5.0 μ M solutions of ligand in H₂O/THF (1:1, v/v). Typically, aliquots of freshly prepared standard solutions (10⁻¹M to 10⁻³M) of metal ions such as Zn²⁺, Hg²⁺, Cu²⁺, Fe²⁺, Fe³⁺, Co²⁺, Pb²⁺, Ni²⁺, Cd²⁺, Ag⁺, Ba²⁺, Al³⁺, Mg²⁺, K⁺ and Na⁺ ions as their perchlorate [M(ClO₄)_x; X = 1-3]/chloride [M(Cl)_x; X = 1-3] in THF were added to record the UV-vis and fluorescence spectra.

Synthetic scheme of compound 3:

Scheme 1: Synthesis of PBIs derivative 3: (i) K₂CO₃ (aq.), PdCl₂(PPh₃)₂, THF, 80 ^oC; (ii) dry THF : methanol (4 : 6), 80 ^oC.
Synthesis of derivative 1b:

To a solution of 1a (0.5 g, 0.567 mmol) and 2 (0.322 g, 0.884 mmol) in 20 ml of dry THF were added K₂CO₃ (0.203 g, 0.884 mmol), distilled H₂O (1.3 mL) and Pd(Cl)₂(PPh₃)₂ (0.238 g, 0.204 mmol) under N₂, and the reaction mixture was then refluxed overnight. After completion of the reaction (TLC), the mixture was cooled to room temperature. Dry THF was then removed under vacuum, and the residue so obtained was treated with water, extracted with CH₂Cl₂ and dried over anhydrous Na₂SO₄. The organic layer was evaporated, and the compound was purified by column chromatography using CHCl₃/MeOH (9.5:0.5, v/v) as an eluent to give 0.40 g (78%) of compound **1b** as a red solid. Mp: >260 °C. IR (KBr) $v_{max} = (-$ NH₂) 3368.13, (C=O) 1694.2119, 1655.27. ¹H NMR (300MHz, CDCl₃, ppm): 0.84 [(t, J = 6Hz, 6H, N-CH₂-CH₂-(CH₂)₉-CH₃], 1.11-1.24 [(m, 36H, N-CH₂-CH₂-(CH₂)₉-CH₃], 1.45-1.79 [(m, J = 9Hz, 4H, N-CH₂-<u>CH₂-(CH₂)₉-CH₃], 3.91(s, 4H, NH₂), 4.19 (t, J = 6Hz, 4 H, <u>N-</u></u> CH_2 - CH_2 - $(CH_2)_9$ - CH_3 , 6.75 (d, J = 9Hz, 4H, ArH), 7.32 (d, J = 9Hz, 4H, ArH), 7.91 (d, J =12Hz, 2H, ArH), 8.13 (d, J = 6Hz, 2H, ArH), 8.54 (s, 2H, ArH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.12, 22.69, 29.35, 29.56, 29.63, 29.65, 29.70, 31.92, 39.13, 40.57, 116.37,$ 121.48, 128.47, 128.57, 129.46, 130.33, 130.96, 132.06, 132.14, 134.34, 138.43, 150.52, 164.00. ESI-MS mass spectrum of compound **3** showed a parent ion peak, m/z = 908.3805. Elemental analysis: Calc. for C, 79.26; H, 7.54; N, 6.16. Found: C, 79.24; H, 7.52; N, 6.17.

Synthesis of compound 3:

A mixture of compound **3** (0.05 g, 0.055 mmol) and β-hydroxy naphthaldehyde (0.02 g, 0.116 mmol) in THF-methanol was refluxed for 24 hrs. After the completion of the reaction, the solvent was evaporated and the residue left was crystallized from methanol to give compound **3** in 86% (0.058 g) yield; mp: > 280°C. IR (KBr) $v_{max} = (-OH)$ 3339.28, (C=O) 1696.17, 1657.24, (C=N) 1620.55 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 0.85$ [(t, 6H, CH₂-(CH₂)₁₈-(CH₃)₂], 1.01-1.39 [(m, 36H, CH₂-(CH₂)₁₈ (CH₃)₂], 1.61-1.71 (m, 4H, [(CH₂)-(CH₂)₁₈-(CH₃)₂]), 4.19 (t, *J* = 4.5 Hz, 4H, N-(<u>CH₂)₂</u>, 7.12 (d, *J* = 9Hz, 4H, ArH), 7.37 (t, *J* = 7.5Hz, 4H, ArH), 7.50-7.56 (m, 6H, ArH), 7.66 (d, *J* = 6Hz, 2H, ArH), 7.75 (d, *J* = 6Hz, 2H, ArH), 7.84 (d, *J* = 9 Hz, 2H, ArH), 7.93 (d, *J* = 6Hz, 2H, ArH), 8.18 (d, *J* = 9 Hz, 2H, ArH), 8.63 (s, 2H, ArH), 9.47 (s, 2H, HC=N), 13.31 (s, 2H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.12$, 22.68, 27.13, 27.21, 29.35, 29.41, 29.56, 29.58, 29.63, 31.92, 35.15, 38.04, 109.19, 120.24, 121.87, 122.21, 123.82, 129.52, 130.72, 133.17, 134.24, 135.21, 137.34, 139.35, 140.09, 141.92, 154.88, 155.37, 159.91, 170.55 ppm. ESI-MS mass spectrum of compound **3** showed a parent ion peak, m/z = 1216.23 [M+H]⁺. Elemental analysis: Calc. for C, 80.89; H, 6.62; N, 4.60. Found: C, 80.88; H, 6.61; N, 4.62.

Synthesis of aldoximes/ ketoximes derivatives 4a-g/6a-6h:

In a 25 ml round-bottom flask, aldehyde/ketone was dissolved in 10 ml ethanol followed by the addition of triethylamine and hydroxylamine-HCl. The reaction was heated to 80° for 3 hours, and then cooled to room temperature. Aqueous NH_4Cl was added, and the mixture was extracted with dichloromethane, dried with Na_2SO_4 and concentrated to give solid product.

Synthesis of primary amides (5a-g) from aldoximes (4a-g)

Here, we use HgNPs as an efficient catalyst for conversion of oxime into amide using toluene as a solvent. The reaction of aldoximes in toluene (10 ml) in the presence of 50 -100 μ l of the HgNPs catalyst (0.5-1 mol%) at r.t- 85°C for 5-12 h was studied (Table 1). The resulting mixture was stirred until the reaction was completed as indicated by TLC. The resulting precipitate was collected .The crude solid was purified via recrystallization from ethanol to get pure products **5a-g**.

Synthesis of secondary amides (7a-h) from ketoximes (6a-h):

Here, we use HgNPs as an efficient catalyst for conversion of oxime into amide using acetonitrile as a solvent. The reaction of aldoximes in acetonitrile (10 ml) in the presence of 50 μ l of the HgNPs catalyst (0.5 mol%) at r.t for 20-90 min was studied (Table 1). The resulting mixture was stirred until the reaction was completed as indicated by TLC. The

resulting precipitate was collected .The crude solid was purified via recrystallization from ethanol to get pure products **7a-h**.

Synthesis of Compound 4g:

The structure of compound **4g** was confirmed from its spectroscopic and analytical data (Supporting Information S44). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 6.99$ (d, J = 15 Hz, 2H, ArH), 7.09 (d, J = 10 Hz, 2H, ArH), 7.19 (d, J = 15 Hz, 2H, ArH), 9.00 (s, 2H, HC=N), 11.49 (br s, 2H, OH). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 120.35$, 127.44, 129.19, 137.94, 144.91, 149.75, 152.71.

Synthesis of Compound 5g:

The structure of compound **5g** was confirmed from its spectroscopic and analytical data (Supporting Information S45). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 6.99$ (d, J = 15 Hz, 2H, ArH), 7.09 (d, J = 10 Hz, 2H, ArH), 7.19 (d, J = 15 Hz, 2H, ArH), 8.84 (br s, 4H, NH). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 123.42$, 125.76, 128.66, 129.34, 130.68, 137.78, 138.26, 147.49, 158.51, 170.49.

Synthesis of Compound 6h:

The structure of compound **6h** was confirmed from its spectroscopic and analytical data (Supporting Information S60). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 6.95$ (d, J = 10 Hz, 4H, ArH), 7.19 (t, J = 7.5 Hz, 4H, ArH), 7.25-7.31 (m, 12H, ArH), 11.05 (br s, 1H, OH). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 125.31$, 127.44, 127.97, 128.01, 128.49, 129.32, 130.13, 130.75, 133.07, 154.49, 165.86.

Synthesis of Compound 7h:

The structure of compound **7g** was confirmed from its spectroscopic and analytical data (Supporting Information S61). ¹H NMR (500 MHz, CDCl₃, ppm) $\delta = 6.88-6.91$ (dd, J = 7.5 Hz, 2H, ArH), 6.91-6.92 (dd, J = 7.5 Hz, 2H, ArH), 6.99-7.01 (d, J = 10 Hz, 3H, ArH), 7.02-7.06 (m, 4H, ArH), 7.08-7.11 (m, 3H, ArH), 7.11-7.18 (m, 2H, ArH), 7.21-7.29 (m, 4H, ArH), 10.13 (brs, 1H, NH). ¹³C NMR (125 MHz, CDCl₃, ppm) $\delta = 126.21$, 126.84, 127.23, 128.02, 128.06, 128.13, 128.32, 129.12, 130.00, 130.60, 133.59, 135.46, 138.38, 138.77, 142.26, 178.40.

Synthesis of mercury Nanoparticles (HgNPs):

Aqueous solution of 0.1 M HgCl₂ (110 μ L) was added to a 3 ml solution of compound **3** (0.2 mM) in H₂O/THF (1:1, v/v). The reaction was stirred at room temperature for 12 min and formations of nanoparticles take place. These nanoparticles solution was used as such in the catalytic experiment.

Table S1: Comparison of present method over other reported procedure in literature for the preparation of HgNPs

S. No.	Publication	Reagents Used	Method of formation of HgNPs	Reaction time to prepare HgNPs	Reaction temp. (in °C)	Reducing agent or surfactants	Size of HgNPs
1	Present manuscript	Compound 3 in Water/THF and HgCl ₂	Wet chemical method	12 min	Room Temperature	No	5-20 nm
2	Sensors and Actuators B, 2012, 173 , 745- 751	0.02 M (HgCl ₂), 1 M HCl solution, 0.4 M NaOH, 0.1 M hydrazine and 0.5% ibuprofen	Wet Chemical	1.5 min	Room temperature	Hydrazine ibuprofen	2-9 nm
3	<i>Chem. Mater.</i> 2011, 23 , 5231- 5236	Mercury(I) nitrate dehydrate, HNO ₃ , Polyvinyl alcohol	Chemical method	10 min	25ºC	poly(vinyl alcohol)	≥15 nm
4	<i>Bioresource</i> <i>Technology</i> 2011, 102 ,4281-4284	Enterobacter sp. Strain maintained at 4°C in agar slants	Microbial synthesis	10 min	4ºC	Bacterial strain	2-5 nm (at pH 8.0)
5	Applied Surface Science, 2009, 256 , 438-442	Bacterial cell (DH5α),10 mM mercuric acetate	Microbial synthesis	-	-	Bacterial strain	5-10 nm
6	<i>Appl. Phys. Lett.</i> 2009, 94 .	DNA, EDTA, Nucleic bases	templated on plasmid DNA	-	-	EDTA	50 nm to 10 μm
7	<i>Adv. Mater.</i> 2008, 20 , 1000- 1002	$Hg(CH_3)_2$ in N_2 atm. Followed by heating	RAPET. Method	3 h	800°C	No	0.5 μm
8	Acoustical Physics 2006, 52 , 2	Bulk mercury	Ultrasonic Method (melting and freezing processes)	-	Room temp.	-	6-8 nm

Table S2: Comparison of catalytic activity of HgNPs for formation of primary amides from aldehydes via aldoximes over other reported methods:

Sr. No.	Publication	Catalyst used	Catalyst Amount	Nano catalysis	Reusability	Reaction Time	Temp (in °C)
1.	Present manuscript	HgNPs	0.5 ^a -1 ^b	Yes	Yes	5ª- 12 ^b h	RT ^a -85°C ^b
2.	Catal. Sci. Technol., 2015, 5 ,199–205	NH ₂ /SBA-15/Cu and SBA-15/En–Cu	5 mol%	No	Yes	2h	80°C
3.	Catal. Sci. Technol., 2014, 4 , 988–996	[Cp*Ir(H2O) ₃][OTf] ₂	1.5 mol%	No	No	12h	110°C
4.	Green Chem., 2013, 15 , 2447–2456	arene–ruthenium(II) complexes	3 mol%	No	Yes	7h	100°C
5.	Org. Biomol.chem, 2013, 11 , 2466–2472	Pd(en)(NO ₃) ₂	10 mol%	No	No	3.5-16h	60°C
6.	<i>Adv. Synth. Catal.</i> 2011, 353 , 3262 – 3268	RhCl(PPh ₃) ₃	0.1-10 mol%	No	No	24h	110°C
7.	J. Org. Chem., 2010, 1197–1202	[(IPr)Au(NTf ₂)], AgBF ₄	5 mol%	No	No	20h	100°C
8.	<i>Adv. Synth. Catal.</i> 2010, 352 , 288 – 292	Pd(OAc) ₂	5 mol%	No	No	12h	125°C
9.	<i>Adv. Synth. Catal.</i> 2009, 351 , 1807 – 1812	Rh catalyst	1mol %	No	No	6h	80°C
10.	<i>Chem. Asian J.</i> 2008, 3, 1715 – 1721	Rh(OH) _x /Al ₂ O ₃	4 mol%	No	Yes	7h	160°C
11.	Angew. Chem. Int. Ed. 2007, 46 , 5202–5205	Rh(OH) _x /Al ₂ O ₃	4 mol %	No	Yes	7h	160°C

^a electron donating groups; ^b electron withdrawing groups

Table S3: Comparison of catalytic activity HgNPs for the formation of secondary amides from ketoximes

 over other reported methods:

S. No	Publication	Catalyst used	Catalyst Amount	Nano catalysis	Reusability	Reaction time	Temp. required (in °C)
1	Present manuscript	HgNPs	0.5 mol%	Yes	Yes	30-90 min	80°C
2	<i>Tetrahedron Letters</i> 2014, 55 , 1136- 1140	H3PW12O40 (DTPA)	0.05 mmol	No	Yes	2-6.5 h	Refluxing
3	J.Org. Chem., 2013, 78, 4297-4302	Tosyl chloride (TsCl)	5-30 mol%	No	No	2 h	90°C
4	<i>Tetrahedron</i> <i>Letters</i> ,2010, 51 , 739-743	Bromodimethylsulf onium bromide(BDMS), imidazolium-based ionic liquid [bmim]PF ₆	(20 mol%)	No	Yes	2h	80°C
5	<i>Tetrahedron Letters</i> 2007, 48 , 2639-2643	Diethyl chlorophosphate	5 mmol	No	No	20 min	Reflux
6	J. Org. Chem. 2007, 72, 4536-4538	HgCl ₂	12 mol%	No	No	8 h	80
7	Journal of Molecular Catalysis A: Chemical 2006, 250 , 100–103	Silica sulphate	100 mg	No	Yes	3 h	microwave irradiation
8	<i>Tetrahedron Letters</i> 2005, 46, 671-674	chlorosulfonic acid	0.4 ml, 6 mmol	No	No	0.5 h	90
9	<i>Tetrahedron</i> <i>Letters</i> ,2003, 44 , 755-756	Chloral hydrate	0.5mmol	No	No	6.5 h	140
10	Tetrahedron Letters 2002, 43 , 2455-2457	Metaboric acid	3 mmol	No	No	17 h	140-145
11	<i>Org. Lett.</i> ,2001, 3 , 2	$[RhCl(cod)]_2 \\ (p-tol)_3P \\ CF_3SO_3H$	1-5mol%	No	No	3 h	Reflux

Fig. S1 Fluorescence spectrum of derivative 3 (5 μ M) showing the variation of fluorescence intensity in various H₂O/THF mixtures; $\lambda_{ex} = 485$ nm.

Fig. S2 Spectra showing the variation of fluorescence intensity of derivative 3 (5 μ M) in H₂O/THF mixture (0 to 90% volume fraction of water in THF); $\lambda_{ex} = 485$ nm.

Fig. S3 Dynamic light scattering (DLS) results showing the variation in particle size diameter with increasing water content in THF solution of 3. (A) 10% (B) 30% and (C) 50% water content in THF solution of 3.

Fig. S4 (A) Polarized optical micrographs of derivative **3** at room temperature through crossed polarizing filters (B) SEM images of **3** showing the formation of aggregates in water/THF solution (1:1 v/v). Scale bar1 μ m

Fig. S5 Fluorescence spectra of compound 3 (5 μ M) showing the variation of fluorescence intensity in TEG/THF mixture (0 to 70% volume fraction of TEG in THF); $\lambda_{ex} = 485$ nm.

Fig. S6 Fluorescence spectra of derivative 3 (5 μ M) showing the variation of fluorescence intensity with increase in temperature in H₂O/THF mixture (1:1, v/v); $\lambda_{ex} = 485$ nm.

Fig. S7 Exponential fluorescence decays of 3 on addition of water fraction measured at 530 nm. Spectra were acquired in Water/THF mixture (0 to 50% volume fraction of water in THF), λ_{ex} = 486 nm.

Water fraction %	Quantum Yield (Φ _f)	A ₁ /A ₂	τ ₁ (ns)	τ ₂ (ns)	<i>k_f</i> (10 ⁹ S ⁻¹)	k _{nr} (10 ⁹ S ⁻¹)
0	0.0004	56/44	1.09	6.43	0.00036	0.917
50	0.006	30/70	1.28	8.85	0.00067	0.112

Table S4 Fluorescence lifetime of derivative **3** in absence and presence of water (50%) in THF for the emission at 530 nm. **A**₁, **A**₂: fractional amount of molecules in each environment. τ_{I} , τ_{2} and τ_{avg} : biexponential and average life time of aggregates in 50 vol% of water in THF; k_{f} : radiative rate constant ($k_{f} = \Phi_{f}/\tau_{avg}$); k_{nr} : non-radiative rate constant ($k_{nr} = (1 - \Phi_{f})/\tau_{avg}$); $\lambda_{ex} = 486$ nm.

Fig. S8 Concentration dependent ¹H NMR spectrum of compound **3**, (a) 2 mg (b) 5 mg and (c) 10 mg each in 0.6 ml CDCl₃. NMR frequency is 300 MHz.

Fig. S9A UV-vis spectra of derivative 3 (5 μ M) upon additions of 18 equiv. of various metal ions as their chloride salt in H₂O/THF (1:1, v/v) mixture.

Fig. S9B UV-vis spectra of derivative 3 (5 μ M) upon additions of 18 equiv. of various metal ions as their perchlorate salt in H₂O/THF (1:1, v/v) mixture.

Fig. S10 UV-vis spectra of compound 3 (5 μ M) showing the response to the Hg²⁺ ion (0-18 equiv.) in H₂O/THF (1:1, v/v) mixture, Inset photographs (Under 365 nm UV-light) (a) before and (b) after the addition of Hg²⁺ ion.

Fig. S11 Graphical representation of the rate of formation of HgNPs of derivative **3**; (a) Time (min) vs. absorbance plot at 290 nm; (b) regression plot of a.

The first order rate constant for the formation of nanoparticles was calculated from the changes of intensity of absorbance of aggregates of derivative 3 in the presence of Hg²⁺ ions at different time interval.

From the time vs. absorbance plot at fixed wavelength 290 nm by using first order rate equation we get the rate constant = $k = slope \times 2.303 = 0.100172 \times 2.303 = 0.230 \text{ min}^{-1} = 3.84 \times 10^{-3} \text{ S}^{-1}$.

Fig. S12 Fluorescence spectrum of derivative 1b (5 μ M) (blue line), derivative 3 (pink dotted line), derivative 3-Hg²⁺ (red dotted line) showing the variation of fluorescence in H₂O/THF mixtures (1:1v/v). λ ex = 485 nm.

Fig. S13 Fluorescence excitation spectrum of **3** in H₂O/THF (1:1, v/v) mixture addition of Hg²⁺ ions for the emission at 570 nm ($\lambda_{em} = 570$ nm).

Fig. S14 (a) Showing the fluorescence intensity of compound 3 and (b) Calibrated curve showing the fluorescence intensity of compound 3 at 570 nm as a function of Hg²⁺ ions concentration (equiv.) in H₂O/THF (1:1, v/v) buffered with HEPES, pH =7.05, λ_{ex} = 485nm.

```
Multiple R = 0.983094,

R<sup>2</sup> = 0.966474,

Standard deviation = 0.005,

Observation = 10,

Intercept = 148.60,

Slope = 2095636
```

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor **3** without Hg^{2+} was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

 $DL = 3 \times SD/S$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

S =2095636, and SD value is 0.005

Thus using the formula we get the Detection Limit (DL) = $3 \times 0.005/2095636 = 7.15 \times 10^{-9}$ M = 7.15 nM

Fig. S15A Fluorescence response of 3 (5.0 μ M) to various metal ions of chloride salts (36 equiv.) in H₂O/THF (1:1, v/v) mixture buffered with HEPES; pH = 7.05; λ_{ex} = 485 nm. Bars represent the emission intensity ratio (I-I₀)/I₀×100 (I₀ and I are the initial and final fluorescence intensity at 570 nm before and after the addition of metal ions). (a) Blue bars represent selectivity of 3 upon addition of different metal ions. (b) Green bars represent competitive selectivity of receptor 3 toward Hg²⁺ ions (18 equiv.) in the presence of other metal ions (36 equiv.).

Fig. S15B Fluorescence response of **3** (5.0 μ M) to various metal ions of **perchlorate salts** (36 equiv.) in H₂O/THF (1:1, v/v) mixture buffered with HEPES; pH = 7.05; $\lambda_{ex} = 485$ nm. Bars represent the emission intensity ratio (I-I₀)/I₀×100 (I₀ and I are the initial and final fluorescence intensity at 570 nm before and after the addition of metal ions). (a) Blue bars represent selectivity of **3** upon addition of different metal ions. (b) Green bars represent competitive selectivity of receptor **3** toward Hg²⁺ ions (18 equiv.) in the presence of other metal ions (36 equiv.).

Fig. S16 Exponential fluorescence decays of **3** on addition of Hg²⁺ ions measured at 570 nm. Spectra were acquired in H₂O/THF (1:1, v/v) mixture buffered with HEPES; pH = 7.05; λ ex = 486 nm

Hg ²⁺ (equiv.)	Quantum Yield	A_1/A_2	τ ₁ (ns)	$ au_2$ (ns)	k_f (10 ⁹ S ⁻¹)	k_{nr} (10 ⁹ S ⁻¹)
0	0.006	79/21	0.523	5.58	0.0114	1.9
18	0.12	35/65	2.96	6.92	0.017	0.12

Table S5 Fluorescence lifetime of derivative **3** in absence and presence of Hg²⁺ ions (18 equiv.) in H₂O/THF (1:1, v/v) mixture buffered with HEPES; pH = 7.05; at 570 nm. A₁, A₂: fractional amount of molecules in each environment. τ_1 and τ_2 : biexponential life time of aggregates in 50 vol% of water in THF; k_f : radiative rate constant ($K_f = \Phi_f / \tau_{avg}$); K_{nr} : non-radiative rate constant ($K_{nr} = (1 - \Phi_f) / \tau_{avg}$); $\lambda_{ex} = 486$ nm.

Fig. S17 Dynamic light scattering (DLS) results showing the variation in particle size of derivative $3+Hg^{2+}$ ion in presence of Water/THF (1:1, v/v) mixture.

Fig. S18 (A) Polarized optical micrographs and (B) Confocal image of compound 3 in the H₂O-THF (1:1, v/v) solvent mixture in presence of Hg²⁺ ions; $\lambda_{ex} = 485$ nm.

Fig. S19 Overlay ¹H NMR spectra of (a) compound 3 and (b) compound 3 + HgCl₂ after filtration with THF in CDCl₃.

(a) Compound 3	(b) Compound 3 + Hg ²⁺ , after	$\Delta \delta_1 = \delta_3 - \delta_F$
(δ_3, ppm)	filtration by THF	
	(δ_F, ppm)	
▲ 12 21 (a OU)	12.16	0.15
★ 13.31 (\$, -OH)	13.16	0.15
◆ 9.47 (s, -N=CH)	9.32	0.15
8.63 (s, aromatic)	8.48	0.15
8.19 (d, aromatic)	8.16	0.03
7.93 (d, aromatic)	7.90	0.03
7.85 (m, aromatic)	7.78	0.07
7.75 (d, aromatic)	7.68	0.07
7.66 (d, aromatic)	7.58	0.08
7.52 (t, aromatic)	7.46	0.06
7.37 (t, aromatic)	7.28	0.09
7.12 (d, aromatic)	7.06	0.06
4.19 (t, -NCH ₂)	4.12	0.07

Table S6 Change in chemical shift (δ) value of ¹H NMR spectra (a) compound 3 and (b) compound $\mathbf{3} + \mathbf{HgCl}_2$ after filtration with THF in CDCl₃.

Fig S20 UV-vis spectra of derivative 3 (5 μ M) showing the response to the Hg²⁺ ion (0-18 equiv.) in THF

Fig S21 Catalyst-reusability in rearrangement reaction of 4-methoxy acetophenone oxime (6b) entry 2 in Table S7.

6a-g Scheme 2: Catalytic activity of HgNPs in synthesis of amides from corresponding ketoximes.

Table	S7	HgNPs	catalysed	Beckmann	rearrangement	of	various	ketoximes	to	corresponding
amides	s/lact	ams.								

Entry	Reactant (Ketoxime)	Product (Amide/lactam)	Time	(%) Yield	Mp (Lit.)
1	Me 6a	H N O 7a	30min	97	114(114-115) ^{3a}
2	MeO 6b	MeO 7b H Me	20min	98	129(130) ^{3b}
3	Me Me 6c	Me 7c	25min	94	145(151) ^{3b}
4	N ^{OH} O ₂ N ^{6d}	NO_2 Td H Ne O O	40min	91	214(216) ^{3b}
5	N_OH CI6e	CI 7e	1h	92	178(179) ^{3b}
6	HO 6f	O NH 7f	1.5h	86	69(69) ^{3c}
7	N_OH 6g	H N O 7g	1.2h	94	163(162-165) ^{3a}

^{3a} A. R. Sardarian, Z. S. -Fard, H. R. Shahsavari and Z. Ebrahimi, *Tetrahedron Letters*, 2007, 48, 2639; ^{3b}A. R. Katritzky, U. Maran, M. Karelson and V. S. Lobanov, *J. Chem. Inf. Comput. Sci.*, 1997, 37, 913; ^{3c} D. Crespy and K. Landfester, *Macromolecules*, 2005, 38, 6882.

Fig. S22 UV-vis spectra showing conversion of 4-methoxyacetophenone oxime (**6b**) to 4-methoxyacetanilide (**7b**) by *in situ* generated HgNPs in acetonitrile at different time interval (24 min).

Fig. S23 Graphical representation of the rate of formation of 4-methoxyaacetanilide (a) Time (min) vs. absorbance plot at 241 nm (b) regression plot of a.

The first order rate constant for the formation of 4-methoxyaacetanilide (7b) was calculated from the changes of intensity of absorbance of 4-methoxyacetophenone oxime (6b) in the presence of HgNPs at different time interval.

From the time vs. absorbance plot at fixed wavelength² 241 nm by using first order rate equation we get the rate constant = $k = slope \times 2.303 = 0.129374 \times 2.303 = 0.297 \text{ min}^{-1} = 4.96 \times 10^{-3} \text{ S}^{-1}$.

²C. J. Giffney and C. J. O Connor, J. Chem. Soc., Perkin Trans. 2, 1975, 706.

Fig. S24 UV-vis spectra showing conversion of 4-methylacetophenone oxime (6c) to 4methylacetanilide (7c) by *in situ* generated HgNPs in acetonitrile at different time interval (30 min.).

Fig. S25 Graphical representation of the rate of formation of 4-methylacetanilide. (a) Time (min) vs. absorbance plot at 242 nm (b) regression plot of a.

The first order rate constant for the formation of 4-methylacetanilide (7c) was calculated from the changes of intensity of absorbance of 4-methylacetophenone oxime (6c) in the presence of HgNPs at different time interval.

From the time vs. absorbance plot at fixed wavelength² 242 nm by using first order rate equation we get the rate constant = $k = slope \times 2.303 = 0.057249 \times 2.303 = 0.132 \text{ min}^{-1} = 2.19 \times 10^{-3} \text{ S}^{-1}$.

²C. J. Giffney and C. J. O Connor, J. Chem. Soc., Perkin Trans. 2, 1975, 706.

Scheme 3 Proposed Mechanism for rearrangement aldoxime to primary amide.

Scheme 4 Proposed Mechanism for rearrangement ketoxime to secondary amide.

Table	S8	HgNPs	catalysed	Beckmann	reaction	of	4-methoxyacetophenone
oxime	(6b)	using va	irious amou	unt of HgNP	S		

Entry	HgNPs	Time	Yield (%)	TON	TOF (h ⁻¹)
	(ppm)				
1	5000 (0.5 mol%)	20 min	98	196	588
2	1000 (0.1 mol%)	1.6 h	96	960	600
3	100 (0.01 mol%)	4 h	91	9100	2275
4	10 (0.001 mol%)	12 h	86	86000	7166
5	0 (mol%)	24 h	0	0	0

Scheme 5 Synthesis of phenanthroline and cyclopentadieneone based amides using Beckmann rearrangement in the presence of HgNPs (1and 0.5mol% respectively)

 $^1\mathrm{H}$ NMR spectrum of derivative 1b in CDCl_3

Fig. S26 ¹H NMR spectrus bf derivative 1b in CDCl₃

¹³C NMR spectrum of derivative **1b**

Fig. S27 ¹³C NMR spectrum of derivative 1b.

S33 Fig. S28 ESI-MS Mass spectrum of derivative 1b.

FT-IR Spectrum of compound 1b:

Agilent Resolutions Pro

S34 Fig. S29 FT-IR Spectrum of compound 1b:

Fig. S30 ¹H NMR spectrum of derivative 3 in CDCl₃.

 $^{13}\mathrm{C}$ NMR spectrum of derivative **3**

Fig. S31 ¹³C NMR spectrum of derivative 3 in CDCl₃.

Mass spectrum of derivative 3:

Fig. S32 MALDI-TOF Mass spectrum of derivative 3

FT-IR Spectrum of compound 3

Agilent Resolutions Pro

Fig. S33 FT-IR Spectrum of compound 3.

Fig. S34 ¹H NMR spectrum of derivative 4a in CDCl₃

Fig. S35 13 C NMR spectrum of derivative 4a in CDCl₃

Fig. S36 ¹H NMR spectrum of derivative 5a in CDCl₃

Fig. S37 ¹³C NMR spectrum of derivative 5a in CDCl₃

Fig. S38 ¹H NMR spectrum of derivative 4b in CDCl₃

Fig. S39 ¹³C NMR spectrum of derivative 4b in CDCl₃

Fig. S40 ¹H NMR spectrum of derivative 5b in CDCl₃

Fig. S41 ¹³C NMR spectrum of derivative 5b in CDCl₃

Fig. S42 ¹H NMR spectrum of derivative 4c in CDCl₃

Fig. S43 ¹³C NMR spectrum of derivative 4c in CDCl₃

Fig. S44 ¹H NMR spectrum of derivative 5c in CDCl₃

Fig. S45 ¹³C NMR spectrum of derivative 5c in CDCl₃

Fig. S46 ¹H NMR spectrum of derivative 4d in CDCl₃

Fig. S47 13 C NMR spectrum of derivative 4d in CDCl₃

Fig. S48 ¹H NMR spectrum of derivative 5d in CDCl₃

Fig. S49 ¹³C NMR spectrum of derivative 5d in CDCl₃

Fig. S50 ¹H NMR spectrum of derivative 4e in CDCl₃

Fig. S51 ¹³C NMR spectrum of derivative 4e in CDCl₃

Fig. S52 ¹H NMR spectrum of derivative 5e in CDCl₃

ſ

Fig. S54 ¹H NMR spectrum of derivative 4f in CDCl₃

Fig. S56 ¹H NMR spectrum of derivative 5f in $CDCl_3$

Fig. S57 ¹³C NMR spectrum of derivative 5f in CDCl₃

Fig. S59 ¹³C NMR spectrum of derivative 6a in CDCl₃

Fig. S61 ¹H NMR spectrum of derivative 7a in CDCl₃

Fig. S62 ¹H NMR spectrum of derivative 6b in CDCl₃

Fig. S63 ¹³C NMR spectrum of derivative 6b in CDCl₃

Fig. S64 ¹H NMR spectrum of derivative 7b in CDCl₃

Fig. S65 13 C NMR spectrum of derivative 7b in CDCl₃

Fig. S66 ¹H NMR spectrum of derivative 6c in CDCl₃

Fig. S67 ¹³C NMR spectrum of derivative 6c in CDCl₃

Fig. S68 ¹H NMR spectrum of derivative 7c in CDCl₃

Fig. S70 ¹H NMR spectrum of derivative 6d in CDCl₃

Fig. S71 ¹³C NMR spectrum of derivative 6d in CDCl₃

Fig. S72 ¹H NMR spectrum of derivative 7d in CDCl₃

Fig. S74 ¹H NMR spectrum of derivative 6e in CDCl₃

Fig. S75 ¹³C NMR spectrum of derivative 6e in CDCl₃

Fig. S76 ¹H NMR spectrum of derivative 7e in CDCl₃

Fig. S77 ¹³C NMR spectrum of derivative 7e in CDCl₃

Fig. S78 ¹H NMR spectrum of derivative 6f in CDCl₃

Fig. S79 ¹³C NMR spectrum of derivative 6f in CDCl₃

Fig. S80 ¹H NMR spectrum of derivative 7f in $CDCl_3$

Fig. S84 ¹H NMR spectrum of derivative 7g in CDCl₃

Fig. S85 13 C NMR spectrum of derivative 7g in CDCl₃

Fig. S86 ¹H NMR spectrum of derivative 8 in DMSO-d₆

Fig. S88 ¹H NMR spectrum of derivative 9 in DMSO-d₆

Fig. S89¹³C NMR spectrum of derivative 9 in DMSO-d₆

Fig. S90 ¹H NMR spectrum of derivative 10 in CDCl₃

Fig. S91 13 C NMR spectrum of derivative 10 in CDCl₃

Fig. S92 ¹H NMR spectrum of derivative 11 in $CDCl_3$

