Supporting Information

Materials and Chemicals. Asialofetuin from fetal calf serum (ASF) and myoglobin from horse heart (MYO), dithiothreitol (DTT), acetonitrile (ACN), ammonium bicarbonate (NH₄HCO₃), urea, MALDI matrix (α-cyano-4-hydroxycinna mic acid, CHCA), and trifluoroacetic acid (TFA) were obtained from Sigma-Aldrich. Sequencing grade modified trypsin was from Promega. The glyceol free peptide-N-glycosidase (PNGase F, 500 units/µL) was from New England Biolabs. Sep-Pak C18 columns were from Waters. Human serum were provided by Fudan University Shanghai cancer center and stored at – 80 °C before analysis. Ammonia, FeCl₃ • 6H₂O, ammonium acetate (NH₄Ac), sodium citrate, ethylene glycol, and tetraethyl orthosilicate (TEOS) were obtained from Sinoreagent Chemical Reagent Co. Ltd. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC) , and p-nitrobenzoic acid were obtained from Aladdin Chemical Reagent Co.,Ltd. Other chemical reagents were of analytical grade and obtained from Shanghai Chemical Reagent Co., Ltd., which were used as received without further puri fication. The water used in the experiments was ultrapure water obtained from a Milli-Q Water System (Millipore, Bedford, MA).

Preparation of Fe₃O₄ nanoparticles: The Fe₃O₄ nanoparticles were prepared through a modified solvothermal reaction. Typically, 1.35 g of FeCl₃· $6H_2O$, 3.85 g of NH₄Ac, and 0.40 g of sodium citrate were dissolved in 70 mL of ethylene glycol. The mixture were stirred vigorously for 1 h at 170 °C to form a homogeneous black solution and then transferred into a Teflon-lined stainless-steel autoclave (100 mL capacity). The autoclave was heated at 210 °C and maintained for 18 h; then it was cooled to room temperature. The black product was washed twice with ethanol and collected with the help of a magnet, and finally dried in the vacuum oven overnight at 40 °C.

Preparation of Fe₃O₄ (**@SiO₂ core-shell nanoparticles:** The Fe₃O₄(**@SiO₂** core-shell nanoparticles were prepared through a modified stober method. Typically, Fe₃O₄ nanoparticles (0.10 g) were dispersed in ethanol (80 mL) with 0.5 h sonication followed by a sequential addition of ammonia (25%, 1.00 mL), water (20.0 mL), and TEOS (1.0 mL), the resulting mixture was

stirred for 12 h at room temperature. The product was washed several times with ethanol and water with the help of a magnet. The final product was dispersed in iso-propanol for further use.

Synthesis of nitrobenzol silane coupling agents (NBTES): (3-aminopropyl)triethoxysilane (884 mg, 4.00 mmol), p-nitrobenzoic acid (668 mg, 4.00 mmol), EDC (958mg, 5.00 mmol) and ACN (80 mL) were taken in 150 mL round bottom flask and stirred at room temperature over night. The mixture was concentrated under reduced pressure and was dissolved in 50 mL ethyl acetate. The solvent was washed by 50 mL 1M KHSO₄ aqueous solution and 50 mL 1 M NaHCO₃ aqueous solution. The oil phase was concentrated under reduced and purified by flash chromatography on silica gel using ethyl acetate to afford pure NBTES as pale yellow solid (952 mg, 64.3%):1H NMR(400MHz,d6-DMSO):8 8.80(s, 1H), 8.31(d, 2H), 8.07(d, 2H), 3.75(q, 2H), 1.59(m, 2H),1.15(t, 9H), 0.60(t. 2H);13C NMR:164.52(NHCO), 148.91(NO₂C), 140.41(COC), 128.66(CH), 123.49(CH), 56.10(CH2), 42.57(CH2), 23.51(CH2), 18.56(CH3), 11.39(CH2);

Preparation of Fe₃O₄@SiO₂-Aniline nanoparticles: The Fe₃O₄@SiO₂-Aniline nanoparticles were prepared by modified the Fe₃O₄@SiO₂ nanoparticles with NBTES and then reduced by zinc powder, briefly. 200 mg Fe₃O₄@SiO₂ was dispersed in 60 mL of isopropanol, and then 50 mg NBTES was added into the suspension. After the reaction solution was mechanically stirred for 24 h, the Fe₃O₄@SiO₂-Nitrobenzol was collected by magnetic separation and dispersed in 60 mL saturated NH₄Cl aqueous solution with 10% DMF. Then, 100 mg Zinc powder was added into the dispersion solvent. After 1 hour mechanical stirring, the products were collected by magnetic separation and washed with ethanol and water, finally dried in the vacuum oven overnight at 40 °C for further use. It was documented that the yield of reduction of nitro group to aniline with Zinc powder in NH₄Cl aqueous solution were almost above 84% [T. Takehito, T, Hirohisa, Green Chem., 2001, 3, 37–38]. This is the reason that we chose the present synthesis method.

Enrichment of N-glycoproteome with $Fe_3O_4@SiO_2$ -Aniline nanoparticles and nano1DLC-MS/MS analysis: The serum was thawed on wet ice, and 1 µL of serum sample was diluted with 20 µL denaturing solution which contained 60 mM NH₄HCO₃ and 8 M urea. The mixture was treated with 10 mM dithiothreitol (DTT) at 57° C for 30 min and alkylated with 20 mM

iodoacetamide (IAA) at room temperature for 1 h in the dark. Prior to digestion, the solution was diluted with 25 mM NH₄HCO₃ until the final concentration of urea was less than 1.5 M. Trypsin was added according to the enzyme-to-substrate ratio of 1:30 (w/w) and hydrolyzed for 16 h under gentle shaking. The digests were desalted by C_{18} columns and the eluted peptides were lyophilized for further use. The lyophilized serum sample was redissolved in oxidation buffer (pH=5.5) containing 100 mM sodium acetate and 150 mM NaCl. Then the cis-diols of carbohydrate groups on the glycopeptides were oxidized by 10 mM sodium periodate (NaIO₄) at room temperature for 1 h in the dark under constant shaking, followed by the use of 20 mM sodium sulfite to quench the oxidation through incubating for another 10 min at room temperature. The oxidized samples were lyophilized and and resuspended in the coupling solution. The Aniline-functional nanoparticles which had been prewashed twice with the coupling solution (70% methanol and 30% acetic acid (v/v)) was added with the mass ratio of protein: Fe3O4@SiO2-Aniline of 1:1 and incubated at 60 °C for 4 h under constant shaking and then a magnetic was used to collect the Fe₃O₄@SiO₂-Aniline nanoparticles. The mass ratio of protein: Fe3O4@SiO2-Aniline was optimized and determined using standard protein mixutres using the following method. To determine the mass ratio of Fe₃O₄@SiO₂-Aniline nanoparticles to protein digests, different amounts of mass ratio of Fe₃O₄@SiO₂-Aniline nanoparticles were used to enrich glycopeptides from asialofetuin digests. In detail, 1 mg of the digest was enriched with different amounts Fe₃O₄@SiO₂-Aniline nanoparticles (0.2, 1, 5 and 10 mg) under the optimized temperature, solvent and et al. Each sample solution after glycopeptide enrichment was spotted onto six different wells on a MALDI plate. The mean relative intensities of a representative deglycopeptides m/z 3017 were plotted against the addition amounts of Fe₃O₄@SiO₂-Aniline. The mass ratio of protein digests to Fe₃O₄@SiO₂-Aniline is approximatly 1 mg protein/per mg Fe₃O₄@SiO₂-Aniline (Figure S7). Then, the nanoparticles were washed with washing buffers sequentially. Afterward, the deglycosylated peptides were released through incubation the nanoparticle with 50 mM NH₄HCO₃ containing 1 µL of PNGase F (500 units per μ L) at 37 °C overnight. The supernatant containing the released deglyosylated peptides was collected through magnet separation and lyophilized for nano-LC MS/MS analysis. The nano-LC MS/MS analysis was performed on a LC-20AD system (Shimadzu, Tokyo, Japan) connected to a LTQ orbitrap mass spectrometer (Thermo Electron, Bremen, Germ any) equipped with an online nanoelectrospray ion source (Michrom Bioresources, Auburn, CA). The lyophilized sample was resuspended with 5% ACN containing 0.1% FA. Then the sample solution was injected into a CAPTRAP column (0.5×2 mm, MICHROM Bioresources, Auburn, CA) in 4 min with a flow rate of 20 µL/min. Subsequently, a linear gradient of acetonitrile of from 5 to 45% (95% ACN in 1% FA) over 100 min at a flow rate of 500 nL/min was applied. The separated samples were introduced into the mass spectrometer via an ADVANCE 30 µm silica tip (MICHROM Bioresources, Auburn CA). The spray voltage was set at 1.6 kV, and the capillary was heated to 180 °C. The mass spectrometer was operated in a data-dependent mode. For each cycle of duty, it consisted of one full-MS survey scan at the mass range of 400 –2000 Da with a resolution power of 100000. Then MS/MS scan was conducted for eight of the most abundant precursor ions by LTQ section with a dynamic exclusion duration of 90 s. Only peaks with the charge of 2+ and 3+ could be selected for the MS/MS run. The AGC expectation during full MS and MS/MS were 1 × 10⁶ and 10000, respectively. All tandem mass spectra were collected through the LTQ section using collision-induced dissociation with helium as the collision gas and a normalized collision energy value set as 35.0%. The system control and data collection were achieved through Xcalibur, version 1.4 (Thermo).

Data analysis: The data derived from the ESI MS/MS analysis was searched by SEQUEST, against a composite database, including both original and reversed human protein database of international protein index (Combine.human.uniprot.sprot.090210.fasta). The relevant parameters were set to the following modifications: enzyme was selected as trypsin (partially enzymatic). A maximum of two missed cleavages (MCs) was allowed. Carboxamidomethylation (C, 57.02150) was set as a fixed modification and the oxidation (M, 15.99492) as well as asparagine deglycosylation (N, 0.98402) were set as variable modifications. Precursor mass and fragment mass tolerance were 10 ppm and ± 0.6 Da for the SEQUEST search. Mass value was set as monoisotopic. To statistically validate the accuracy of peptide assignments to tandem mass spectra from SEQUEST, Trans-Proteomic Pipeline (TPP) was applied to effectively compute the probability for the likelihood of each identification being correct in a data-dependent fashion. Only those peptides that passed the peptide probability threshold 0.95 were accepted for further data interpretation. The Asn modification that did not occur in the N-X-S/T motif (X \neq P) was eliminated to ensure the false positive rate below 1% for the identified glycosylation sites.

Figure S1 H¹ NMR and (b) C¹³ NMR spectra of the nitrobenzol functionalized silane coupling agent (NBTES).

	ZETA Potential
Fe ₃ O ₄ @SiO ₂	-20.4 mV
Fe ₃ O ₄ @SiO ₂ -Nitrobenzol	-16.3 mV
Fe ₃ O ₄ @SiO ₂ -Aniline	+ 6.3 mV

Figure S2 Proposed main reaction pathways of the nonreductive amination reaction. Generally, carbonyl groups would combine acid molecules via Hydrogen bonds under weakly acidic conditions, and this led to the enhancement of carbonyl groups' electrophilicity. Then, the amino groups attack the carbonyl groups. After the proton transfer and dehydration processes, the imine bonds found as it was shown.

Figure S3 The enrichment procedure of hydrazide chemistry-based method, reductive amination-based method and nonreductive amination-based method.

Figure S4 MALDI-TOF mass spectra of tryptic digest mixture of asialofetuin (with a mole ratio of ASF: MYO=1:1) after enrichment using $Fe_3O_4@SiO_2$ -Aniline and delycosylation by PNGase F. The enrichment was perforemed in different coupling buffer (a) 50% ACN with 1% TFA, (b) 70% methanol and 30% acetic acid (v/v), (c) 70% ACN and 30% acetic acid (v/v) and (d) NH₄Ac aqueous (pH 2.0) . "#" represent the deglycosylated glycopeptides.

Figure S5 MALDI-TOF mass spectra of tryptic digest mixture of asialofetuin and myoglobin (with a mole ratio of ASF: MYO=1:1) after enrichment using $Fe_3O_4@SiO_2$ -Aniline and delycosylation by PNGase F. The enrichment was performed with different coupling time (a) 30 min, (b) 2 h, (c) 4 h and (d) 8 h. "#" represent the deglycosylated glycopeptides.

Figure S6 MALDI-TOF mass spectra of tryptic digest mixture of asialofetuin and myoglobin (with a mole ratio of ASF: MYO=1:1) after enrichment using $Fe_3O_4@SiO_2$ -Aniline and delycosylation by PNGase F. The enrichemnt was performed under different coupling temperature (a) 37 °C, (b) 60 °C and (c) 75 °C. "#" represent the deglycosylated glycopeptides.

Figure S7 Influence of the Fe_3O_4 ($@SiO_2$ -Aniline amounts on the enrichment of glycopeptides from the asialofetuin digests.

Figure S8 MALDI-TOF mass spectra of tryptic digest mixture of asialofetuin and myoglobin (with a mole ratio of ASF: MYO=1:1) after enrichment using $Fe_3O_4@SiO_2$ -Aniline and delycosylation by PNGase F. The enrichment was performed (a) without and (b) with the addition of a reductive reagent during the coupling process. "#" represent the deglycosylated glycopeptides.

Figure S9 MALDI-TOF mass spectra of tryptic digest mixture of asialofetuin MYO=1:100) myoglobin (with а molar ratio of ASF: direct analysis and (a) (b) analysis after isolation by Fe₃O₄@SiO₂-Aniline and deglycosylation by PNGase F. "#" represent the deglycosylated glycopeptides.

Figure S10 MALDI-TOF mass spectra of tryptic digest of asialofetuin after isolation by $Fe_3O_4@SiO_2$ -Aniline and deglycosylation by PNGase F. The initial concentration of asialofetuin digests is 5.0 ng/µL. "#" represent the deglycosylated glycopeptides.

No	Protein	Description	Peptide Sequence
1	P01024	Complement C3	TVLTPATNHMGN#VTFTIPANR
	AACT_		
	HUMAN		
2	P02768	Serum albumin	CTAFHDN#ETFLK
	ALBU_		EFN#ETFTFHADICTLSEK
	HUMAN		LVN#VTEFAK
			YICEN#DSISSK
3	P01009	Alpha-1-	YLGN#ATAIFFLPDEGK
	A1AT_H	antitrypsin	QLAHQSN#STNIFFSK
	UMAN		EGLNFN#LTEIPEAQIHEGFQELLR
4	P02787 T	Haptoglobin	R.QQQHLFGSN#VTDCSGNFCK
	RFE_HU		AVAN#FSGSCAPCA
	MAN		QQQHLFGSN#VTDCSGNF
			CGLVPVLAENYN#KSDNCE
5	P00450 C	Ceruloplasmin	EHEGAIYPDN#TTDFQR
	ERU_H		EN#LTAPGSDSAVFFEQGTTR
	UMAN		MLLATEEQSPGEGDGN#VTR
			NN#GTYYSPNYNPQSR
			SVVDEN#FSWYLEDNIK
			ELHHLQEQN#VSNAFLDK
6	P01023	Alpha-2-	SIN#TTNVMGTSLTVR
	A2MG_	macroglobulin	ETTFN#STLLCPSGGEVSEELSLK
	HUMAN		FSGQLN#STHGCFYQQVK
			HNVYIN#GTYTPVSSTNEK
			SLGNVN#FTVSAEALESQELCGTEV
			PSVPEHGR
			VSN#QTLSLFF
			NEANYYSN#ATTDEHGLVQF
			YILN#GTLLGLK
7	P04114	Apolipoprotein	R.FN#SSYLQGTNQITGR.Y
	APOB_H	B-100	QVLFLDTVYGN#CSTHF
	UMAN		

Table S2List of identified glycoproteins from $1 \ \mu L$ human serum after solidphase extractionwith Fe₃O₄@SiO₂-Aniline, N# denotes the N-linked glycosylation site.

8	P10909 C	Clusterin	KKEDALN#ETR
	LUS_HU		LAN#LTQGEDQYYLR
	MAN		QLEEFLN#QSSPF
			MLN#TSSLLEQLNEQF
9	P0C0L4	Complement	GLN#VTLSSTGR.
	CO4A_H	C4-A	FSDGLESN#SSTQFEVK
	UMAN		GLN#VTLSSTGR
			LVN#GSHISLSK
10	P01011	Alpha-1-	HPNSPLDEEN#LTQENQDR
	AACT_	antichymotrypsi	FN#LTETSEAEIHQSF
	HUMAN	n	NSPLDEEN#LTQENQDR
			AFLSLGAHN#TTLTEILK
			TLN#QSSDELQLSMGNAMFVK
11	P00738	Haptoglobin	NLFLN#HSEN#ATAK
	HPT_HU		SPVGVQPILN#HTF
	MAN		VVLHPN#YSQVDIGLIK
			MVSHHN#LTTGATLINEQWLLTTAK
			VDSGN#DTDIADDGCPKPPEIAHGY
			VEHSVR
12	P01857 I	Ig gamma-1	EEQYN#STYR
	GHG1_H	chain C region	SCSVMHEALHN#HTQK
	UMAN		N#VSLTCLVK
13	Q14624 I	Inter-alpha-	LPTQN#ITFQTESSVAEQEAEFQSPK
	TIH4_H	trypsin inhibitor	
	UMAN	heavy chain H4	
14	P19827 I	Inter-alpha-	AN#LSSQALQMSLDYGFVTPL
	TIH1_H	trypsin inhibitor	
	UMAN	heavy chain H1	
15	P02765 F	Alpha-2-HS-	KVCQDCPLLAPLN#DTR
	ETUA_H	glycoprotein	AALAAFNAQNN#GSNFQLEEISR
	UMAN		
16	P02766 T	Transthyretin	EVVFTAN#DSGPR
	THY_H		
	UMAN		

17	P01876 I GHA1 _HUMA N	Ig alpha-1 chain region	LAGKPTHVN#VSVVMAEVDGTCY
18	P04004 VTNC_ HUMAN	Vitronectin	N#ISDGFDGIPDNVDAALALPAHSY NN#ATVHEQVGGPSLTSDLQAQSK
19	P01871 I	Ig mu chain C	YKN#NSDISSTR
	GHM_H	region	THTN#ISESHPN#ATF
	UMAN		GLTFQQN#ASSMCVPDQDTAIR
			STGKPTLYN#VSLVMS
20	P02774	Vitamin D-	LCDN#LSTK
	VTDB_	binding protein	
	HUMAN		
21	P01859 I	Ig gamma-2	EEQFN#STFR
	GHG2_H	chain C region	SLSSVVTVPSSN#FTQTYTCNVDHK
	UMAN		PSNTK
22	P11464	Pregnancy-	ETAYSN#ASLLIQN#VTR
		specific beta-1-	
		glycoprotein 1	
23	P11465	Pregnancy-	ETAYSN#ASLLIQN#VTR
		specific beta-1-	
		glycoprotein 2	
24	P04196	Histidine-rich	HSHNN#NSSDLHPHK
	HRG_H	glycoprotein	VIDFN#CTTSSVSSALANTK
	UMAN		
25	P01042	Kininogen-1	SIVQTN#CSK
	KNG1_H		
	UMAN		
26	P36955 P	epithelium-	VTQN#LTLIEESLTSEFIHDIDR
	EDF_HU	derived factor	
	MAN	Haptoglobin	
27	P01008	Antithrombin-III	WVSN#KTEGR
	ANT3_H		LGACN#DTLQQLMEVFK

	UMAN		N#ETYQDISELVYGAK
			ITDVIPSEAIN#ETVL
28	P08185 C	Corticosteroid-	AQLLQGLGFN#LTER
	BG_HU	binding globulin	
	MAN		
29	Q08380	Galectin-3-	TVIRPFYLTN#SSGVD
	LG3BP_	binding protein	
	HUMAN		
30	P02763	Alpha-1-acid	QDQCIYN#TTYLNVQR
	A1AG1_	glycoprotein 1	YFTPN#KTEDTIFLR
	HUMAN		LVPVPITN#ATLDQITGK
			CANLVPVPITN#ATLDQITGK
31	P00734 T	Prothrombin	GHVN#ITR
	HRB_H		SEGSSVN#LSPPLEQCVPDR
	UMAN		
32	P00739	Haptoglobin-	NLFLN#HSEN#ATAK
	HPTR_H	related protein	
	UMAN		
33	P27169 P	Serum	VTQVYAEN#GTVLQGSTVASVYK
	ON1_HU	paraoxonase/ary	VAEGFDFANGIN#ISPDGK
	MAN	lesterase 1	
34	P25311 Z	Zinc-alpha-2-	DIVEYYNDSN#GSHVLQGR
	A2G_HU	glycoprotein	
	MAN		
35	P43652	Afamin	DIENFN#STQK
	AFAM_		AESPEVCFN#ESPK
	HUMAN		
36	P13645	Keratin, type I	NQILN#LTTDNANILLQIDNAR
		cytoskeletal 10	N#VSTGDVNVEMNAAPGVDLTQLL
			NNMR
			TIDDLKNQILN#LTTDNANILLQIDN
			AR
37	P35527	Keratin, type I	N#YSPYYNTIDDLKDQIVDLTVGNN
		cytoskeletal 9	К

38	P20742	Pregnancy zone	TFSSMTCASGAN#VSEQLSLKLPSN
		protein	VVK
39	P05787	Keratin, type II	LESGMQN#MSIHTK
		cytoskeletal 8	
40	P02750	Leucine-rich	DKMFSQN#DTR
		alpha-2-	
		glycoprotein	
41	P13647	Keratin, type II	AQYEEIAN#RSR
		cytoskeletal 5	
42	P01616	Ig kappa chain	FSGSGSGTN#FTLK
		V-II region MIL	
43	P15924	Desmoplakin	AN#SSATETINK
44	P35659	Protein DEK	KNQN#SSKK
45	P23471	Receptor-type	N#FTLRNTK
		tyrosine-protein	CN#MSSDGSEHSLEGQK
		phosphatase zeta	
46	P05155 I	Plasma protease	TN#LSILSYPK
	C1_HU	C1 inhibitor	VGQLQLSHN#LSLVILVPQNLK
	MAN		VLSN#NSDANLELINTW
47	P05090	Apolipoprotein	ADGTVNQIEGEATPVN#LTEPAK
	APOD_	D	N#ITSNNIDVK
	HUMAN		
48	P02748 C	Complement	AVN#ITSENLIDDVVSLIR
	O9_HU	component	
	MAN	С9	
49	P02749	Beta-2-	VYKPSAGN#NSLYR
	APOH_	glycoprotein 1	FICPLTGLWPIN#STLK
	HUMAN		LGN#WSAMPSCK
			DTAVFECLPQHAMFGN#DTITCTTH
			GN#WTK
50	P02745 C	Complement	NQEEPYQN#HSGR
	1QA_HU	C1q	
	MAN	subcomponent	
		subunit A	

51	P02751 F	Fibronectin	LDAPTNLQFVN#ETDSTVLVR
	INC_HU		
	MAN		
52	P02790	Hemopexin	N#GTGHGN#STHHGPEYMR
	HEMO_		ALPQPQN#VTSLLGCTH
	HUMAN		SWPAVGN#CSSALR
53	P03952	Plasma	LQAPLN#YTEFQKPICLPSK
	KLKB1_	kallikrein	IYPGVDFGGEELN#VTFVK
	HUMAN		
54	P04003 C	C4b-binding	FSLLGHASISCTVEN#ETIGVWRPSP
	4BPA_H	protein alpha	РТСЕК
	UMAN	chain	
55	P04217	Alpha-1B-	FQSPAGTEALFELHN#ISVA
	A1BG_H	glycoprotein	LHDNQN#GSGDSAPVELILS
	UMAN		
56	P04220	Ig mu heavy	THTN#ISESHPN#ATF
	MUCB_	chain disease	
	HUMAN	protein	
57	P04278 L	Sex hormone-	THSCPQSPGN # GTDASH
	UM_HU	binding globulin	
	MAN		
58	P51884 I	Lumican	AFEN#VTDLQWLILDHNLLENSK
	C1_HU		LGSFEGLVN#LTF
	MAN		
59	P05546	Heparin cofactor	N#LSMPLLPADFHK
	HEP2_H	2	
	UMAN		
60	P07996 T	Thrombospondi	VVN#STTGPGEHLR
	SP1_HU	n-1	
	MAN		
61	P0C0L5	Complement	GLN#VTLSSTGR
	CO4B_H	C4-B	
	UMAN		
62	P08603 C	Complement	MDGASN#VTCINSR

	FAH_H	factor H	AQTTVTCMEN#WSPTPR
	UMAN		ISEEN#ETTCYMGK
			SPDVIN#GSPISQK
			IPCSQPPQIEHGTIN#SSR
63	P19652	Alpha-1-acid	QNQCFYN# SSYLNVQR
	A1AG2_	glycoprotein 2	YFTPN#KTEDTIFLR
	HUMAN		
64	P19823 I	Inter-alpha-	VVN#NSPQPQNVVFDVQIPK
	TIH2_H	trypsin inhibitor	GAFISN#FSMTVDGK
	UMAN	heavy chain H2	
65	P25090 F	N-formyl	ETN#FSTPLNEYEEVSYESAGYTVLR
	PR2_HU	peptide receptor	
	MAN	2	
66	P29622	Kallistatin	SQILEGLGFN#LTELSESDVHR
	KAIN_H		
	UMAN		
67	P35542 S	Serum amyloid	LFGN#SSTVLEDSK
	AA4_HU	A-4 protein	
	MAN		
68	P53396	ATP-citrate	ILIIGGSIAN#FTNVAATFK
	ACLY_	synthase	
	HUMAN		
69	P60174 T	Triosephosphate	SN#VSDAVAQSTR
	PIS_HU	isomerase	
	MAN		
70	Q14624 I	Inter-alpha-	LPTQN#ITFQTESSVAEQEAEFQSPK
	TIH4_H	trypsin inhibitor	
	UMAN	heavy chain H4	
71	Q8WVE	N(6)-adenine-	EN#FSIYIFEYDK
	0 N6MT2	specific DNA	
	_HUMA	methyl-	
	Ν	transferase 2	
72	Q08999	Retinoblastoma-	GKEEN#LTGFLEPGNFGESFKAINK
	RBL2_H	like protein 2	

	UMAN		
73	Q96PD5	N-	SLN#ATELDPCPLSPELLGLTK
	PGRP2_	acetylmuramoyl	
	HUMAN	-L-alanine	
		amidase	
74	Q96N67	Dedicator of	KYLPVGCVTFQN#ISSNVLEESAVSD
	DOCK7_	cyto-kinesis	DV
	HUMAN	protein 7	
75	Q4G0N4	NAD kinase	QGN#LSLPLNR
	CE033_	domain-	
	HUMAN	containing	
		protein 1	
76	Q06033 I	Inter-alpha-	KNAHGEEKEN#LTAR
	TIH3_H	trypsin inhibitor	
	UMAN	heavy chain H3	
77	Q6N021	Protein TET2	LQN#GSPLPER
	TET2_H		
	UMAN		
78	Q6MZM	Hephaestin-	VFNEN#ESWYLDDNIK
	0 HPHL1	like protein 1	
	_HUMA		
	N		
79	P22792 C	Carboxypep	AFGSNPN#LTK
	PN2_HU	tidase N subunit	
	MAN		
80	P09871 C	Complement	N#GSWVNEVLGPELPK
	1S_HUM	C1s	
	AN	subcomponent	