Supporting Information for

A highly efficient one-pot strategy to β-ketophosphonates:

sliver/copper-catalyzed direct oxyphosphorylation of alkynes

with *H*-phosphonates and oxygen in the air

Xin Chen, ^a Xu Li, ^a Xiao-Lan Chen,^{*, a} Ling-Bo Qu, ^{*,a,b} Jian-Yu Chen, ^a Kai Sun, ^a Zhi-Dong Liu,^a Wen-Zhu Bi, ^a Ying-Ya Xia, ^a Hai-Tao Wu,^a and Yu-Fen Zhao^{*,a,c}

- ^a College of Chemistry and Molecular Engineering, Zhengzhou University, Henan Province, Zhengzhou, 450052, (P. R. China);
- ^b Chemistry and Chemical Engineering School, Henan University of Technology, Henan Province, Zhengzhou, 450052, (P. R. China);
- ^c Department of Chemistry, Xiamen University, Xiamen, 361005, (P. R. China)

E-mail: <u>chenxl@zzu.edu.cn</u>

Table of Contents

1.	³¹ P NMR stacks diagram for Scheme 2(S2)
2.	General information(82)
3.	Experimental procedures for the synthesis of β-Ketophosphonates (S3)
4.	Characterization data for products(S3-S14)
5.	¹ H NMR, ¹³ C NMR, ³¹ P NMR and HRMS copies of products(S14-S68)

1. ³¹P NMR stacks diagram for Scheme 2.

Fig. S1 ³¹P NMR stacks diagram for Scheme 2. Reaction conditions: **1a** (0.3 mmol), **2a** (0.45 mmol), AgNO₃ (5.0 mol%), CuSO₄•5H₂O (10.0 mol%), K₂S₂O₈ (4 equiv), CH₂Cl₂-H₂O (v/v = 1/1) (5.0 mL) at room temperature for 3 h. The whole process was monitored by ³¹P NMR every 25 min (comp-**2a**, 7.1 ppm; comp-**3a**, 20.6 ppm; comp-**11a**, -0.8 ppm).

 31 P NMR traced the progress of the reactions. Besides the main product **3a**, the 31 P NMR stacks diagram shown in Fig. S1 proved the formation of dialkyl phosphate 11a. Besides the main product 3a, the ³¹P NMR stacks diagram shown in Fig. S1 proved the formation of dialkyl phosphate 11a. In addition, ³¹P NMR stacks diagram didn't offer support for the formation of alkynlphosphates in the reaction process. ³¹P NMR signal from alkynylphosphate should appear at around -5 ppm (J. Am. Chem. Soc. 2009, 131, 7956). But no trace of such a signal was detected by ³¹P NMR. Zhao' group has reported that copper-catalyzed aerbic oxidative coupling of terminal alkynes with H-phosphonates can lead to the formation of alknylphosphonates in high yield (J. Am. Chem. Soc. 2009, 131, 7956). However, with the same materials, alknylphosphonates were not detected under our different reaction conditions, implying that the target products, β ketophosphonates, were not possibly formed via the hydration of alkynylphophonates in our cases. It is quite understandable, because we have already known that this one-pot reaction proceeds via a radical chain mechanism. The mechanism proposed in Scheme 2 does not support the formation of alkynylphosphate in the reaction process. The last strong support for our proposed mechaniem is from the formation of product **3aa**, which was synthesized starting from 1-phenyl-1-propyne, an internal aromatic alkyne. It is clear that it is only terminal alkynes that can react with H-

phosphonates via an aerobic oxidative coupling reaction to generate alkynylphosphonates (*J. Am. Chem. Soc.* 2009, **131**, 7956). Here, the formation of **3aa** once again offers support for the radical mechanism shown in Scheme 2 and excludes the possibility of formation of β -ketophosphonates via a hydration of alkynylphosphate.

2. General information

All commercial reagents and solvents were used without further purification. ¹H and ¹³C NMR spectra were recorded in CDCl₃ with tetramethylsilane (TMS) as the internal standard, and ³¹P NMR spectra were obtained in CDCl₃ with H₃PO₄ as the internal standard. High resolution mass spectra (HRMS) were performed on a Q-TOF mass spectrometer. Column chromatography was carried out on columns of silica gel (200-300 mesh).

3. Experimental procedures for the synthesis of β -Ketophosphonates

Alkynes 1 (0.3 mmol), *H*-phosphonates 2 (0.45 mmol), AgNO₃ (0.015 mmol), CuSO₄·5H₂O (0.03 mmol), and K₂S₂O₈ (4 equiv) were dissolved in round-bottomed flask and stirring at room temperature for 3 h in an air atmosphere. The reaction mixture was quenched with water (5.0 mL), extracted with ethyl acetate (3×5.0 mL). The combined organic layers were washed with brine (15.0 mL) and dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated in vacuo. The crude product was purified by silica gel chromatography (petroleum ether: ethyl acetate =1:1) to give the desired product.

4. Characterization data for products

The Characterization data of 3a^[1,2]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.99 (d, 2H, 2'-H, J = 7.6 Hz), 7.56 (t, 1H, 4'-H, J = 7.2 Hz), 7.45 (t, 2H, 3'-H, J = 7.6 Hz), 4.15-4.08 (m, 4H, 2-H), 3.64 (d, 2H, 3-H, J = 22.8 Hz), 1.25 (t, 6H, 1-H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 192.0 (d, C-4, J_{P-C} = 6.5 Hz), 136.5 (C-1'), 133.6 (C-4'), 129.0 (C-2'), 128.6 (C-3'), 62.7 (d, C-2, J_{P-C} = 6.4 Hz), 38.4 (d, C-3, J_{P-C} 129.3 Hz), 16.194 (d, C-1, J_{P-C} = 6.2 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 21.3; HRMS: calcd for C₁₂H₁₇O₄P [M+H]⁺ 257.0937, found 257.0939.

The Characterization data of 3b ^[1, 2]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 8.04 (d, 2H, 2'-H, J = 7.2 Hz), 7.59 (t, 1H, 4'-H, J = 7.6 Hz), 7.49 (t, 2H, 3'-H, J = 8.0 Hz), 4.80-4.69 (m, 2H, 2-H), 3.61 (d, 2H, 3-H, J = 22.8), 1.29 (dd, 12H, 1-H, J = 3.2 Hz, 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 192.1 (d, C-4, $J_{P-C} = 6.6$ Hz), 136.7 (C-1'), 133.5 (C-4'), 129.1 (C-2'), 128.5 (C-3'), 71.5 (d, C-2, $J_{P-C} = 6.6$ Hz), 39.7 (d, C-3, $J_{P-C} = 129.5$ Hz), 23.8 (dd, C-1, $J_{P-C} = 5.1$ Hz, 21.1Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 17.7; HRMS: calcd for C₁₂H₁₇O₄P [M+Na]⁺ 307.1070, found 307.1069.

The Characterization data of 3c^[1,3]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.95 (d, 2H, 2'-H, J = 7.6 Hz), 7.84-7.79 (m, 4H, 6'-H), 7.52-7.46 (m, 3H, 3', 4'-H), 7.42-7.35 (m, 6H, 7', 8'-H), 4.25 (d, 2H, 2-H, J = 15.2 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 193.1 (d, C-2, J_{P-C} = 5.1 Hz), 136.9 (C-1'), 133.6 (C-4'), 132.2 (d, C-8', J_{P-C} = 2.7 Hz), 131.7 (d, C-5', J_{P-C} = 103.1 Hz), 131.2 (d, C-6', J_{P-C} = 9.9 Hz), 129.2 (C-2'), 128.6 (d, C-7', J_{P-C} = 12.4 Hz), 128.5 (C-3'), 42.9 (d, C-1, J_{P-C} = 52.4Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 28.0; HRMS: calcd for C₂₀H₁₇O₂P [M+H]⁺ 321.1039, found 321.1040 **The Characterization data of 3d** ^[1, 2]:

$$4'$$
 $4'$ $C = CH_2 = P$ $C = CH_2 = P$ $C = 1$ $C = CH_2 = P$ $C = 1$ $C = 1$

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.96 (dd, 2H, 2'-H, J = 0.8, 1.2 Hz), 7.81-7.76 (m, 2H, 6'-H), 7.57-7.52 (m, 2H, 3'-H), 7.48-7.41 (m, 4H, 4', 7', 8'-H), 4.17-3.90 (m, 2H, 3-H), 3.80 (dd, 2H, 2-H, $J_{P-H}=$ 4.4Hz, 18.8Hz), 1.26 (t, 3H, 1-H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 192.2 (d, C-4, $J_{P-C}=$ 5.5 Hz), 136.8 (C-1'), 133.5 (C-4'), 132.7 (d, C-8', $J_{P-C}=$ 2.8 Hz), 131.8 (d, C-6', $J_{P-C}=$ 10.2 Hz), 130.1 (d, C-5', $J_{P-C}=$ 132.0 Hz) 129.1 (C-2'), 128.6 (d, C-7', $J_{P-C}=$ 13.2 Hz) 128.5 (d, C-3'), 61.5 (d, C-2, $J_{P-C}=$ 6.3 Hz), 43.0 (d, C-3, $J_{P-C}=$ 85.8 Hz), 16.3 (d, C-1, $J_{P-C}=$ 6.5 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 34.4; HRMS: calcd for C₁₆H₁₇O₃P [M+Na]⁺ 311.0808, found 311.0811

The Characterization data of 3e^[4, 5, 11]:

$$5 \xrightarrow{4'} \xrightarrow{1'} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{1'} \xrightarrow{0} \xrightarrow{1'} \xrightarrow{0} \xrightarrow{1'} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{1'} \xrightarrow{0} \xrightarrow{1'} \xrightarrow{0} \xrightarrow{0} \xrightarrow{1'} \xrightarrow{1$$

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.92 (d, 2H, 3'-H, J = 8.0 Hz), 7.28 (d, 2H, 2'-H, J = 8.0 Hz), 4.17-4.10 (m, 4H, 2-H), 3.61 (d, 2H, 3-H, J = 22.8 Hz), 2.42 (s, 3H, 5-H), 1.29 (t, 6H, 1-H, J = 6.8Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 191.5 (d, C-4, J_{P-C} = 3.2Hz), 144.6 (C-4'), 134.1 (C-1'), 129.3 (C-3'), 129.2 (C-2'), 62.6 (d, C-2, J_{P-C} = 6.5 Hz), 38.4 (d, C-3, J_{P-C} = 129.2 Hz), 21.7 (C-5), 16.2 (d, C-1, J_{P-C} = 6.2 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 20.0; HRMS: calcd for C₁₃H₁₉O₄P [M+H]⁺ 271.1094, found 271.1095.

The Characterization data of 3f^[2]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.91 (d, 2H, 3'-H, J = 8.4 Hz), 7.26 (d, 2H, 2'-H, J = 8.0 Hz), 4.75-4.67 (m, 2H, 2-H), 3.55 (d, 2H, 3-H, J = 23.2 Hz), 2.40 (s, 3H, 5-H), 1.27 (dd, 12H, J = 4.0 Hz, 6.4Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 191.6 (d, C-4, J_{P-C} = 6.7 Hz), 144.5 (C-4'), 134.3 (C-1'), 129.3 (C-3'), 129.2 (C-2'), 71.4 (d, C-2, J_{P-C} = 6.7 Hz), 39.6 (d, C-3, J_{P-C} = 129.4

Hz), 23.8 (dd, C-1, $J_{P-C} = 5.2$ Hz, 21.3 Hz), 21.6 (C-5); ³¹P NMR (CDCl₃, 400 MHz) δ : 17.9; HRMS: calcd for C₁₅H₂₃O₄P [M+Na]⁺ 321.1226, found 321.1228.

The Characterization data of 3g^[6]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz) δ : 7.85-7.80 (m, 6H, 7', 8'-H), 7.45 (t, 2H, 3'-H, J = 7.2 Hz), 7.36-7.32 (m, 4H, 6'-H), 7.12 (d, 2H, 2'-H, J = 8.0 Hz), 4.33 (d, 2H, 1-H, J = 15.6 Hz), 2.33 (s, 3H, 3-H); ¹³C NMR (CDCl₃, 100 MHz); δ : 193. (C-2), 144.7 (C-4'), 134.3 (C-1'), 132.148 (d, C-8', J_{P-C} = 2.6 Hz), 131.4 (d, C-6', J_{P-C} = 10.1 Hz), 131.3 (C-2', C-5', J_{P-C} = 104.1 Hz), 129.4 (C-3'), 129.2 (C-2'), 128.6 (d, C-7', J_{P-C} = 12.4 Hz), 42.9 (d, C-1, J_{P-C} = 60.1 Hz), 21.6 (C-3); ³¹P NMR (CDCl₃, 400 MHz) δ : 29.4; HRMS: calcd for C₂₁H₁₉O₂P [M+H]⁺ 335.1195, found 335.1197 **The Characterization data of 3h:**

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.85 (d, 2H, 6'-H, J = 8.4Hz),7.80-7.75 (m, 2H, 7'-H), 7.55-7.51 (m, 1H, 8'-H), 7.46-7.42 (m, 2H, 3'-H), 7.21 (d, 2H, J = 8.0 Hz), 4.12-3.88 (m, 2H, 2-H), 3.76 (dd, 2H, 3-H, J = 4.4 Hz, 18.4 Hz), 1.25 (t, 3H, 1-H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 191.7 (d, C-4, J_{P-C} = 5.5Hz), 144.4 (C-4'), 134. 4 (C-1'), 132.6 (d, C-8', J_{P-C} = 2.8 Hz), 131.8 (d, C-6', J_{P-C} = 10.1 Hz), 130.2 (d, C-5', J_{P-C} = 131.9 Hz,) 129.2 (C-3'), 129.2 (C-2'), 128.6 (d, C-7', J_{P-C} = 13.2 Hz), 61.4 (d, C-2, J_{P-C} = 6.2 Hz), 42.9 (d, C-3, J_{P-C} = 86.0 Hz), 21.7 (C-5), 16.3 (d, C-1, J_{P-C} = 6.5 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 34.6; HRMS: calcd for C₁₇H₁₉O₃P [M+Na]⁺ 325.0964, found 325.0966

The Characterization data of 3i:

Yellow oil, ¹H NMR (CDCl₃ 400 MHz,) δ : 7.95 (d, 2H, 3'-H, J = 8.4 Hz), 7.31 (d, 2H, 2'-H, J =

8.4 Hz), 4.18-4.11 (m, 4H, 2-H), 3.62 (d, 2H, 3-H, J = 22.8 Hz), 2.75-2.69 (q, 2H, 5-H), 1.31-1.25 (m, 9H, 1, 6-H, overlap); ¹³C NMR (CDCl₃, 100 MHz); δ : 191.5 (C-4, $J_{P-C} = 6.5$ Hz), 150.8 (C-4'), 134.3 (C-1'), 129.3 (C-2'), 128.1 (C-3'), 62.6 (d, C-2, $J_{P-C} = 6.5$ Hz), 38.4 (d, C-3, $J_{P-C} = 129.1$ Hz), 28.9 (C-5), 16.3 (d, C-1, $J_{P-C} = 6.4$ Hz), 15.1 (C-6); ³¹P NMR (CDCl₃, 400 MHz) δ : 20.3; HRMS: calcd for C₁₄H₂₁O₄P [M+H]⁺ 285.1250, found 285.1251.

The Characterization data of 3j:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.89 (d, 2H, 3'-H, J = 8.4 Hz), 7.23 (d, 2H, 2'-H, J = 8.4Hz), 4.73-4.61 (m, 2H, 2-H), 3.55-3.49 (d, 2H, 3-H, J = 22.8), 2.68-2.62 (q, 2H, 5-H), 1.24-1.18 (m, 15H, 1,6-H); ¹³C NMR (CDCl₃, 100 MHz); δ : 191.6 (d, C-4, J_{P-C} = 6.5 Hz), 150.5 (C-4'), 134.4 (C-1'), 129.3 (C-2'), 127.9 (C-3'), 71.3 (d, C-2, J_{P-C} = 6.6 Hz), 39.6 (d, C-3, J_{P-C} = 129.5 Hz), 28.9 (C-5), 23.8 (dd, C-1, J_{P-C} = 3.7, 5.1Hz), 15.1 (C-6); ³¹P NMR (CDCl₃, 400 MHz) δ : 18.3; HRMS: calcd for C₁₆H₂₅O₄P [M+Na]⁺ 335.1383, found 335.1384.

The Characterization data of 3k ^[2, 4]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.98 (d, 2H, 2'-H, J = 8.8 Hz), 6.93 (d, 2H, 3'-H, J = 8.8 Hz), 4.15-4.08 (m, 4H, 2-H), 3.854 (s, 3H, 5-H), 3.57 (d, 2H, 3-H, J = 22.4 Hz), 1.27 (t, 6H, 1-H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 190.26 (d, C-4, J_{P-C} = 6.3), 163.9 (C-4'), 131.5 (C-2'), 129. 6 (C-1'), 62.6 (d, C-2, J_{P-C} = 7.5Hz), 55.5 (C-5), 38.2 (d, C-3, J_{P-C} = 28.9 Hz), 16.2 (d, C-1, J_{P-C} = 6.2 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 20.4; HRMS: calcd for C₁₃H₁₉O₅P [M+Na]⁺ 309.0862, found 309.0862.

The Characterization data of 31^[7]:

$$H_{3}CO_{3'} \xrightarrow{2'}_{1'} H_{3'} \xrightarrow{0}_{4'} \xrightarrow{0}_{5'} \xrightarrow{0}_{4'} \xrightarrow{0}_{3'} \xrightarrow{0}_{4'} \xrightarrow{0}_{4'} \xrightarrow{0}_{5'} \xrightarrow{0}_{1'} \xrightarrow{0$$

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.53 (d, 1H, 6'-H, J = 2.4 Hz), 7.52 (s, 1H, 2'-H), 7.38 (t, 1H, 5'-H, J = 7.6 Hz), 7.15-7.12 (q, 1H, 4'-H), 4.17-4.10 (m, 4H, 2-H), 3.85 (s, 3H, 5-H), 3.62 (d, 2H, 3-H, J = 22.4 Hz), 1.28 (t, 6H, 1-H, J = 6.8Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 191.8 (d, C-4, $J_{P-C} = 6.6$ Hz), 159.8 (C-3'), 137.8 (d, C-1', $J_{P-C} = 2.1$ Hz), 129.6 (C-2'), 121.9 (C-5'), 120.4 (C-6'), 112.8 (C-4'), 62.6 (d, C-2, $J_{P-C} = 6.5$ Hz), 55.4 (C-5), 38.5 (d, C-3, J = 129.4 Hz), 16.2 (d, C-1, J = 6.3 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 20.0; HRMS: calcd for C₁₃H₁₉O₅P [M+H]⁺ 287.1043, found 287.1043.

The Characterization data of 3m^[7]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.90 (d, 2H, 2'-H, J = 8.4 Hz), 7.639 (d, 2H, 4'-H, J = 8.8 Hz), 4.19-4.12 (m, 4H, 2-H), 3.61 (d, 2H, 3-H, J = 22.8 Hz), 1.30 (t, 6H, 1-H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 190.9 (d, C-4, J_{P-C} = 6.7 Hz), 135.2 (C-1'), 131.9 (C-3'), 130.6 (C-2'), 129.1 (C-4'), 62.8 (d, C-2, J_{P-C} = 6.5 Hz), 38.6 (d, C-3, J_{P-C} = 128.4 Hz), 16.3 (d, C-1, J_{P-C} = 6.2 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 20.3; HRMS: calcd for C₁₂H₁₆BrO₄P [M+H]⁺ 335.0042, found 335.0041.

The Characterization data of 3n^[2]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.85 (d, 2H, 2'-H, J = 8.4Hz), 7.56 (d, 2H, 3'-H, J = 8.8 Hz), 4.73-4.62 (m, 2H, 2-H), 3.51 (d, 2H, 3-H, J = 23.3 Hz), 1.23 (dd, 12H, 1-H, J = 2.4 Hz, 6.0 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 191.0 (d C-4, J_{P-C} = 6.6 Hz), 135.3 (C-1'), 131.8 (C-3'), 130.7 (C-2'), 128.8 (C-4'), 71.6 (d, C-2, J_{P-C} = 6.7 Hz), 39.9 (d, C-3, J_{P-C} = 128.7 Hz), 23.8 (dd,

C-1, $J_{P-C} = 5.2$ Hz, 18.9 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 17.2; HRMS: calcd for C₁₄H₂₀BrO₄P [M+H]⁺ 385.0175, found 385.0175.

The Characterization data of 30^[7]:

$$\begin{array}{c} 2' & 0 & 0 & 2 \\ 3' & 1' & 4 & 3 & 0 \\ F & 4' & 4 & 3 & 0 \end{array}$$

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 8.05-8.02 (q, 2H, 2'-H), 8.04 (d, 1H, 2'-H, J= 5.6 Hz), 8.02 (d, 1H, 2'-H, J = 5.2 Hz), 7.14-7.10 (t, 2H, 3'-H), 7.12 (t, C-3', J = 8.8 Hz) 4.15-4.07 (m, 4H, 2-H), 3.58 (d, 2H, 3-H, J = 22.8 Hz), 1.26 (t, 6H, 1-H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 190.3 (d, C-4, J_{P-C} = 6.4Hz), 166.1 (d, C-4', J_{F-C} = 254.6 Hz), 132.9 (C-1'), 131.8 (d, C-2', J_{F-C} = 9.5 Hz), 115.7 (d, C-3', J_{F-C} = 21.9 Hz), 62.7 (d, C-2, J_{P-C} = 6.5 Hz), 38. 6 (d, C-3, J_{P-C} = 128.7 Hz), 16.2 (d, C-1, J_{P-C} = 6.4Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 19.6; HRMS: calcd for C₁₂H₁₆FO₄P [M+H]⁺ 275.0843, found 275.0847.

The Characterization data of 3p^[2]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 8.04 (d, 1H, 2'-H, J = 5.6Hz), 8.02 (d, 1H, 2'-H, J = 5.2 Hz), 7.11 (t, 2H, 3'-H, J = 8.8 Hz), 4.74-4.63 (m, 2H, 2-H), 3.53 (d, 2H, 5-H, J = 22.8 Hz), 1.24 (dd, 12H, 1-H, J = 2.8Hz, 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 190.5 (d, C-4, J_{P-C} = 6.5 Hz), 167.5 (d, C-4', J_{F-C} = 254.1 Hz), 133.0 (C-1'), 131.9 (d, C-2', J_{F-C} = 9.4 Hz),115.6 (d, C-3', J_{F-C} = 21.7 Hz), 71.5 (d, C-2, J_{P-C} = 6.6 Hz), 39.8 (d, C-3, J_{P-C} = 128.9 Hz), 23.8 (dd, C-1, J_{P-C} = 4.0, 5.1 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 16.3; HRMS: calcd for C₁₄H₂₀FO₄P [M+Na]⁺ 325.0975, found 325.0979.

The Characterization data of 3q:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) *δ*: 8.03-7.99 (m, 2H, 2'-H), 7.82-7.77 (m, 2H, 6'-H),

7.58-7.54 (m, 1H, 8'-H), 7.48-7.44 (m, 2H, 7'-H), 7.10 (t, 2H, J = 8.4 Hz), 4.19-3.91 (m, 2H, 2-H), 3.81 (d, 2H, 3-H, J = 4.6 Hz), 1.26 (t, 3H, 1-H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 190.7 (d, C-4, $J_{P-C} = 5.4$ Hz), 166.0 (d, C-4', $J_{F-C} = 254.4$ Hz), 133.2 (C-1'), 132.8 (d, C-8', $J_{P-C} = 2.8$ Hz), 131.9 (d, C-2', $J_{P-C} = 3.8$ Hz), 131.9 (d, C-2', $J_{P-C} = 15.9$ Hz), 129.8 (d, C-5', $J_{P-C} = 132.7$ Hz), 128.7 (d, C-7', $J_{P-C} = 13.2$ Hz), 115.7 (d, C-3', $J_{P-C} = 21.8$ Hz), 61.7 (d, C-2, $J_{P-C} = 6.2$ Hz), 43.1 (d, C-3, $J_{P-C} = 85.6$ Hz), 16.3 (d, C-1, $J_{P-C} = 6.6$ Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 34.4; HRMS: calcd for C₁₆H₁₆FO₃P [M+H]⁺ 307.0894, found 307.0895.

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.34-7.28 (m, 2H, 3'-H), 7.02 (t, 1H, 4'-H, J = 7.2 Hz), 6.94-6.92 (m, 2H, 2'-H), 6.94 (dd, 2H, 2'-H, J = 0.8 Hz, J = 7.6 Hz), 4.74 (s, 2H, 5-H), 4.22-4.15 (m, 4H, 2-H), 3.30 (d, 2H, 3-H, J = 22.8 Hz), 1.34 (t, 6H, 1-H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 198.7 (d, C-4, J_{P-C} = 6.6Hz), 157.5 (C-1'), 129.7 (C-3'), 121.9 (C-4'), 114.6 (C-2'), 72.7 (C-5), 62. 9 (d, C-2, J_{P-C} = 6.3Hz), 38.6 (d, C-3, J_{P-C} = 127.0 Hz), 16.3 (d, C-1, J_{P-C} = 6.3 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 21.344; HRMS: calcd for C₁₃H₁₉O₅P [M+H]⁺ 287.1043, found 287.1044.

The Characterization data of 3s:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7. 29-7.25 (m, 2H, 3'-H), 6.97 (t, 1H, 4'-H, J = 7.2 Hz), 6.9 (d, 2H, 2'-H, J = 8.0 Hz), 4.77-4.69 (m, 4H, 2,5-H), 3.20 (d, 2H, 3-H, J = 22.8 Hz), 1.31 (d, 12H, 1-H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 198.3 (d, C-4, J_{P-C} = 6.5Hz), 157.6 (C-1'), 129.6 (C-3'), 121.7 (C-4'), 114.6 (C-2'), 72.6 (C-5), 71.8 (d, C-2, J_{P-C} = 6.6 Hz), 39.9 (d, C-3, J_{P-C} = 127.4 Hz), 23.9 (dd, C-1, J_{P-C} = 4.9 Hz, 15.7 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 16.7; HRMS: calcd for C₁₅H₂₃O₅P [M+H]⁺ 315.1356, found 315.1353.

The Characterization data of 3t:

$$3'$$
 $5'$ $4'$ $5'$ $6'$ $7'$ $8'$

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.77-7.72 (m, 2H, 6'-H), 7.52-7.48 (m, 1H, 8'-H), 7.44-7.39 (m, 2H, 7'-H), 7.22-7.180 (m, 2H, 3'-H), 6.91 (t, 2H, 4'-H, J= 7.2 Hz), 6.81 (d, 2H, 2'-H, J= 8.0 Hz), 4.66 (d, 2H, 5-H, J= 4.8 Hz), 4.13-3.86 (m, 2H, 2-H), 3.37 (d, 2H, 3-H, J= 18.0 Hz), 1.24 (t, 3H, 1-H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 198.5 (C-4), 157.5 (C-1'), 132.9 (d, C-8', J_{P-C} = 2.8 Hz), 131.6 (d, C-6', J_{P-C} = 10.4 Hz), 129.8 (d, C-5', J_{P-C} = 132.8 Hz), 129.5 (C-3'), 128.8 (d, C-7', J_{P-C} = 13.2 Hz), 121.6 (C-4'), 114.6 (C-2'), 73.1 (C-5), 61.7 (d, C-2, J_{P-C} = 6.1Hz) 42.9 (d, C-3, J_{P-C} = 84.3 Hz), 16.3 (d, C-5, J_{P-C} = 6.5 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 33.4; HRMS: calcd for C₁₇H₁₉O₄P [M+H]⁺ 341.0913, found 341.0922.

The Characterization data of 3u^[10]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.10 (d, 2H, 4'-H, *J*= 8.4 Hz), 6.82 (d, 2H, 2'-H, *J* = 8.8 Hz), 4.69 (s, 2H, 5-H), 4.21-4.14 (m, 4H, 2-H), 3.28 (d, 2H, 3-H, *J* = 22.8 Hz), 2.30 (s, 3H, 6-H), 1.34 (t, 6H, 1-H, *J* = 6.8Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 198.9 (d, C-4, *J*_{P-C} = 6.5Hz), 155.4 (C-1'), 131.2 (C-4'), 130.1 (C-3'), 114.4 (C-2'), 72.9 (C-5), 62.8 (d, C-2, *J*_{P-C} = 6.3 Hz), 38.6 (d, C-3, *J*_{P-C} = 127.0 Hz), 20.5 (C-6), 16.3 (d, C-1, *J*_{P-C} = 6.3 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 18.9; HRMS: calcd for C₁₄H₂₁O₅P [M+H]⁺ 301.1199, found 301.1200.

The Characterization data of 3v:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.30 (d, 2H, 3'-H, J = 8.8 Hz), 6.85 (d, 2H, 2'-H, J = 8.8 Hz), 4.82-4.74 (m, 2H, 2-H), 4.72 (s, 2H, 5-H), 3.22 (d, 2H, 3-H, J = 22.8 Hz), 1.34 (d, 12H, 1-H, J = 6.0 Hz), 1.30 (s, 9H, 7-H); ¹³C NMR (CDCl₃, 100 MHz); δ : 198.7 (d, C-4, J_{P-C} = 6.5 Hz),

155.4 (C-1'), 144.5 (C-4'), 126.4 (C-3'), 114.1 (C-2'), 72.9 (C-5), 71.7 (d, C-2, $J_{P-C} = 6.6$ Hz), 39.9 (d, C-3, $J_{P-C} = 127.5$ Hz), 34.1 (C-6), 31.7 (C-7), 23.9 (dd, C-1, $J_{P-C} = 5.0$ Hz, 16.2 Hz); ¹P NMR (CDCl₃, 400 MHz) δ : 16.6; HRMS: calcd for C₁₉H₃₁O₅P [M+H]⁺ 371.1982, found 371.1983. **The Characterization data of 3w:**

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.24 (d, 2H, 3'-H, J = 9.2 Hz), 6.86 (d, 2H, 2'-H, J = 8.8 Hz), 4.81-4.71 (m, 4H, 2,5-H), 3.19 (d, 2H, 3-H, J = 22.8 Hz), 1.34 (dd, 12H. 1-H. J = 1.6, 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 197.6 (d, C-4, $J_{P-C} = 6.5$ Hz), 156.3 (C-1'), 129. 5 (C-3'), 126.6 (C-4'), 115.9 (C-2'), 72.8 (C-5), 71.9 (d, C-2, $J_{P-C} = 6.7$ Hz), 40.1 (d, C-3, $J_{P-C} = 127.1$ Hz), 23.9 (dd, C-1, $J_{P-C} = 5.0$, 14.5 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 16.3; HRMS: calcd for C₁₅H₂₂ClO₅P [M+H]⁺ 349.0966, found 349.0974.

The Characterization data of 3x:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 8.221 (d, 2H, 3'-H, J = 9.2 Hz), 7.04 (d, 2H, 2'-H, J = 9.2 Hz), 4.96 (s, 2H, 5-H), 4.84-4.73 (m, 2H, 2-H), 3.21 (d, 2H, 3-H, $J_{P-C}= 23.2$ Hz), 1.37 (dd, 12H, 1-H, J = 4.0 Hz, 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 196.1 (d, C-4, $J_{P-C} = 6.3$ Hz), 162.5 (C-1'), 142.2 (C-4'), 125.9 (C-3'), 114.7 (C-2'), 72.7 (C-5), 72.2 (d, C-2, $J_{P-C} = 6.7$ Hz), 40.4 (d, C-3, $J_{P-C} = 126.3$ Hz), 23.9 (dd, C-1, $J_{P-C} = 4.8$ Hz, 12.7 Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 16.0; HRMS: calcd for C₁₅H₂₂NO₇P [M+Na]⁺ 371.0786, found 371.0783.

The Characterization data of 3y [9, 11]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ: 4.16-4.09 (m, 4H, 2-H), 3.17 (d, 2H, 3-H, *J* = 22.4 Hz), 2.19-2.13 (m, 1H, 5-H), 1.30 (t, 6H, 1-H, *J* = 7.2 Hz), 1.08-1.06 (m, 2H, 6-H), 0.96-0.91 (m, 2H,

6-H); ¹³C NMR (CDCl₃, 100 MHz); δ: 202. 1 (d, C-4, *J*_{P-C} = 5.7 Hz), 62.5 (d, C-2, *J*_{P-C} = 6.4 Hz), 43.3 (d, C-3, *J*_{P-C} = 126.9 Hz), 21.7 (C-5), 16.3 (C-1), 12.0 (C-6); ³¹P NMR (CDCl₃, 400 MHz) δ: 20.1; HRMS: calcd for C₉H₁₇O₄P [M+H]⁺ 221.0937, found 221.0937. **The Characterization data of 3z** ^[1]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 7.76 (dd, 2H, 2'-H, J = 7.6 Hz, J = 12.4 Hz), 7.55-7.51 (m, 1H, 4'-H), 7.47-7.42 (m, 2H, 3'-H), 4.15-3.87 (m, 2H, 2-H) 3.25 (d, 2H, 3-H, J = 18.4 Hz), 2.62-2.45 (m, 2H, 5-H), 1.50-1.42 (m, 2H, 6-H), 1.29-1.17 (m, 5H, 7, 1-H), 0.82 (t, 3H, 8-H, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz); δ : 202.5 (C-4), 132.8 (d, C-4', J_{P-C} = 2.8 Hz), 131.7 (d, C-2', J_{P-C} = 10.3 Hz), 129.9 (d, C-1', J_{P-C} = 131.7 Hz), 128.7 (d, C-3', J_{P-C} = 13.1 Hz), 61.5 (d, C-2, J_{P-C} = 6.1Hz) 46.5 (d, C-3, J_{P-C} = 85.1 Hz), 44.5 (C-5), 25.4 (C-6), 21.9 (C-7), 16.3 (d, C-1, J_{P-C} = 6.6 Hz), 13.8 (C-8); ³¹P NMR (CDCl₃, 400 MHz) δ : 34.6; HRMS: calcd for C₁₄H₂₁O₃P [M+H]⁺ 269.1301, found 269.1303.

The Characterization data of 3aa^[2]:

Yellow oil, ¹H NMR (CDCl₃, 400 MHz,) δ : 8.02 (d, 2H, 2'-H, J = 7.2 Hz), 7.59 (t, 1H, 4'-H, J = 7.6 Hz), 7.49 (t, 2H, 3'-H, J = 7.6 Hz), 4.26-4.06 (m, 5H, 2, 3-H), 1.56 (dd, 3H, 5-H, J = 5.6 Hz, 18.0 Hz), 1.30 (t, 6H, 1-H, J = 7.2 Hz); ¹³C NMR (CDCl₃,100 MHz); δ : 196.5 (d, C-4, $J_{P-C} = 5.0$ Hz), 136.9 (C-1'), 133.3 (C-4'), 128.8 (C-2'), 128.5 (C-3'), 62.7 (dd, C-2, J = 6.8Hz, $J_{P-C} = 10.3$ Hz), 41.3 (d, C-3, $J_{P-C} = 129.5$ Hz), 16.3 (dd, C-1, $J_{P-C} = 6.0$ Hz, 14.5Hz), 12.2 (d, C-5, $J_{P-C} = 6.6$ Hz); ³¹P NMR (CDCl₃, 400 MHz) δ : 23.4; HRMS: calcd for C₁₃H₁₉O₄P [M+H]⁺ 271.1094, found 271.1099.

References:

- 1. X. B. Li, G. B. Hu, P. Luo, G. Tang, Y. X. Gao, P. X. Xu, Y. F. Zhao, Adv. Synth. Catal. 2012, 354, 2427
- 2. Wei, and J. X. Ji, Angew. Chem. Int. Ed. 2011, 50, 9097.
- 3. 6. S. F. Zhou, D. P. Li, K. Liu, J. P. Zou, and O. T. Asekun, J. Org. Chem. 2015, 80, 1214.
- 4. K. M. Maloney, J. Y. L. Chung, J. Org. Chem. 2009, 74, 7574.
- 5. 10 G. P. Luke, C. K. Seekamp, Z. Q. Wang, B. L. Chenard, J. Org. Chem. 2008, 73, 6397.
- 6. D. P. Li, X. Q. Pan, L. T. An, J. P. Zou, and Wei Zhang, J. Org. Chem. 2014, 79, 1850.
- 7. W. Debrouwer, T. S. A. Heugebaert, K. V. Hecke, and C. V. Stevens, J. Org. Chem. 2013, 78, 8232.
- 8. D. Y. Kim, M. S. Kong, T. H. Kim. Synth. Commun. 1996, 13, 2487.
- 9. H. Huang, W. C. Chang, P. J. Pai, A. Romo, S. O. Mansoorabadi, D. H. Russell, and H. W. Liu, J. Am. Chem. Soc. 2012, 134, 86171.
- 10. J. P. Haeltersa, B. Corbela, and G. Sturtz, Phosphorus, Sulfur Silicon Relat. Elem. 1989, 1-2, 85.
- 11. L. Y. Xie, R. Yuan, R. G. Wang, Z. H. Peng, J. N. Xiang, W. M. He, Eur. J. Org. Chem. 2014, 2668.

5. ¹H NMR, ¹³C NMR, and HRMS (ESI) copies of products

Fig. 1 ¹H NMR spectrum of compound 3a

Fig. 2¹³C NMR spectrum of compound 3a

Fig. 3 ³¹P NMR spectrum of compound 3a

Fig. 4 HRMS spectrum of compound 3a

Fig. 7 ³¹P NMR spectrum of compound **3b**

Fig. 8 HRMS spectrum of compound 3b

Fig. 9 ¹H NMR spectrum of compound 3c

Fig. 10¹³C NMR spectrum of compound 3c

Fig. 11 ³¹P NMR spectrum of compound 3c

Fig. 12 HRMS spectrum of compound 3c

Fig. 15 ³¹P NMR spectrum of compound 3d

Fig. 16 HRMS spectrum of compound 3d

Fig. 17 ¹H NMR spectrum of compound 3e

Fig. 18 ¹³C NMR spectrum of compound 3e

Fig. 19 ³¹P NMR spectrum of compound 3e

Fig. 20 HRMS spectrum of compound 3e

Fig. 21 ¹H NMR spectrum of compound 3f

Fig. 22 ¹³C NMR spectrum of compound 3f

Fig. 23 ³¹P NMR spectrum of compound 3f

Fig. 24 HRMS spectrum of compound 3f

Fig. 25 ¹H NMR spectrum of compound 3g

Fig. 26 ¹³C NMR spectrum of compound 3g

Fig. 27 ³¹P NMR spectrum of compound 3g

Fig. 28 HRMS spectrum of compound 3g

Fig. 29 ¹H NMR spectrum of compound 3h

Fig. 30 ¹³C NMR spectrum of compound 3h

Fig. 31 ³¹P NMR spectrum of compound 3h

Fig. 32 HRMS spectrum of compound 3h

Fig. 33 ¹H NMR spectrum of compound 3i

Fig. 34 ¹³C NMR spectrum of compound 3i

Fig. 35 ³¹P NMR spectrum of compound 3i

Fig. 36 HRMS spectrum of compound 3i

Fig. 37 ¹H NMR spectrum of compound 3j

Fig. 38 ¹³C NMR spectrum of compound 3j

Fig. 39 ³¹P NMR spectrum of compound 3j

Fig. 40 HRMS spectrum of compound 3j

Fig.41 ¹H NMR spectrum of compound 3K

Fig. 42 13 C NMR spectrum of compound 3K

Fig. 43 31 P NMR spectrum of compound 3K

Fig. 44 HRMS spectrum of compound 3K

Fig.45 ¹H NMR spectrum of compound 31

Fig. 46 ¹³C NMR spectrum of compound 31

Fig. 47 ³¹P NMR spectrum of compound 31

Fig. 48 HRMS spectrum of compound 31

Fig.49 ¹H NMR spectrum of compound 3m

Fig. 50 13 C NMR spectrum of compound 3m

Fig. 51 ³¹P NMR spectrum of compound 3m

Fig. 52 HRMS spectrum of compound 3m

Fig.53 ¹H NMR spectrum of compound 3n

Fig. 54 ¹³C NMR spectrum of compound 3n

Fig. 55 ³¹P NMR spectrum of compound 3n

Fig. 56 HRMS spectrum of compound 3n

Fig.57 ¹H NMR spectrum of compound 30

Fig. 58 ¹³C NMR spectrum of compound 30

Fig. 59 ³¹P NMR spectrum of compound 30

Fig. 60 HRMS spectrum of compound 30

Fig.61 ¹H NMR spectrum of compound 3p

Fig. 62 ¹³C NMR spectrum of compound 3p

Fig. 63 ³¹P NMR spectrum of compound 3p

Fig. 64 HRMS spectrum of compound 3p

Fig.65 ¹H NMR spectrum of compound 3q

Fig. 66 ¹³C NMR spectrum of compound 3q

Fig. 67 ³¹P NMR spectrum of compound 3q

Fig. 68 HRMS spectrum of compound 3q

Fig.69 ¹H NMR spectrum of compound 3r

Fig. 70 ¹³C NMR spectrum of compound 3r

Fig. 71 ³¹P NMR spectrum of compound 3r

Fig. 72 HRMS spectrum of compound 3r

Fig.73 ¹H NMR spectrum of compound 3s

Fig. 74 ¹³C NMR spectrum of compound 3s

Fig. 75 ³¹P NMR spectrum of compound 3s

Fig. 76 HRMS spectrum of compound 3s

Fig.77 ¹H NMR spectrum of compound 3t

Fig. 78 ¹³C NMR spectrum of compound 3t

Fig. 79 ³¹P NMR spectrum of compound 3t

Fig. 80 HRMS spectrum of compound 3t

Fig.81 ¹H NMR spectrum of compound 3u

Fig. 82 ¹³C NMR spectrum of compound 3u

Fig.83 ³¹P NMR spectrum of compound 3u

Fig. 84 HRMS spectrum of compound 3u

Fig.85 ¹H NMR spectrum of compound 3v

Fig. 86 13 C NMR spectrum of compound 3v

Fig.87 ³¹P NMR spectrum of compound 3v

Fig. 88 HRMS spectrum of compound 3v

Fig.89 ¹H NMR spectrum of compound 3w

Fig.90 13 C NMR spectrum of compound 3w

Fig.91 ³¹P NMR spectrum of compound 3w

Fig. 92 HRMS spectrum of compound 3w

Fig.93 ¹H NMR spectrum of compound 3x

Fig.94 ¹³C NMR spectrum of compound 3x

Fig.95 ³¹P NMR spectrum of compound 3x

Fig. 96 HRMS spectrum of compound 3x

Fig.97 ¹H NMR spectrum of compound 3y

Fig.98 ¹³C NMR spectrum of compound 3y

Fig.99 ³¹P NMR spectrum of compound **3**y

Fig. 100 HRMS spectrum of compound 3y

Fig.101 ¹H NMR spectrum of compound 3z

Fig.102 ¹³C NMR spectrum of compound 3z

Fig.103 ³¹P NMR spectrum of compound 3z

Fig. 104 HRMS spectrum of compound 3z

Fig.105 ¹H NMR spectrum of compound 3aa

Fig.106 ¹³C NMR spectrum of compound 3z

Fig.107 ³¹P NMR spectrum of compound 3z

Fig. 108 HRMS spectrum of compound 3aa