Electronic Supplementary Information

An electrochemical peptide cleavage-based biosensor for prostate specific antigen detection *via* host-guest interaction between ferrocene and β-cyclodextrin

Shunbi Xie^a, Jin Zhang^{b,*}, Yali Yuan^a, Yaqin Chai^a and Ruo Yuan^{a,*}

^a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest

University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China

^b Chongqing Key Laboratory of Environmental Materials & Remediation Technologies (Chongqing University of Arts and Sciences), Chongqing 400715, PR China.

* Corresponding author. Tel.: +86-23-68252277; Fax: +86-23-68253172

E-mail address: zhangjin@cqwu.edu.cn (J. Zhang), yuanruo@swu.edu.cn (R.Yuan)

Experimental Section

Reagents and apparatus

Gold chloride (HAuCl₄), bovine serum albumin (BSA), hemoglobin (HB) and ferrocene carboxylic acid (Fc) were purchased from Sigma (St. Louis, MO, USA). α fetoprotein (AFP), carcino-embryonic antigen (CEA) and prostate specific antigen (PSA) standard solutions were purchased from Biocell (Zhengzhou, China). Carboxylated-Fe₃O₄ (Fe₃O₄-COOH) magnetic microspheres were bought from Tianjin BaseLine ChromTech Research Centre (Tianjin, China). Amine-modified β cyclodextrin (β -CD) was purchased from Aladdin (Shanghai, China). MWCNTs (>95% purity) were purchased from Chengdu Organic Chemicals Co. Ltd. of the Chinese Academy of Science. Polyamidoamine (PAMAM) dendrimers were purchased from Weihai CY Dendrimer Technology Co., Ltd (Weihai, China). Trishydroxymethylaminomethane hydrochloride (tris) was obtained from Beijing Xiasi Biotechnology Co., Ltd (Beijing, China).

20 mM Tris-HCl buffer (pH 7.4) containing 140 mM NaCl, 5 mM KCl, 1 mM CaCl₂ and 1 mM MgCl₂ was used as a binding buffer. Phosphate-buffered solution (PBS) (pH 7.4, 0.1 M) containing 10 mM KCl, 2 mM MgCl₂ was used as working buffer solution. All other chemicals were of analytical grade and used as received.

All electrochemical measurements, including cyclic voltammetry (CV), differential pulse voltammograms (DPV) were performed on a CHI 660D electrochemical workstation (Shanghai Chenhua Instrument, China). The pH measurements were finished with a pH meter (MP 230, Mettler-Toledo, Switzerland). The scanning electron micrographs were taken with scanning electron microscope (SEM, S-4800, Hitachi). The UV-vis absorption spectra were recorded on a UV-2550 spectrophotometer (Shimadzu, Japan). The structure of nanomaterials was analyzed using Raman spectroscopy (Renishaw InVia Reflex, UK). X-ray diffraction (XRD) was performed with an X-ray diffractometer (Ultima IV, Rigaku, Japan). A threeelectrode system contained a modified glassy carbon electrode (GCE, Φ =4 mm) as working electrode, a platinum wire as auxiliary electrode and a saturated calomel electrode (SCE) as reference electrode.

Electrochemical measurements

All electrochemical experiments were carried out in a conventional electrochemical cell containing a three-electrode arrangement. CVs of the electrode fabrication were performed in 2 mL 5 mM $Fe(CN)_6^{3-/4-}$ solution containing 0.2 M KCl,

scanning from -0.6 V to 0.2 V at a scan rate of 100 mV/s. DPV was performed in 2 mL 0.1 M PBS (pH 7.4) to investigate the performance of the sensor. The DPV measurement was taken: the potential range was from 0.1 to 0.7 V, modulation amplitude was 0.05 V, pulse width was 0.05 s, and sample width was 0.0167 s.

Synthesis of Fe₃O₄@Au magnetic nanocomposites

Firstly, gold nanoparticles were prepared according to the reference¹. Then $Fe_3O_4@Au$ magnetic nanocomposites were synthesized according the reference with some modification². In a typical synthesis, the purified carboxylated-Fe₃O₄ (Fe₃O₄-COOH) magnetic microspheres were functionalized with PDDA. Briefly, 1 mL Fe₃O₄-COOH magnetic microspheres were dispersed into an aqueous solution of 0.2% PDDA (5 mL) containing 20 mM Tris and 20 mM NaCl and sonicated 30 min to obtain a homogeneous black suspension. The generated black precipitate was collected on a magnet and rinsed with water at least three times. Then, 10 mL synthesized gold nanoparticles was mixed with the Fe₃O₄-PDDA precipitate and stored for 1 h. The obtained Fe₃O₄@Au nanocomposite was isolated with magnet and washed several times by ultrapure water. Finally, the Fe₃O₄@Au nanocomposite was dispersed again in 2 mL pH 7.4 PBS and kept at 4 °C for the following experiment.

Preparation of Fc-peptide conjugate

The conjugate CEHSSKLQLAK-Fc was designed to contain a peptide sequence HSSKLQ, and Fc was conjugated to an N-terminal amino group through a condensation reaction. Its C-terminal is cysteine, whose thiol group is used for coupling to the Fe_3O_4 @Au magnetic nanocomposites. The Fc was immobilized on peptide via the interaction between -COOH of Fc and -NH₂ of peptide. The terminal - COOH of Fc were activated by being incubated in the mixture of 40 mM EDC and 10 mM NHS for 2 h at room temperature. And then, the peptide was dissolved in 1 mL

0.1 M activated Fc (pH 5, acetic acid), with a concentration of 50 μ M, and stored at - 20 °C.

Preparation of the functionalized electrode

First of all, MWCNTs were carboxyl-functionalized and shortened by refluxing in a mixture of concentrated H_2SO_4/HNO_3 (1:3 v/v) for 40 min at 100 °C, followed by washing to neutrality with ultrapure water³. And then, 1 mg carboxyl-functionalized CNTs and 1 mg PAMAM were suspended in 2 mL ultrapure water and sonicated to obtain a homogeneous CNTs-PAMAM black solution, inset of Scheme 1D showed a representative SEM image of CNTs-PAMAM nanohybrids.

Prior to use, the GCE was polished on a polishing cloth with 0.3 and 0.05 mm alumina powder respectively to obtain a mirror-like surface, and sonicated with ethanol and ultrapure water. After that, 10 μ L of the CNTs-PAMAM solution was dropped onto the pretreated GCE to increase the effective area of the electrode. Then the electrode was dried at room temperature and immersed in 2.5% glutaraldehyde (GA) solution for 1 h to cross-link amine of the β -CD. Subsequently, 20 μ L β -CD (1 mM) was dropped onto the activated platform and incubated for 30 min at room temperature. After each step, the modified electrode was stored at 4 °C when not used.

Results and discussion

Characterization of the Fc-peptide modified Fe_3O_4 (a)Au biocomplex

The UV-vis absorption spectra were performed to confirm the conjunction of $Fe_3O_4@Au/Fc$ -peptide biocomplex directly. Fig. S1 shows the UV-vis absorbance spectrum for each nanomaterial (AuNPs, $Fe_3O_4@Au$, and $Fe_3O_4@Au/Fc$ -peptide). AuNPs alone had a singular absorbance peak at 520 nm (curve a), which was red

shifted after the biomaterials were attached to the surface of the Fe₃O₄ and a new absorption band appear at 560 nm, indicating that the successful synthesis of Fe₃O₄@Au (curve d). And the absorption spectra of Fe₃O₄@Au/Fc-peptide complex depending on a new absorption band appeared at 260 nm, which was associated with the Fc-peptide, indicating that the conjunction of the Fc-peptide to Fe₃O₄@Au was successfully synthesized (curve e).

Fig. S1 UV-vis absorption spectra of (a) AuNPs, (b) Fc-peptide, (c) Fe₃O₄-COOH (d) Fe₃O₄@Au (e) Fe₃O₄@Au/Fc-peptide

To further identify the conjunction of Fe_3O_4 @Au/Fc-peptide biocomplex, we have performed Raman spectroscopy based on the strong localization of the surface plasmonfield in Fe₃O₄@Au/Fc-peptide biocomplex. The different nanomaterials were casted on a silicon substrate and thus formed aggregates from which the Raman signal was recorded. As shown in Fig. S2, the carboxylated-Fe₃O₄ (Polystyrene magnetic microspheres, purchased from the Tianjin BaseLine ChromTech Research Centre) exhibited four major peaks at 1600, 1311, 1070 and 650 cm⁻¹ (curve a). The strong intensity peak at 1002 cm⁻¹, 1311 cm⁻¹ and 1601 cm⁻¹ were attributable to breathing vibration of the benzene ring, C-O-C stretching and aromatic C=C stretching of polystyrene, respectively. Furthermore, the peak at 650 cm⁻¹ was assigned to Fe₃O₄⁴.

And the Raman scattering from the surface region of carboxylated-Fe₃O₄ is strongly enhanced after AuNPs coating (curve b), which due to the strong enhancement associated with the intensive surface Plasmon resonance (SPR) of AuNPs. Curve c showed the characteristic peaks of Fc-peptide, the strong intensity peak at 1096 cm⁻¹ was attributable to the C-C stretching of Fc⁵. No characteristic peak but silicon substrate (976 cm⁻¹) was observed on the AuNPs (curve e). Curve d displayed the Raman spectra of Fe₃O₄@Au/Fc-peptide biocomplex, it can be seen that the characteristic peaks of Fc (1096 cm⁻¹) and the characteristic peaks of carboxylated-Fe₃O₄ (1600 cm⁻¹), (1311cm⁻¹) and (650 cm⁻¹) were still existed, hence confirming the successfully synthesized of our Fe₃O₄@Au/Fc-peptide biocomplex.

Fig. S2 The Raman spectra of (a) Fe_3O_4 -COOH, (b) Fe_3O_4 @Au, (c) Fe_3O_4 @Au/Fc-peptide and (d) AuNPs.

The X-ray diffraction (XRD) patterns of Fe₃O₄, AuNPs, Fe₃O₄@Au and Fe₃O₄@Au/Fc-peptide were shown in Fig. S3. Curve a showed a typical XRD pattern of the Fe₃O₄ sample, four diffraction peaks at 30.4, 35.6, 57.3 and 62.7 were indexed to the (220), (311), (511) and (440) planes of the Fe₃O₄⁶. As for Fe₃O₄@Au

composites (Curve c), four extra diffraction peaks at 38.2, 44.2, 64.4 and 77.6 (marked as star) were indexed to the (111), (200), (220) and (311) planes of the Au cubic phase⁷, which is the same as typical XRD pattern of AuNPs (curve b). Curve d is a typical XRD pattern of the Fe₃O₄@Au/Fc-peptide, which shows almost the same feature as that shown in curve c: no diffraction peaks corresponding to Fc-peptide were observed because the prepared Fc-peptide is biomolecule.

Fig. S3 X-ray diffraction patterns of (a) Fe_3O_4 -COOH, (b) AuNPs, (c) Fe_3O_4 (a) Au and

(d) Fe₃O₄@Au/Fc-peptide.

The electroactive surface area of the CNTs-PAMAM modified electrode

In order to illustrate that the prepared CNTs-PAMAM nanohybrids could improve the surface area and conductivity of the biosensor, we designed an experiment to quantitatively detect the electro-active surface area of CNTs-PAMAM modified electrode by recording CVs at different potential scan rates with $Fe(CN)_6^{4-/3-}$ serving as redox probes. From Fig. S4 A and Fig. S4 B, we could see that the redox peak currents were proportional to the square root of scan rates in the range of 20-300 mVs⁻¹ with the regression equation of $I = 931.6 v^{1/2} - 31.12$ (anodic peak current) and $I = -892.4 v^{1/2} + 24.64$ (cathodic peak current). The calculated electro-active surface area was 26.12 mm² according to the Randles-Sevcik equation^{8,9} $I = 2.69 \times 10^5 A \times D^{1/2} n^{3/2} v^{1/2} C$, in which *n* is the number of electrons transferred in the redox reaction (*n*= 1), *A* is the electrode area, *D* is the diffusion coefficient (at 25 °C, $D=6.70 \times 10^{-6} \text{ cm}^2 \text{s}^{-1}$), *C* is the concentration of the reactant (5.0 mol cm⁻³ Fe(CN)₆^{3-/4-}), *I* refers to the redox peak current and *v* is the scan rate of the CV measurement.

Fig. S4 CVs of CNTs-PAMAM modified GCE in 5.0 mM $Fe(CN)_6^{4-/3-}$ at different scan rates from 20 to 300 mV s-1 (A). The linear relations of the CNTs-PAMAM modified GCE with the anodic and cathodic peak current against the square root of scan rate (B).

The inclusion of the surface-attached Fc on the GCE/CNTs-PAMAM/ β -CD functionalized electrode

In order to investigate the inclusion of the surface-attached Fc on the GCE/CNTs-PAMAM/ β -CD functionalized electrode, we performed cyclic voltammetry at GCE/CNTs-PAMAM/ β -CD functionalized electrode incubated increasing Fc concentrations (Fig. S5). As we can see from Fig. S5 A, the cathodic peak currents increased with the increasing concentration of Fc, and eventually

reached a steady value at concentrations above 80 μ M. And the dose response curve showed a strong linear dependence of current on Fc concentrations in the range from 10 μ M to 70 μ M with the regression equation of *I* = -0.101 *c* -3.2913 (Fig. S5 B). We can estimate the maximum amount of Fc on the electrode surface through above regression equation. The calculated maximum amount of Fc on the electrode surface surface was 63.6 μ M.

Fig. S5 Cyclic voltammograms, recorded at GCE/CNTs-PAMAM/β-CD functionalized electrode incubating with different concentration of Fc (from 10 μM to 90 μM) in 2 mL PBS (pH 7.4), Scan rate: 100 mV/s (A); The dependence of peak currents on each concentration of Fc, the insert showed the calibration plot of current intensity *vs* c_{Fc} (B).

Fig. S6 Stability of the proposed biosensor incubated with 0.05 ng/mL PSA under

successive CV scans for 50 cycles.

Analytical method	Detection limit	Linear range	Ref.
SWV	0.2 ng/mL	0.5-40 ng/mL	10
SWV	2 pg/mL	0.01-40 ng/mL	11
DPV	0.02 ng/mL	0.2-40 ng/mL	12
CV	0.015 ng/mL	0.05-50 ng/mL	13
Potentiometry	2.6 ng/mL	3.5-30 ng/mL	14
ECL	8 pg/mL	0.01-8 ng/mL	15
DPV	0.78 pg/mL	0.001-30 ng/mL	This work

Table S1. The proposed method compared with other PSA analytical performance.

Abbreviation: Square-wave voltammograms (SWV); Differential pulse voltammetry (DPV);

Cyclic voltammetry (CV); Electrochemiluminescent (ECL).

Sample	Amount of PSA	Amount of PSA	Recovery/%	RSD/%
No.	added to the	detected by the		
	serum/(ng/mL)	sensor/(ng/mL)		
1	1	1.057	105.7	4.32
2	10	10.12	101.2	5.45
3	20	20.5	102.5	3.78
4	30	31.89	106.3	6.57

Table S2. Determination of PSA added in human blood serum (n=3) with the proposed sensor

References

- 1. G. Frens, Nature-Phys. Sci., 1973, 241, 20-22.
- D. Du, Y. Tao, W. Y. Zhang, D. L. Liu and H. B. Li, Biosens. Bioelectron., 2011, 26, 4231-4235.
- X. Yang, R. Yuan, Y. Q. Chai, Y. Zhuo, L. Mao and S. R. Yuan, Biosens. Bioelectron, 2010, 25, 1851-1855.
- A. Mezni, I. Balti, A. Mlayah, N. Jouini and Leila Samia Smiri, J. Phys. Chem. C., 2013, 117, 16166-16174.
- 5. Y. Chen, A. Klimczak, E. Galoppini and J. V. Lockard, RSC Adv., 2013, 3, 1354-1358.
- X. Zhou, W. L. Xu, Y. Wang, Q. Kuang, Y. F. Shi, L. B. Zhong and Q.Q. Zhang, J. Phys. Chem. C, 2010, 114, 19607-19613.
- Q. J. Du, L.F. Tan, Bo. Li, T.L. Liu, J. Ren, Z.B. Huang, F.Q. Tang and X.W. Meng, RSC Adv., 2014, 4, 56057-56062.

- A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications; John Wiley & Son: New York, 1980.
- P. Zanello, "Inorganic Electrochemistry: Theory, Practice and Application" The Royal Society of Chemistry 200.
- N. Zhao, Y. Q. He, X. Mao, Y. H. Sun, X. B. Zhang, C. Z. Li, Y. H. Lin and G. D. Liu, Electrochem. Commun., 2010, 12, 471-474.
- H. Li, Q. Wei, J. He, T. Li, Y. F. Zhao, Y. Y. Cai, B. Du, Z. Y. Qian and M. H. Yang, Biosens. Bioelectron., 2011, 26, 3590-3595.
- A. Salimi, B. Kavosi, F. Fathi and R. Hallaj, Biosens. Bioelectron., 2013, 42, 439-446.
- H. Wang, Y. Zhang, H. Yu, D. Wu, H. Ma, H. Li, B. Du and Q. Wei, Anal. Biochem., 2013, 434, 123-127.
- 14. G. Shen, C. Cai and J. Yang, Electrochim. Acta., 2011, 56, 8272-8277.
- 15. S. J. Xu, Y. Liu, T. H. Wang and J. H. Li, Anal. Chem., 2011. 83, 3817-3823.