Supporting Information

For

A Simple Access to

Transition Metal Cyclopropenylidene Complexes

Yannick D. Bidal, Mathieu Lesieur, Mohand Melaimi, David B. Cordes, Alexandra M. Z. Slawin, Guy Bertrand* and Catherine S. J. Cazin*

EaStCHEM School of Chemistry, University of St Andrews St Andrews, KY16 9ST (UK) Fax: +44 (0) 1334 463808 E-mail: cc111@st-andrews.ac.uk Homepage: http://chemistry.st-andrews.ac.uk/staff/cc/group/CSJ_Cazin/CSJC.html

Table of Contents

General considerations	S4
1. Synthesis of ligand precursors, complexes and azide substrates	S4
1.1 Synthesis of 1·HCl	S4
1.2. Synthesis of [Cu(Cl)(BAC)], 2	S5
1.3. Synthesis of [Pd(μ-Cl)(Cl)(BAC)] ₂ , 3	S6
1.4. Synthesis of [Au(Cl)(BAC)], 4	S6
1.5. Synthesis of [Ir(Cl)(BAC)(1,5-COD)], 5.	S7
1.6. Synthesis of complex [Rh(Cl)(BAC)(CO) ₂], 6	S8
1.7. Synthesis of [Au(BAC) ₂][OTf]	S9
1.8. Synthesis of azide substrates	S10
2. Procedure for Catalysis	S11
2.1 kinetic	S11
2.2 Catalysis	S12
1-Heptyl-4-phenyl-1H-1,2,3-triazole	S12
1-Benzyl-4-phenyl-1H-1,2,3-triazole	S12
1,4-Diphenyl-1H-1,2,3-triazole	S12
4-butyl-1-phenyl-1H-1,2,3-triazole	S13
1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole	S13
4-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile	S13
1-phenethyl-4-phenyl-1H-1,2,3-triazole	S13
1-(1-benzyl-1H-1,2,3-triazol-4-yl)ethan-1-one	S14
(1-benzyl-1H-1,2,3-triazol-4-yl)methanol	S14
3. NMR Experiments	S15
3.1. VT studies	S15
3.2. ¹ H and ¹³ C-{ ¹ H} NMR spectra	S18
4. % V_{Bur} and 3D mapping	S31
% V_{Bur} of BAC in [Cu(Cl)(BAC)], 2	S31
% <i>V</i> _{Bur} of IPr in [Cu(Cl)(IPr)]	\$32
% V _{Bur} IMes in [Cu(Cl)(IMes)]	\$33

	$% V_{\text{Bur}} \text{ ICy in } [\text{Cu(Cl)(ICy)}]$	S34
	% V_{Bur} of BAC in [Pd(μ -Cl)(Cl)(BAC)] ₂ , 3	
	% V_{Bur} of BAC in [Au(Cl)(BAC)], 4	\$36
	% V_{Bur} of BAC in [Ir(Cl)(BAC)(1,5-COD)], 5	
5.	Determination of ΔG^{\neq}	
6.	Crystallographic data for complexes 2-5, and [Au(BAC) ₂] ⁺ OTf	
7.	References	S45

General considerations

Syntheses of BAC complexes were performed under inert atmosphere using standard Schlenk and glovebox techniques. All other reactions (including catalysis) were carried out in air. Solvents were dispensed from a solvent purification system. All other reagents were used without further purification. Metal precursors such as $[Ir(\mu \Box Cl)(cod)]_2$, $[Rh(\mu \Box Cl)(CO)_2]_2$ and [PdCl₂(NCPh)₂] were purchased from Alfa Aesar or Sigma-Aldrich and used as received. $[AuCl(SMe_2)]^1$ and $[CuCl(SIMe_3)]^2$ were synthesised according to published procedures. Microwave-assisted reactions were carried out in a CEM Discover microwave. ¹H and ¹³C-¹H} Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AVANCE 400 Ultrashield spectrometer using the residual solvent peak as reference (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm; CD₃CN, $\delta_{\rm H} = 1.94$ ppm, $\delta_{\rm C} = 1.32$; 118.26 ppm) at 298K. NMR spectra at 240K were recorded on a Bruker AVANCE 500 or Bruker AVANCE 300. SpectraGas chromatography (GC) analyses were performed on an Agilent 7890A apparatus equipped with a flame ionization detector and a (5%-Phenyl)-methylpolysiloxane column (30 m, 320 µm, film: 0.25 µm). Elemental analyses were carried out by the London Metropolitan University Service. Mass spectroscopy was performed by the EPSRC National Mass Spectrometry Service Centre at Swansea (UK) and by the molecular mass spectrometry facility (MMSF) at the University of California (San Diego, USA).

1. Synthesis of ligand precursors, complexes and azide substrates

1.1 Synthesis of 1·HCl

The cyclopropenium salt $1 \cdot HBF_4$ was synthesised according to a published procedure and ¹H NMR spectra were found similar to reported data.³

Bis(diisopropylamino)cyclopropenium chloride, 1·HCl

A flask was charged with the cyclopropenium salt $1 \cdot HBF_4$ (0.5 g, 1.5 mmol), Amberlite 402 IRA Cl⁻ (5 g) and methanol (50 mL). The reaction was stirred at room temperature for 16

hours. The resin was removed by filtration and washed with dichloromethane (3x20 mL). The supernatant solution was concentrated *in vacuo* to 1 mL. Diethylether (30 mL) was added. **1**·**HCl** was collected by filtration and obtained as a colourless solid (0.391 g, 1.4 mmol, 93%).

¹**H** NMR (300 MHz, CDCl₃, 298K, TMS): δ (ppm) = 8.97 (s, 1H, CCHC); 4.02 (septet, 2H, ³*J*(H,H) = 7.0 Hz, CH-CH₃), 3.91 (septet, 2H, ³*J*(H,H) = 7.0 Hz, CH-CH₃), 1.46 (d, 12H, ³*J*(H,H) = 7.0 Hz, CH₃-CH), 1.40 (d, 12H, ³*J*(H,H) = 7.0 Hz, CH₃-CH).

¹³C-{¹H} NMR (75 MHz, CDCl₃, 298K TMS): δ (ppm) = 133.6 (s, *C*-N), 102.0 (s, CCHC), 56.5 (s, *C*H-CH₃), 49.5 (s, *C*H-CH₃), 21.1 (s, *C*H₃-CH), 21.0 (s, *C*H₃-CH).

HRMS Calcd for $(C_{15}H_{29}N_2)^+$ 237.2325; Found 237.2322

1.2. Synthesis of [Cu(Cl)(BAC)], 2

Reaction under MW heating. In a glovebox, a vial was charged with the cyclopropenium salt **1·HCl** (400 mg, 1.46 mmol), Cu₂O (136 mg, 0.95 mmol) and acetonitrile (10 mL). The reaction was heated for 2 hours at 80°C in a microwave (200W). The reaction mixture was filtered through a pad on Celite and the volatiles were removed *in vacuo*. CH₂Cl₂ (1 mL) and Et₂O (10 mL) were added. The precipitate was collected by filtration and washed with Et₂O (2x10 mL). **2** was obtained as a pale yellow solid (452 mg, 1.34 mmol, 92%).

Reaction using conventional heating. In a glovebox, a Schlenk was charged with the cyclopropenium salt **1·HCl** (400 mg, 1.46 mmol), Cu₂O (136 mg, 0.95 mmol) and toluene (10 mL). The reaction was heated for 24 hours at 110°C. The reaction mixture was filtered through a pad on Celite and the volatiles were removed *in vacuo*. CH₂Cl₂ (1 mL) and Et₂O (10 mL) were added. The precipitate was collected by filtration and washed with Et₂O (2x10 mL). **2** was obtained as a pale yellow solid (427 mg, 1.27 mmol, 87%).

¹**H NMR (500 MHz, CD₃CN, 298K):** δ (ppm) = 3.86 (br. s, 4H, C*H*-CH₃), 1.47 (br. s, 12H, C*H*₃-CH), 1.24 (br. s, 12H, C*H*₃-CH).

¹³C-{¹H} NMR (125 MHz, CD₃CN, 298K): δ (ppm) = 148.4 (*C*-N), 139.3 (*C*_{carbene}), 56.7 (*C*H-CH₃), 48.8 (*C*H-CH₃), 21.8 (*C*H₃-CH), 21.0 (*C*H₃-CH).

¹**H NMR (500 MHz, CD₃CN, 240K):** δ (ppm) = 3.87-3.77 (m, 4H, CH-CH₃), 1.43 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CH₃-CH), 1.20 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CH₃-CH).

¹³C-{¹H} NMR (125 MHz, CD₃CN, 240K): δ (ppm) = 147.4 (*C*-N), 137.5 (*C*_{carbene}), 56.7 (*C*HCH₃), 47.8 (*C*HCH₃), 21.3 (*C*HCH₃), 20.4 (*C*HCH₃).

Elemental Analysis Calcd (%) for C₁₅H₂₈ClCuN₂: C 53.72, H 8.41, N 8.35; found: C 53.62, H 8.30, N 8.26.

1.3. Synthesis of [Pd(µ-Cl)(Cl)(BAC)]₂, 3

In a glovebox, a vial was charged with complex **2** (50 mg, 0.150 mmol), $[PdCl_2(NCPh)_2]$ (57.2 mg, 0.150 mmol) and dichloromethane (4 mL). The reaction was stirred during 4 hours at 40°C. The reaction mixture was filtered through Celite and the solution was concentrated *in vacuo* (1 mL). Hexane (10 mL) was added and the precipitate was collected by filtration, washed with hexane (3x10 mL) and dried *in vacuo*. The solid was redissolved in acetonitrile (5 mL) and filtered. The solvent was removed *in vacuo* to afford **3** as an orange solid (60 mg, 0.147 mmol, 98%).

¹**H** NMR (500 MHz, CD₃CN, 240K): δ (ppm) = 3.86-3.76 (m, 4H, CH-CH₃), 1.62 (d, ³*J*(H,H) = 6.8 Hz, CH₃-CH), 1.18 (d, ³*J*(H,H) = 6.8 Hz, CH₃-CH).

¹³C-{¹H} NMR (125 MHz, CD₃CN, 240K): δ (ppm) = 148.1 (s, C-N), 119.2 (s, C_{carbene}), 56.4 (s, CH-CH₃), 47.7 (s, CH-CH₃), 22.4 (s, CH₃-CH), 20.6 (s, CH₃-CH).

Elemental Analysis Calcd (%) for $C_{30}H_{56}Cl_4N_4Pd2$: C 43.55, H 6.82, N 6.77; found: C 43.47, H 6.93, N 6.68.

These data were found similar to those reported in the literature.⁴

1.4. Synthesis of [Au(Cl)(BAC)], 4

In a glovebox, a vial was charged with 2 (60 mg, 0.180 mmol), [AuCl(SMe₂)] (52.7 mg, 0.180 mmol) and dichloromethane (4 mL). The reaction mixture was stirred during 1 minute at room temperature, filtered through Celite and concentrated *in vacuo* (1 mL). Hexane (10 mL) was added. The precipitate was collected by filtration, washed with hexane (3x10 mL) and dried *in vacuo*. The solid was then redissolved in acetonitrile (5 mL) and the solution was filtered. Removal of the solvent *in vacuo* led to **4** as colourless solid (82 mg, 0.176 mmol, 98%).

¹**H** NMR (500 MHz, CD₃CN, 240K): δ (ppm) = 3.86 (septet, 2H, ³*J*(H,H) = 6.8 Hz, C*H*-CH₃), 3.75 (septet, 2H, ³*J*(H,H) = 6.8 Hz, C*H*-CH₃), 1.47 (d, ³*J*(H,H) = 6.8 Hz, C*H*₃-CH), 1.21 (d, ³*J*(H,H) = 6.8 Hz, C*H*₃-CH).

¹³C-{¹H} NMR (125 MHz, CD₃CN, 240K): δ (ppm) = 144.6 (s, C-N), 130.7 (s, C_{carbene}), 56.9 (s, CH-CH₃), 47.8 (s, CH-CH₃), 21.5 (s, CH₃-CH), 20.3 (s, CH₃-CH).

Elemental Analysis Calcd (%) for C₁₅H₂₈AuClN₂: C 38.43, H 6.02, N 5.98; found: C 38.27, H 6.04, N 5.93.

1.5. Synthesis of [Ir(Cl)(BAC)(1,5-COD)], 5.

In a glovebox, a vial was charged with 2 (40 mg, 0.120 mmol), $[Ir(\mu \Box Cl)(cod)]_2$ (40 mg, 0.060 mmol) and dichloromethane (4 mL). The reaction was stirred during 1 minute at room temperature. The reaction mixture was filtered through Celite and concentrated *in vacuo* (1 mL). Hexane (10 mL) was added and the precipitate was collected by filtration and washed with hexane (3x10 mL). The solid was redissolved in acetonitrile (5 mL) and the solution was filtered. Removal of the solvent *in vacuo* led to 5 which was obtained as a yellow solid (66 mg, 0.118 mmol, 98%).

¹**H** NMR (500 MHz, CD₃CN, 240K): δ (ppm) = 4.06-4.02 (m, 3H, 2H CH-CH₃ and 1H cod), 3.88-3.81 (m, 2H, CH-CH₃), 3.06-3.04 (m, 2H, cod), 2.11-2.08 (m, 4H, cod), 1.61-1.13 (m, 29H, CH₃-CH and cod).

¹³C-{¹H} NMR (125 MHz, CD₃CN, 240K): δ (ppm) = 147.3 (s, *C*_{carbene}), 102.7 (s, *C*H cod), 102.5 (s, *C*-N), 78.8 (s, *C*H-CH₃), 52.5 (s, *C*H-CH₃), 33.3 (s, *C*H₂ cod), 29.9 (s, *C*H₂ cod), 21.5 (bs, *C*H₃-CH), 21.0 (s, *C*H₃-CH).

Elemental Analysis Calcd (%) for C₂₃H₄₀ClIrN₂: C 48.27, H 7.05, N 4.90; found: C 48.15, H 7.11, N 4.95.

1.6. Synthesis of complex [Rh(Cl)(BAC)(CO)₂], 6.

In a glovebox, a vial was charged with 2 (50 mg, 0.150 mmol), $[Rh(\mu \Box Cl)(CO)_2]_2$ (29 mg, 0.075 mmol) and dichloromethane (4 mL). The reaction mixture was stirred during 1 minute at room temperature. The solution was filtered through Celite and concentrated *in vacuo* (1 mL). Hexane (10 mL) was added and the solid was collected by filtration and washed with hexane (3x10 mL). The product was redissolved in acetonitrile (5 mL) and the solution was filtered. The solvent was removed *in vacuo*, leading to **6** as a yellow solid (52 mg, 0.122 mmol, 81%).

¹**H** NMR (500 MHz, CD₃CN, 240K): δ (ppm) = 3.88-3.80 (m, 4H, CH-CH₃), 1.50 (d, ³*J*(H,H) = 6.7 Hz, CH₃-CH), 1.21 (d, ³*J*(H,H) = 6.7 Hz, CH₃-CH).

¹³C-{¹H} NMR (125 MHz, CD₃CN, 240K): δ (ppm) = 186.7 (d, ¹*J*(Rh,C) = 54.1 Hz, CO), 183.8 (d, ¹*J*(Rh,C) = 75.3 Hz, CO), 149.4 (s, C-N), 137.8 (d, ¹*J*(Rh,C) = 43.3 Hz, *C*_{carbene}), 56.5 (s, *C*H-CH₃), 47.8 (s, *C*H-CH₃), 22.3 (s, *C*H₃-CH), 20.6 (s, *C*H₃-CH).

Elemental Analysis Calcd (%) for $C_{17}H_{30}ClN_2O_2Rh$: C 47.18, H 6.99, N 6.47; found: C 47.22, H 7.14, N 6.51.

These data were found similar to those reported in the literature.⁵

1.7. Synthesis of [Au(BAC)₂][OTf]

A THF (10 mL) solution of carbene BAC 1^6 (236 mg, 1.00 mmol) was added at -78°C to a suspension of [AuCl(THT)] (321 mg, 1.00 mmol) in THF (10 mL). The mixture was stirred at room temperature for 15 hours. After evaporation of the solvent and volatiles, the solid was washed with diethyl ether (3 x 20 mL). The white solid was added to a suspension of lithium trifluoromethanesulfonate (234 mg, 1.50 mmol) in dichloromethane (20 mL) and stirred at room temperature for 3 hours. After filtration through a pad of Celite, and evaporation of volatiles, the solid was washed with diethyl ether (390 mg, 0.48 mmol, 48%) (based on [AuCl(THT)]).

Single crystals were obtained by vapor diffusion of diethyl ether into a saturated methylene chloride solution.

M.P.: 212 °C.

¹**H** NMR (**300** MHz, CDCl₃, **298K**, TMS): δ (ppm) = 3.78 (septet, 2H, ${}^{3}J(H,H) = 7.0$ Hz, CH-CH₃), 3.68 (septet, 2 H, ${}^{3}J(H,H) = 7.0$ Hz, CH-CH₃), 1.49 (d, 12H, ${}^{3}J(H,H) = 7.0$ Hz, CH₃-CH), 1.26 (d, 12 H, ${}^{3}J(H,H) = 7.0$ Hz, CH₃-CH).

¹³C-{¹H} NMR (75 MHz, CDCl₃, 298K TMS): δ (ppm) = 149.42 (s, *C*_{carbene}), 145.77 (s, *C*-N), 56.25 (s, *C*H-CH₃), 48.31 (s, *C*H-CH₃), 21.53 (s, *C*H₃-CH), 21.18 (s, *C*H₃-CH).

HRMS Calcd. for $C_{30}H_{56}AuN_4^+$: 669.4165; found 669.4173.

1.8. Synthesis of azide substrates.⁷

1-Azidoheptane

_____N₃

¹**H NMR (400 MHz, CDCl₃, 298K, TMS):** $\delta = 3.26$ (d, ³*J*(H,H) = 7.05 Hz, 2H; CH₂N₃), 1.66-1.54 (m, 2H; CH₂CH₂N₃), 1.42-1.22 (m, 8H; CH₂CH₂CH₂CH₂CH₃), 0.89 (t, ³*J*(H,H) = 6.7 Hz, 2H; CH₂CH₃).

Benzyl azide

¹**H NMR (400 MHz, CDCl₃, 298K, TMS):** δ (ppm) = 7.27-7.44 (m, 5H, CH_{Ar}), 4.33 (s, 2H, CH₂).

Phenylazide

¹**H NMR (400 MHz, DMSO, 298K)**: δ (ppm) = 7.41 (m, 2H, CH_{Ar}), 7.19 (m, 1H, CH_{Ar}), 7.11 (m, 2H, CH_{Ar}).

2-(Azidoethyl)benzene

¹**H** NMR (400 MHz, CDCl₃, 298K, TMS): δ (ppm) = 7.35-7.19 (m, 5H, CH_{Ar}), 3.51 (t, ³J(H,H) = 7.2 Hz, 2H, CH₂CH₂N₃), 2.90 (t, ³J(H,H) = 7.2 Hz, 2H, CH₂CH₂N₃).

1-(azidomethyl)-4-nitrobenzene

 N_3 O₂N

¹**H NMR (400 MHz, CDCl₃, 298K, TMS)**: δ (ppm) = 8.25 (d, ³*J*(H,H) = 8.6 Hz, 2H, C*H*_{Ar}), 7.50 (d, ³*J*(H,H) = 8.6 Hz, 2H, C*H*_{Ar}), 4.51 (s, 2H, C*H*₂N₃).

4-(Azidomethyl)benzonitrile

¹**H NMR (400 MHz, CDCl₃, 298K, TMS)**: δ (ppm) = 7.68 (d, ${}^{3}J(H,H) = 8.5$ Hz, 2H, CH_{Ar}), 7.44 (d, ${}^{3}J(H,H) = 8.5$ Hz, 2H, CH_{Ar}), 4.45 (s, 2H, CH₂N₃).

2. Procedure for Catalysis

2.1 kinetic

A vial was charged with the azide (1.00 equiv., 1.00 mmol), alkyne (1.05 equiv., 1.10 mmol) and the appropriate catalyst (0.5 mol %). The reaction mixture was stirred at 25°C in neat conditions. An aliquot was taken at 20 minutes, 40 minutes, 60 minutes, 80 minutes, 110 minutes, 140 minutes, 200 minutes, 260 minutes, 320 minutes and then subjected to GC analysis to determine the conversion.

2.2 Catalysis

General procedure. A vial was charged with the azide (1.00 equiv., 1.00 mmol), alkyne (1.05 equiv., 1.10 mmol) and [Cu(Cl)BAC] (0.5 mol %). The reaction mixture was stirred at 25°C in neat conditions.

1-Heptyl-4-phenyl-1H-1,2,3-triazole⁷

The general procedure yielded, 467 mg (96%) of the title compound as a colourless solid.

¹**H NMR (400 MHz, CDCl₃, 298K, TMS)**: $\delta = 7.85-7.82$ (m, 2H, *CH*_{Ar}), 7.74 (s, 1H, NC*H*), 7.42 (t, ³*J*(H,H) = 7.4 Hz, 2H, *CH*_{Ar}), 7.35-7.30 (m, 1H, *CH*_{Ar}), 4.39 (t, ³*J*(H,H) = 7.1 Hz, 2H, NC*H*₂CH₂), 1.98-1.90 (m, 2H, NCH₂C*H*₂), 1.37-1.24 (m, 8H, *CH*₂C*H*₂*CH*₂C*H*₂C*H*₃), 0.88 (t, ³*J*(H,H) = 7.1 Hz, 3H, *CH*₃CH₂).

1-Benzyl-4-phenyl-1H-1,2,3-triazole⁷

The general procedure yielded, 456 mg (97%) of the title compound as a colourless solid.

¹H NMR (400 MHz, CDCl₃, 298K, TMS): δ = 7.80 (d, ³*J*(H,H) = 7.3Hz, 2H, CH_{Ar}), 7.66 (s, 1H, CH), 7.42-7.36 (m, 5H, CH_{Ar}), 7.34-7.29 (m, 3H, CH_{Ar}), 5.58 (s, 2H, NCH₂).

1,4-Diphenyl-1H-1,2,3-triazole⁷

The general procedure yielded, 425 mg (96%) of the title compound as a yellow solid.

¹H NMR (400 MHz, CDCl₃, 298K, TMS): $\delta = 8.20$ (s, 1H, CH), 7.94-7.91 (m, 2H, CH_{Ar}), 7.83-7.79 (m, 2H, CH_{Ar}), 7.58-7.53 (m, 2H, CH_{Ar}), 7.49-7.45 (m, 3H, CH_{Ar}), 7.40-7.35 (m, 1H, CH_{Ar}).

4-butyl-1-phenyl-1H-1,2,3-triazole⁸

The general procedure yielded, 386 mg (96%) of the title compound as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃, 298K, TMS): $\delta = 7.74-7.70$ (m, 3H, CH and CH_{Ar}), 7.51 (t, 2H, ³J(H,H) = 7.8 Hz, CH_{Ar}),), 7.41 (t, 1H, ³J(H,H) = 7.8 Hz, CH_{Ar}), 2.80 (t, ³J(H,H) = 7.5 Hz, 2H, CH₂), 1.72 (quint, ³J(H,H) = 7.5 Hz, 2H, CH₂), 1.43 (sextet, ³J(H,H) = 7.5 Hz, 2H, CH₂), 0.96 (t, ³J(H,H) = 7.5 Hz, 3H, CH₃).

1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole⁹

The general procedure yielded, 544 mg (97%) of the title compound as a yellow solid.

¹**H NMR (400 MHz, CDCl₃, 298K, TMS)**: δ = 8.24 (d, ³*J*(H,H) = 8.2 Hz, 2H, CH_{Ar}), 7.81 (d, ³*J*(H,H) = 8.2 Hz, 2H, CH_{Ar}), 7.75 (s, 1H, CH), 7.46-7.40 (m, 4H, CH_{Ar}), 7.37-7.32 (m, 1H, CH_{Ar}), 5.70 (s, 2H, NCH₂).

4-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile¹⁰

The general procedure yielded, 500 mg (96%) of the title compound as a colourless solid.

¹**H NMR (400 MHz, CDCl₃, 298K, TMS)**: δ = 7.81 (d, ³*J*(H,H) = 8.0 Hz, 2H, CH_{Ar}), 7.73 (s, 1H, CH), 7.67 (d, ³*J*(H,H) = 8.0 Hz, 2H, CH_{Ar}), 7.44-7.32 (m, 5H, CH_{Ar}), 5.65 (s, 2H, NCH₂).

1-phenethyl-4-phenyl-1H-1,2,3-triazole⁹

The general procedure yielded, 424 mg (85%) of the title compound as a colourless solid.

¹**H** NMR (400 MHz, CDCl₃, 298K, TMS): $\delta = 7.76$ (d, ³*J*(H,H) = 7.7 Hz, 2H, CH_{Ar}), 7.46 (s, 1H, N-CH), 7.41 (t, ³*J*(H,H) = 7.7 Hz, 2H, CH_{Ar}), 7.34-7.26 (m, 4H, CH_{Ar}), 7.14 (d,

 ${}^{3}J(H,H) = 7.7$ Hz, 2H, CH_{Ar}), 4.64 (t, ${}^{3}J(H,H) = 7.5$ Hz, 2H, CH₂), 3.26 (t, ${}^{3}J(H,H) = 7.5$ Hz, 2H, CH₂).

1-(1-benzyl-1H-1,2,3-triazol-4-yl)ethan-1-one¹¹

The general procedure yielded, 390 mg (97%) of the title compound as a brownish solid.

¹**H NMR (400 MHz, CDCl₃, 298K, TMS)**: δ = 7.94 (s, 1H, C*H*), 7.41-7.37 (m, 3H, C*H*_{Ar}), 7.30-7.27 (m, 2H, C*H*_{Ar}), 5.56 (s, 2H, NC*H*₂), 2.67 (s, 3H, C*H*₃).

(1-benzyl-1H-1,2,3-triazol-4-yl)methanol⁹

The general procedure yielded, 363 mg (96%) of the title compound as a yellowish solid.

¹**H NMR (400 MHz, CDCl₃, 298K, TMS)**: δ = 7.46 (s, 1H, CH), 7.39-7.33 (m, 3H, CH_{Ar}), 7.27-7.24 (m, 2H, CH_{Ar}), 5.49 (s, 2H, NCH₂), 4.74 (broad s, 2H, CH₂), 3.22 (broad s, 1H, OH).

3. NMR Experiments

3.1. VT studies

VT NMR of complex 2 (500 MHz, CD₃CN)

VT NMR of complex 3 (500 MHz, CD₃CN)

VT NMR of complex 4 (500 MHz, CD₃CN)

VT NMR of complex **5** (500 MHz, toluene-d8)

VT NMR of complex 6 (500 MHz, CD₃CN)

3.2. ¹H and ¹³C-{¹H} NMR spectra

¹H and (135DEPT)-¹³C-{¹H} NMR of 2 at 298K (500 MHz, CD₃CN):

¹H and (135DEPT)-¹³C-{¹H} NMR of 2 at 240K (500 MHz, CD₃CN):

¹H and (135DEPT)-¹³C-{¹H} NMR of 4 at 240K (500 MHz, CD₃CN):

¹H and (135DEPT)-¹³C-{¹H} NMR of 5 at 2408K (500 MHz, CD₃CN):

¹H and (135DEPT)-¹³C-{¹H} NMR of 6 at 240K (500 MHz, CD₃CN):

S24

¹H and (135DEPT)-¹³C-{¹H} NMR of $[Au(BAC)_2]^+$ OTf at 298K (300 MHz, CD₂Cl₂):

¹H NMR at 298K of 1-heptyl-4-phenyl-1H-1,2,3-triazole (400 MHz, CDCl₃, TMS)

¹H NMR at 298K of 1,4-diphenyl-1H-1,2,3-triazole (400 MHz, CDCl₃, TMS)

¹H NMR at 298K of 4-butyl-1-phenyl-1H-1,2,3-triazole (400 MHz, CDCl₃, TMS)

¹H NMR at 298K of 1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole (400 MHz, CDCl₃, TMS)

¹H NMR at 298K of 4-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile (400 MHz, CDCl₃, TMS)

¹H NMR at 298K of 1-phenethyl-4-phenyl-1H-1,2,3-triazole (400 MHz, CDCl₃, TMS)

¹H NMR at 298K of 1-(1-benzyl-1H-1,2,3-triazol-4-yl)ethan-1-one (400 MHz, CDCl₃, TMS)

¹H NMR at 298K of (1-benzyl-1H-1,2,3-triazol-4-yl)methanol (400 MHz, CDCl₃, TMS)

4. % V_{Bur} and 3D mapping

%V_{Bur} of BAC in [Cu(Cl)(BAC)], 2

V Free	•	v	Buried		V Tota	l	V Exa	ict
122.8			56.7		179.5		179.	6
%	V_Free			%V_Bur		% Tot/Ex		
	68.4			31.6		100.0		
xy	V_f		V_b	V_t		%V_f	%	V_b
	30.6		14.3	44.9		68.2	31	.85
-+	31.2		13.7	44.9		69.6	30).43
++	30.7		14.2	44.9		68.3	31	.66
+-	30.3		14.5	44.9	67.6		32	2.36
xy	+	-++	+++	+-+		-+-	++-	+
%V_b	0.0	0.0	0.0	0.0	62.4	59.6	62.0	63.4

$%V_{Bur}$ of IPr in	[Cu(Cl)(IPr)]
----------------------	---------------

V Fr	ee	V	' Buried		V Total		V Exa	ct
90.6			89.0		179.5		179.	6
	%V_Free		%∨_Bur % To					
	50.4		49.6				100.0	
ху	V_	f	V_b	V_	t	%V_f	%	V_b
	22.	1	22.8	44.9		49.3	50).74
-+	23.	2	21.7	44.	9	51.6	48	3.37
++	22.	1	22.8	44.	9	49.3	50).74
+-	23.	2	21.7	44.9		51.6	48	3.36
ху	+	-++	+++	+-+		-+-	++-	+
%V_b	10.5	6.6	10.5	6.6	89.3	88.4	89.3	88.3

Steric Map

V_{Bur} IMes in	[Cu(Cl)(IMes)]
-------------------	----------------

V Free			V Buried		V Total		V Exa	ict		
111.2			68.3		179.5		179.	6		
	%V_Free			%V_Bur		9	% Tot/Ex			
	62.0			38.0			100.0			
ху	V.	_f	V_b	V.	_t	%V_f	%	V_b		
	27	2.8	17.1	44.9		61.9	38	3.14		
-+	27	2.8	17.0	44	.9	62.1	37	7.94		
++	27	2.7	17.1	44	.9	61.9	38	8.15		
+-	27	7.8	17.0	44	.9	62.1	37	7.94		
ху	+	-++	+++	+-+		-+-	++-	+		
%V_b	0.3	0.2	0.3	0.2	74.4	74.1	74.4	74.1		

V Free			V Buried		V Total		V Exa	ct		
124.8			54.7		179.5		179.	6		
	%V_Free		2	%V_Bur		%	% Tot/Ex			
69.5				30.5			100.0			
ху	V.	_f	V_b	V_	t	%V_f	%	V_b		
	30	.9	14.0	44.9		68.9	31	.15		
-+	31	.7	13.1 44.9		70.7	29	9.28			
++	30	.1	14.8	44	.9	67.1	32	2.88		
+-	32	.1	12.8	44.9		71.5	28	3.52		
ху	+	-++	+++	+-+		-+-	++-	+		
%V_b	0.0	0.0	0.0	0.0	61.0	57.3	64.4	55.8		

%V_{Bur} ICy in [Cu(Cl)(ICy)]

V Free	2	V	Buried	V Total			V Exa	ıct	
124.1			55.4	179.5 179.6			6		
%	V_Free		5	%V_Bur	V_Bur % Tot/Ex				
	69.1			30.9			100.0		
ху	V_f		V_b	V.	_t	%V_f	%	V_b	
	31.0		13.9	44	.9	69.1	30	0.87	
-+	31.3		13.5	44	.9	69.8	3(0.17	
++	30.9	30.9 1		44	.9	68.8	3	1.18	
+-	30.8		14.0	44.9		68.7	3	1.27	
xy	+	-++	+++	+-+		-+-	++-	+	
%V_b	0.0	0.0	0.0	0.1	60.4	59.1	61.1	61.2	

% V_{Bur} of BAC in [Pd(μ -Cl)(Cl)(BAC)]₂, 3

%V_{Bur} of BAC in [Au(Cl)(BAC)], 4

V Free			V Buried		V Total		V Exa	.ct
125.9			53.7		179.5		179.	6
	%V_Free			%V_Bur		9	6 Tot/Ex	
	70.1			29.9			100.0	
ху	V.	_f	V_b	V_	.t	%V_f	%	V_b
	31	.8	13.1	44.9		70.8	29	9.17
-+	31	.7	13.2	44	.9	70.6	29	9.41
++	30).9	14.0	44	.9	68.9	3	1.10
+-	31	.5	13.4	44	.9	70.2	29	9.83
ху	+	-++	+++	+-+		-+-	++-	+
%V_b	0.0	0.0	0.0	0.0	57.1	57.6	60.9	58.4

Steric Map

$%V_{Bur}$ of BAC in	[Ir(Cl)(BAC)(1	,5-COD)], 5
----------------------	----------------	-------------

V Free			V Buried		V Total		V Exa	ict	
133	133.8			45.7 179.5 179				6	
	%V_Free		%V_Bur				% Tot/Ex		
	74.5			25.5			100.0		
ху	V	_f	V_b	V.	_t	%V_f	%	V_b	
	34	.9	10.0	44.9		77.7	22	2.27	
-+	34	.2	10.7	44	.9	76.2	23	3.78	
++	32	2.2	12.7	44	.9	71.8	28	8.20	
+-	32	2.5	12.4	44	.9	72.3	23	7.66	
ху	+	-++	+++	+-+		-+-	++-	+	
%V_b	0.0	0.0	0.0	0.0	43.6	46.6	55.2	54.2	

Steric Map

5. Determination of ΔG^{\neq}

The rate constant at the coalescence point for two site exchange with equal site populations:

$$k_c = \frac{\pi \Delta \vartheta}{\sqrt{2}} \left[s^{-1} \right]$$

Eyring equation

Free activation energy at the coalescence point

$$\Delta G^{\neq} = RT_c \left(23.759 - \ln \frac{k_c}{T_c} \right) \left[J. \, mol^{-1} \right]$$

With R = 8.32

 $T_c = coalescence temperature$

Data for copper complex 2: Δv (at 240K) = 118.6 Hz $T_c = 318.9 \pm 2.0$ K $k_c = 2.63 \times 10^2 \text{ s}^{-1}$ $\Delta G^{\neq} = 6.35 \times 10^4 \text{ J.mol}^{-1}$ $\Delta G^{\neq} = 15.18 \pm 0.10 \text{ kcal.mol}^{-1}$

Data for palladium complex **3**:

$$\Delta v (at 240K) = 219.9 \text{ Hz}$$

 $T_c = 300.4 \pm 2.0 \text{ K}$
 $k_c = 4.88 \text{ x } 10^2 \text{ s}^{-1}$
 $\Delta G^{\neq} = 5.82 \text{ x } 10^4 \text{ J.mol}^{-1}$

 $\Delta G^{\neq} = 13.90 \pm 0.09 \text{ kcal.mol}^{-1}$

Data for gold complex 4: Δv (at 240K) = 126.8 Hz $T_c = 322.8 \pm 2.0$ K $k_c = 2.82 \times 10^2 \text{ s}^{-1}$ $\Delta G^{\neq} = 6.42 \times 10^4 \text{ J.mol}^{-1}$ $\Delta G^{\neq} = 15.33 \pm 0.10 \text{ kcal.mol}^{-1}$

Data for iridium complex 5: $\Delta v \text{ (at 223K)} = 376.6 \text{ Hz}$ $T_c = 266.0 \pm 2.0 \text{ K}$ $k_c = 8.37 \text{ x } 10^2 \text{ s}^{-1}$ $\Delta G^{\neq} = 5.00 \text{ x } 10^4 \text{ J.mol}^{-1}$ $\Delta G^{\neq} = 11.96 \pm 0.09 \text{ kcal.mol}^{-1}$

Data for rhodium complex 6: Δv (at 240K) = 144.9 Hz $T_c = 307.9 \pm 2.0 \text{ K}$ $k_c = 3.22 \text{ x } 10^2 \text{ s}^{-1}$ $\Delta G^{\neq} = 6.08 \text{ x } 10^4 \text{ J.mol}^{-1}$ $\Delta G^{\neq} = 14.53 \pm 0.08 \text{ kcal.mol}^{-1}$

6. Crystallographic data for complexes 2-5, and $[Au(BAC)_2]^+OTf$.

Complex	2	3
CCDC number	CCDC 1012888	CCDC 1012889
Emperical formula	C ₁₅ H ₂₈ ClCuN ₂	C _{30.5} H ₅₇ Cl ₅ N ₄ Pd ₂
Formula Weight	335.40 g.mol ⁻¹	$869.88 \text{ g.mol}^{-1}$
Crystal color, Habit	colourless, needle	yellow, platelet
Temperature (K)	173.15	173.15
Crystal system	monoclinic	triclinic
Space group	P2 ₁ /c (#14)	P-1 (#2)
Unit cell dim.	0.240 X 0.020 X 0.020 mm	0.210 X 0.060 X 0.020 mm
Lattice type	Primitive	Primitive
Lattice parameter a,b,c (Å)	a = 6.043(3) Å b = 18.944(7) Å c = 15.635(6) Å	a = 8.6743(10) Å b = 15.1390(18) Å c = 15.947(2) Å
α,β,γ (°)	$\beta = 100.450(11)^{0}$	$\alpha = 86.794(7)^{0}$ $\beta = 85.946(7)^{0}$ $\gamma = 80.765(6)^{0}$
Volume (Å) ³	$V = 1760.3(11) Å^3$	$V = 2059.8(4) \text{ Å}^3$
Z	4	2
Density calculated	1.265 g/cm ³	1.402 g/cm ³
Absorption coefficient (cm ⁻¹)	13.831 cm ⁻¹	12.212 cm ⁻¹
F(000)	712.00	890.00
Diffractometer	Mercury70	XtaLAB P200
Radiation	ΜοΚα (λ = 0.71075 Å)	MoKα (λ = 0.71075 Å) multi-layer mirror monochromated
Voltage, Current	50kV, 16mA	45kV, 66mA
Theta range for data collection (°)	$2\theta_{\text{max}} = 50.7^{\circ}$	$2\theta_{\text{max}} = 50.8^{\circ}$
Reflexions collected	Total: 11039 Unique: 3196 (R _{int} = 0.0688)	Total: 33898 Unique: 7540 (R _{int} = 0.0609)
Correction	Lorentz-polarization Absorption (trans. factors: 0.638 - 0.973)	Lorentz-polarization Absorption (trans. factors: 0.755 - 0.976)
Structure solution	Direct Methods (SHELX97)	Patterson Methods (SHELXS2013)

Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Anomalous dispersion	All non-hydrogen atoms	All non-hydrogen atoms
No. Observations (all reflections)	3196	7540
No. variables	180	396
Reflection/parameter ratio	17.76	19.04
Goodness-of-fit on F ²	1.119	1.008
Final R indices [I>2sigma(I)]	0.0763	0.0444
R indices (all data)	0.2005	0.1218
Maximum peak in Final Diff Map (e.Å ⁻³)	1.84 e ⁻ /Å ³	1.14 e⁻/Å ³
Minimum peak in Final Diff Map (e.Å ⁻³)	-0.56 e ⁻ /Å ³	-0.97 e ⁻ /Å ³
Max shift/error in final cycle	0.000	0.001

Complex	4	5
CCDC number	CCDC 1012890	CCDC 1012887
Emperical formula	C ₁₅ H ₂₈ AuClN ₂	C ₂₃ H ₄₀ ClIrN ₂
Formula Weight	468.82 g.mol ⁻¹	572.26 g.mol ⁻¹
Crystal color, Habit	colourless, prism	yellow, chip
Temperature (K)	173.15	173.15
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /n (#14)	P2 ₁ /n (#14)
Unit cell dim.	0.150 X 0.150 X 0.150 mm	0.060 X 0.030 X 0.020 mm
Lattice type	Primitive	Primitive
Lattice parameter	a = 11.3202(7) Å	a = 11.8497(10) Å
a b c (Å)	b = 12.8913(10) Å	b = 12.2144(9) Å
	c = 12.5373(10) Å	c = 16.7180(14) Å
α,β,γ (°)	$\beta = 90.2151(19)^{\circ}$	$\beta = 91.591(2)^{\text{O}}$
Volume $(\text{Å})^3$	$V = 1829.6(2) \text{ Å}^3$	$V = 2418.8(3) \text{ Å}^3$
Z	4	4
Density calculated	1.702 g/cm ³	1.571 g/cm ³
Absorption coefficient (cm ⁻¹)	82.063 cm ⁻¹	56.555 cm ⁻¹
F(000)	912.00	1144.00
Diffractometer	XtaLAB P200	XtaLAB P200
Radiation	MoKα (λ = 0.71075 Å) multi-layer mirror monochromated	MoKα (λ = 0.71075 Å) multi-layer mirror monochromated
Voltage, Current	45kV, 66mA	45kV, 66mA
Theta range for data collection (°)	$2\theta_{\text{max}} = 50.8^{\circ}$	$2\theta_{\text{max}} = 50.8^{\circ}$
	Total: 21959	Total: 28943
Reflexions collected	Unique: 3368	Unique: 4451
	$(R_{int} = 0.0313)$	$(R_{int} = 0.0284)$
Correction	Lorentz-polarization	Lorentz-polarization
	Absorption	Absorption
	(trans. factors: 0.223 - 0.292)	(trans. factors: 0.794 - 0.893)
Structure solution	Patterson Methods	Direct Methods

	(SHELXS2013)	(SHELXS2013)	
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on	
	F ²	F ²	
Anomalous dispersion	All non-hydrogen atoms	All non-hydrogen atoms	
No. Observations (all	2269	1151	
reflections)	3308	44,31	
No. variables	180	252	
Reflection/parameter ratio	18.71	17.66	
Goodness-of-fit on F ²	1.072	1.045	
Final R indices	0.0134	0.0139	
[I>2sigma(I)]	0.0134		
R indices (all data)	0.0343	0.0367	
Maximum peak in Final Diff	0.21 - 183	0.60 e ⁻ /Å ³	
Map (e.Å ⁻³)	0.31 e /A ³		
Minimum peak in Final Diff	-0.68 e ⁻ /Å ³	$0.46 \text{ s}^{-1/3}$	
Map (e.Å ⁻³)		-0.40 e /AS	
Max shift/error in final cycle	0.003	0.006	

Complex	[Au(BAC) ₂] ⁺ OTf ⁻
CCDC number	CCDC 1020907
Emperical formula	$C_{31}H_{56}AuF_3N_4O_3S$
Formula Weight	818.82g.mol ⁻¹
Crystal color, Habit	colourless, plate
Temperature (K)	173.15
Crystal system	monoclinic
Space group	P2 ₁ /c (#14)
Unit cell dim.	0.105 X 0.083 X 0.032 mm
Lattice type	Primitive
Lattice parameter	a = 13.2941(6) Å
$abc(\dot{\lambda})$	b = 9.5096(5) Å
a,0,c (A)	c = 14.5324(7) Å
α,β,γ (°)	$\beta = 93.610(2)$ ^O
Volume $(\text{Å})^3$	$V = 1833.56(15) Å^3$
Z	2
Density calculated	1.483 g/cm ³
Absorption coefficient (cm ⁻¹)	4.118 cm ⁻¹
F(000)	832.00
Diffractometer	
Radiation	MoK α ($\lambda = 0.71075$ Å)
Voltage, Current	
Theta range for data collection (°)	$2\theta_{\text{max}} = 52.834^{\circ}$

	Total: 12626
Reflexions collected	Unique: 3719
	$(R_{int} = 0.0509)$
Correction	MULTI-SCAN
Conection	(trans. factors: 0.670 - 0.877)
Structure solution	Direct Methods (SHELX97)
Refinement method	Full-matrix least-squares on F ²
Anomalous dispersion	All non-hydrogen atoms
No. Observations (all reflections)	3719
No. variables	204
Reflection/parameter ratio	18.23
Goodness-of-fit on F ²	1.201
Final R indices [I>2sigma(I)]	0.0377
R indices (all data)	0.0441
Maximum peak in Final Diff Map (e.Å ⁻³)	0.90 e⁻/Å ³
Minimum peak in Final Diff Map (e.Å ⁻³)	-1.24 e ⁻ /Å ³
Max shift/error in final cycle	0.000

7. References

- 1 T. N. Hooper, C. P. Butts, M. Green, M. F. Haddow, J. E. McGrady, C. A. Russell, *Chem. Eur. J.*, **2009**, *15*, 12196-12200.
- 2 C. A. Citadelle, E. Le Nouy, F. Bisaro, A. M. Z. Slawin, C. S. J. Cazin, *Dalton Trans.*, **2010**, *39*, 4489-4491.
- 3 V. Lavallo, Y. Canac, B. Donnadieu, W.W. Schoeller, G. Bertrand, *Angew. Chem.*, **2006**, *118*, 6804-6807; *Angew. Chem. Int. Ed.*, **2006**, *45*, 6652-6655.
- 4 H. Konishi, S. Matsumoto, Y. Kamitori, H. Ogoshi, Z. Yoshida, *Chem. Lett.*, **1978**, 241-244.
- 5 G. Kuchenbeiser, B. Donnadieu, G. Bertrand, J. Organomet. Chem., 2008, 693, 899-904.
- 6 V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, *Science*, **2006**, *312*, 722-724.
- 7 F. Lazreg, A. M. Z. Slawin, C. S. J. Cazin, Organometallics, 2012, 31, 7969.
- 8 S. Guo, M. H. Lim, H. V. Huynh, *Organometallics*, **2013**, *32*, 7225.
- 9 S. Lal, S. Díez-González, J. Org. Chem., 2011, 76, 2367.
- 10 S. Díez-González, A. Correa, L. Cavallo, S. P. Nolan, *Chem. Eur. J.*, **2006**, *12*, 7558.
- 11 F. Cuevas, A. I. Oliva, M. A. Pericàs, *Synlett*, **2010**, *12*, 1873.