A chromogenic molecular capsule attributable to dipolar amide resonance structure

Yeon Sil Park, Juwan Park, and Kyungsoo Paek^{,*}

Department of Chemistry, Soongsil University, Seoul 156-743, Korea kpaek@ssu.ac.kr

Supporting Information

Table of Contents

1.	Syntheses
	1-1. General S2
	1-2. Synthetic procedures
	1-3. ¹ H, ¹³ C NMR, and 2D-NOESY spectra
2.	Molecular modeling
3.	Acid (CH ₃ SO ₃ H) and base (DBU) titration experiments of molecular capsule 2_2
	3-1. Acid (CH ₃ SO ₃ H) titration experiments of molecular capsule 2_2
	3-2. Base (DBU) titration experiments of the protonated molecular capsule $2_2 \cdot 8H^+$
4.	Acid (CH ₃ SO ₃ H) titration experiments of cavitand 2
5.	Acid (CH ₃ SO ₃ H) titration experiments of model compound 3
6.	Methanol addition experiments of the protonated molecular capsule 2_2 ·8H ⁺
	6-1. UV –Vis absorption spectra upon addition of methanol
	6-2. ¹ H NMR spectra upon addition of methanol

1. Syntheses

1-1. General

All commercially obtained solvents and reagents were used without further purification. *N*,*N*-Dimethylformamide (DMF) was obtained from Aldrich Chemical Company, Inc. as anhydrous, 99+% grade. Analytical thin-layer chromatography (TLC) was carried out on Merck silica gel 60 F_{254} glass plate and column chromatography was performed on Merck silica gel 60 (70 - 230 mesh).

NMR solvents were obtained as chloroform-d, 99.96 atom %D and toluene- d_8 , 99.9 atom %D from Aldrich Chemical Company, Inc.; DMSO- d_6 99.8 atom %D from Cambridge Isotope Laboratories, Inc.

NMR spectra were measured on a Bruker Avance Digital 400 spectrometer at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts were recorded in parts per million (δ) using either relative to residual undeuterated solvent resonances and coupling constants in hertz (Hz). UV-Visible spectra were recorded on a JASCO V-550 spectrophotometer. Matrix assisted laser desorption/ionization mass-time of flight (MALDI-TOF) spectra were obtained using an Applied Biosytems Voyager-DE STR biospectrometer. Elemental analysis was measured on a Thermo Finnigam-Flash 2000 series.

1-2. Synthetic procedures

Compound 5 : A mixture of ethyl 4-aminobenzoate (2.60 g, 15.7 mmol) and HCl (4.5 mL) in THF (10 mL) was stirring for 30 min at 0 °C and then a solution of NaNO₂ (1.20 g, 17.4 mmol) in H₂O (5 mL) precooled to 0 °C was added dropwise. The reaction mixture was stirred at 0 °C for 30 min. To this solution was added slowly a solution of *N*,*N*-dimethylaniline (1.90 g, 15.7 mmol) in THF (4 mL) at 0 °C. After being

stirred for another 16 h at 0 °C, the reaction mixture was concentrated under reduced pressure. The residue was dissolved with CH₂Cl₂ (30 mL) and was washed with 1N NaOH, water, and dried over MgSO₄, filtered. Removal of the solvent under reduced pressure afford the crude product, which was further recrestallized from CH₂Cl₂/CH₃OH (7:3) to give **5** as a reddish-colored solid (2.1 g, 45%): ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.8 Hz, 2H, Ar-*H*), 7.92 (d, *J* = 9.2 Hz, 2H, Ar-*H*), 7.87 (d, *J* = 8.8 Hz, 2H, Ar-*H*), 6.77 (d, *J* = 9.2 Hz, 2H, Ar-*H*), 4.41 (q, *J* = 7.2 Hz, 2H, -CO₂CH₂CH₃), 3.12 (s, 6H, -N(CH₃)₂), 1.43 (t, *J* = 7.2 Hz, 3H, -CO₂CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 156.1, 153.1, 143.9, 141.6, 130.7, 125.7, 122.1, 111.7, 61.3, 40.5, 14.6; HRMS (MALD-TOF; M + H⁺) calcd for C₁₇H₂₀N₃O₂⁺: 298.1550; found 298.1568.

Compound 6: To a solution of compound **5** (1.0 g, 3.4 mmol) in ethanol (30 mL) was added hydrazine hydrate (85%, 20 mL). The solution was heated to reflux for 4 h and then cooled to room temperature. The reaction mixture was concentrated under reduced pressure and the formed precipitate was collected by filtration and

washed with water and methanol to give the required product **6** as a red solid (0.54 g, 56%): ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.87 (s, 1H, -CON*H*-NH₂), 7.96 (d, *J* = 8.4 Hz, 2H, Ar-*H*), 7.82 (d, *J* = 8.8 Hz, 2H, Ar-*H*), 7.80 (d, *J* = 8.8 Hz, 2H, Ar-*H*), 6.85 (d, *J* = 8.4 Hz, 2H, Ar-*H*), 4.53 (s, 2H, -CONH-NH₂), 3.08 (s, 6H, -N(CH₃)₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.3, 153.9, 152.8, 142.6, 133.6, 128.1, 125.1, 121.5, 111.6, 39.8; HRMS (MALD-TOF; M + H⁺) calcd for C₁₅H₁₈N₅O⁺: 284.1506; found 284.1517.

Cavitand 2: A mixture of tetraformyl cavitand 7 (1.00 g, 0.96 mmol), compound **6** (1.15 g, 4.0 mmol), MgSO₄ (3 g), and anhydrous DMF (50 mL) was stirred for 4 days at room temperature under an argon atmosphere. The reaction mixture was concentrated under reduced pressure. The residue was dissolved with toluene (80 mL), filtered through a pad of celite. After removal of solvent, purification by short column chromatography on silica gel (CH₂Cl₂/EtOAc = 7:3) provided the product as a white solid (1.7 g, 85%): ¹H NMR of cavitand **2** (400 MHz, 10% CD₃OD/toluene-*d*₈) δ 8.80 (s, 4H, imine -C*H*=N-), 8.07 (d, *J* = 8.0 Hz, 8H, Ar-*H*), 8.00-7.96 (m, 16H, Ar-*H*), 7.55 (s, Ar-*H*), 6.56 (d, *J* = 7.6 Hz, 4H, -OC*H*_{out}H_{in}O-), 6.40 (d, *J* = 9.2 Hz, 8H, Ar-*H*),

5.40 (t, J = 8.0 Hz, 4H, -CH-), 5.00 (d, J = 7.6 Hz, 4H, -OCH_{out} H_{in} O-), 2.46 (s, 24H, -N(CH₃)₂), 2.41 (m, 4H, -CH₂-), 1.45 - 1.28 (m, 40H, -(CH₂)₅-), 0.92 (t, J = 6.8 Hz, 12H, -CH₃); Anal. Calcd for C₁₂₄H₁₄₀N₂₀O₁₂: C, 70.83; H, 6.71; N, 13.32. Found: C, 70.69; H, 6.84; N, 13.24.

¹H NMR of **capsule** (400 MHz, toluene- d_8) δ 12.79 (s, 8H, amide - N*H*), 9.07 (d, J = 8.8 Hz, 16H, Ar-*H*), 8.83 (s, 4H, imine -C*H*=N-), 8.32 (d, J = 8.8 Hz, 16H, Ar-*H*), 8.07 (d, J = 9.2 Hz, 16H, Ar-*H*), 7.24 (s, 8H, Ar-*H*), 6.41 (d, J = 9.2 Hz, 16H, Ar-*H*), 6.33 (d, J = 7.6 Hz, 8H, -OCH_{out}H_{in}O-), 4.89 (t, J = 8.0 Hz, 8H, -C*H*-), 4.35 (d, J = 7.6 Hz, 8H, -OCH_{out}H_{in}O-), 2.41 (s, 48H, -N(CH₃)₂), 1.84 (m, 8H, -CH₂-), 1.20 - 1.09 (m, 80H, -(CH₂)₅-), 0.84 (t, J = 7.2 Hz, 24H, -CH₃); ¹³C NMR of **capsule** (100 MHz, toluene- d_8) δ 164.4, 156.7, 155.9, 154.0, 153.3, 145.4, 144.5, 137.9, 133.9, 130.5, 126.3, 123.7, 122.3, 121.9, 112.2, 101.6, 40.0, 37.4, 32.6, 30.9, 30.5, 30.0, 28.5, 23.3, 14.6.

Model compound 3: This compound was prepared as an orange solid (82%) from the reaction of 2,6-dimethoxybenzaldehyde and compound **6** following the procedure described above for preparing cavitand **2**: ¹H NMR (400 MHz, DMSO- d_6) δ 11.76 (s, 1H, -CON*H*-NH₂), 8.65 (s, 1H, imine -C*H*=N-), 8.07 (d, *J* = 8.4 Hz, 2H, Ar-*H*), 7.87 (d, *J* = 8.4 Hz, 2H, Ar-*H*), 7.84 (d, *J* = 9.2 Hz, 2H, Ar-*H*), 7.36 (t, *J* = 8.4 Hz, 1H, Ar-*H*), 6.86 (d, *J* = 9.2

Hz, 2H, Ar-*H*), 6.74 (d, J = 8.4 Hz, 2H, Ar-*H*), 3.82 (s, 6H, -OC*H*₃), 3.09 (s, 6H, -N(C*H*₃)₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.1, 158.7, 154.2, 152.9, 143.6, 142.7, 133.8, 131.2, 128.8, 125.2, 121.6, 111.6, 111.1, 104.4, 56.0, 39.8; HRMS (MALD-TOF; M + H⁺) calcd for C₂₄H₂₆N₅O₃⁺: 432.2030; found 432.2042.

1-3. ¹H , ¹³C NMR, and 2D-NOESY Spectra

Fig. S1. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of compound 5 in CDCl₃.

Fig. S2. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of compound 6 in DMSO- d_6 .

Fig. S3-1. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of molecular capsule (toluene- $d_8@2_2$) in toluene- d_8 .

Fig. S3-2. ¹H NMR spectrum of cavitand 2 in 10% CD₃OD/toluene- d_8 .

Fig. S3-3. Partial regions of the 2D-NOESY spectra of a) molecular capsule (toluene- $d_8(@2_2)$) in toluene- d_8 ; b) cavitand **2** in 10% CD₃OD/toluene- d_8

Fig. S4. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of model compound 3 in DMSO- d_6 .

2. Molecular Modeling

The structures of molecular capsule $2_2 \cdot 8H^+$ and cavitand $2 \cdot 4H^+$ are built and minimized Semi-Empirical PM3 level using the PC model program: Spartan'06 V112. The heptyl side chains in molecular capsule $2_2 \cdot 8H^+$ and cavitand $2 \cdot 4H^+$ are replaced to methyl groups.

< Molecular capsule $2_2 \cdot 8H^+$ >

< Cavitand, $2 \cdot 4 H^+ >$

3. Acid (CH₃SO₃H) and base (DBU) titration experiments of molecular capsule 2₂

3-1. Acid (CH₃SO₃H) titration experiments of molecular capsule 2₂

Titration of 2.0 mL (4.7×10^{-6} M) solution of capsule 2_2 with stepwise addition of 0-40 equiv. of CH₃SO₃H (7.52×10^{-3} M) was followed by UV-Vis spectrophotometry, and spectrum was recorded after each addition.

Table 1. Acid titration data points for CH₃SO₃H (7.52 × 10⁻³ M) with capsule 2_2 (4.7 × 10⁻⁶ M, 2.0 mL) in toluene.

Molar ratio		Added volume of Guest	Total volume of	Concentration [M]	
capsule 2_2	acid	each titration	Titration (2_2 +acid)	$[2_2]_0$	[acid] ₀
1	0	0 µL	2000 μL	4.700×10^{-6}	0.000
1	8	10 µL	2010 μL	4.677×10^{-6}	3.742×10^{-5}
1	16	20 µL	2020 μL	4.654×10^{-6}	7.446×10^{-5}
1	24	30 µL	2030 μL	4.631×10^{-6}	1.111×10^{-4}
1	32	40 µL	2040 μL	4.608×10^{-6}	1.475×10^{-4}
1	40	50 μL	2050 μL	4.585×10^{-6}	1.834×10^{-4}

Fig. S5. Changes in UV-Vis absorption spectra of molecular capsule, toluene@ $\mathbf{2}_2$ (4.7 × 10⁻⁶ M in toluene) upon addition of CH₃SO₃H.

3-2. Base (DBU) titration experiments of the protonated molecular capsule $2_2 \cdot 8H^+$

Fig. S6. Changes in UV-Vis absorption spectra of toluene@ $2_2 \cdot 8H^+$ (2.6 × 10⁻⁶ M in toluene) upon addition of DBU.

4. Acid (CH₃SO₃H) titration experiments of cavitand 2

Titration of 2.0 mL (4.7×10^{-6} M in 8% methanol/toluene) solution of cavitand **2** with stepwise addition of 0-20 equiv. of CH₃SO₃H (3.76×10^{-3} M in 8% methanol/toluene) was followed by UV-Vis spectrophotometry, and spectrum was recorded after each addition.

Table 2. Acid titration data points for CH₃SO₃H (3.76×10^{-3} M) with cavitand **2** (4.7×10^{-6} M, 2.0 mL) in 8% methanol/toluene.

Molar ratio		Added volume of Guest	Total volume of	Concentration [M]	
cavitand 2	acid	each titration	Titration (2 +acid)	$[2]_0$	[acid] ₀
1	0	0 µL	2000 µL	$4.700\times10^{\text{-}6}$	0.000
1	4	10 µL	2010 μL	4.677×10^{-6}	1.871×10^{-5}
1	8	20 µL	2020 μL	4.654×10^{-6}	3.723×10^{-5}
1	12	30 µL	2030 μL	4.631×10^{-6}	5.557×10^{-5}
1	16	40 µL	2040 μL	4.608×10^{-6}	7.373×10^{-5}
1	20	50 μL	2050 μL	4.585×10^{-6}	9.170 × 10 ⁻⁵

Fig. S7. Changes in UV-Vis absorption spectra of cavitand 2 (4.7×10^{-6} M in 8% methanol/toluene) upon addition of CH₃SO₃H.

5. Acid (CH₃SO₃H) titration experiments of model compound 3

Titration of 2.0 mL (1.4×10^{-4} M in toluene) solution of model compound **3** with stepwise addition of 0-20 equiv. of CH₃SO₃H (2.8×10^{-2} M in toluene) was followed by UV-Vis spectrophotometry, and spectrum was recorded after each addition.

Table 2. Acid titration data points for CH₃SO₃H (3.76×10^{-3} M) with model compound **3** (4.7×10^{-6} M, 2.0 mL) in toluene.

Molar ra	ıtio	Added volume of Guest each titration	Total volume of	Concentration [M]	
Model compound 3	acid		Titration (3+acid)	[3] ₀	[acid] ₀
1	0	0 µL	2000 μL	1.400×10^{-4}	0.000
1	1	10 µL	2010 μL	$1.393 imes 10^{-4}$	1.393×10^{-4}
1	2	20 µL	2020 μL	1.386×10^{-4}	2.772×10^{-4}
1	3	30 µL	2030 μL	$1.379 imes 10^{-4}$	4.137×10^{-4}
1	4	40 µL	2040 μL	1.373×10^{-4}	5.492×10^{-4}
1	5	50 µL	2050 μL	1.366×10^{-4}	6.830 × 10 ⁻⁴

Fig. S8. Changes in UV-Vis absorption spectra of model compound 3 (1.4×10^{-4} M in toluene) upon addition of CH₃SO₃H.

6. Methanol addition experiments of the protonated capsule, toluene@22.8H+

6-1. UV –Vis absorption spectra upon addition of methanol

Fig. S9. Changes in UV-Vis absorption spectra of toluene $@2_2 \cdot 8H^+$ (4.7 × 10⁻⁶ M in toluene) upon addition of methanol.

6-2. ¹H NMR spectra upon addition of methanol

Fig. S10. ¹H NMR spectra (400 MHz) in toluene- d_8 at 298 K of: a) toluene- $d_8@\mathbf{2}_2\cdot 8H^+$ b) after the addition of 2% CD₃OD, c) after the addition of 8% CD₃OD. [$\mathbf{2}_2$] = 5 mM. The signals of capsule $\mathbf{2}_2\cdot 8H^+$ (black) and cavitand $\mathbf{2}\cdot 4H^+$ (green) are highlighted. The residual peaks of solvents are marked "*".