Nickel-Catalyzed Thiolation of Unactivated Aryl C–H Bonds: An Efficient Access to Diverse Aryl Sulfides

Sheng-Yi Yan,[‡] Yue-Jin Liu,[‡] Bin Liu, Yan-Hua Liu, Bing-Feng Shi^{*}

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Supporting Information

Table of Contents:

1. General information	S2
2. Experimental Section	S2
2.1 Preparation of substrate	S2
2.2 Optimization of Reaction Conditions	S5
2.3 Screening of Other Directing Groups	S6
2.4 General Procedure for the Thiolation	S6
2.5 Gram-Scale Experiment	S19
2.6 Mechanistic Investigation	S19
3. References	S22
4. Spectra	S23

1. General Information

All the materials and solvents were purchased from Adamas-beta and other commercial suppliers and used without additional purification. NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, using TMS as internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal (77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or a low-resolution MS instrument using EI ionization.

2. Experimental Section

2.1 Preparation of Substrates

Compounds 1a-1h, 1j-1p, 1a-*d*₅, were known compounds.^[1, 2, 3] Compounds 1i, 1q, 1r were prepared following typical method A or method B.

Preparation of 2-(Pyridin-2-yl)isopropyl (PIP) Amine

An improvement of the work-up procedure to the literature^[4] was used: To a solution of 2-cyanopyridine (33.0 g, 0.32 mol) in 500 ml of toluene was added CH₃MgBr (3.2M in 2-methyl tetrahydrofuran, 300ml, 0.96 mol) dropwise at 0 °C in a nitrogen atmosphere by vigorous magnetometric stirring. Upon completion of addition, the mixture was refluxed overnight. The reaction was quenched by adding saturated aqueous NH₄Cl dropwise at 0 °C until the dark mixture changed to yellow. The suspension was filtrated through a pad of celite and the filtration was acidified by aqueous HCl (6 M, 10 ml). The resulting water phase combined with the filter residue was basified by saturated aqueous NaOH until the yellow colored mixture turned dark

brown with slurry sticky to the bottom. The mixture was washed with dichloromethane (500 ml × 4) carefully and the organic phase was combined and concentrated using a rotary evaporator. The crude product was further purified by distillation under reduced pressure. The target product was obtained as a light yellow liquid (>98% purity. 24 g, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 4.2 Hz, 1 H), 7.63 (td, *J* = 7.8, 1.8 Hz, 1 H), 7.45 (d, *J* = 8.0 Hz, 1 H), 7.12 (ddd, *J* = 7.4, 4.8, 0.8 Hz, 1 H), 1.87 (s, 2 H), 1.50 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 168.32, 148.78, 136.55, 121.41, 118.53, 54.14, 31.35.

General Procedure for the Preparation of Starting Materials (Method A):

$$\begin{array}{c} O \\ H \\ R^{1} \\ OH \end{array} \begin{array}{c} 1) \operatorname{SOCI}_{2}, \operatorname{reflux}, 2h \\ \hline 2) \operatorname{Et}_{3}N, R^{2}NH_{2}, \operatorname{DCM}, \operatorname{r.t.} \end{array} \begin{array}{c} O \\ R^{1} \\ H \end{array} \begin{array}{c} O \\ R^{1} \\ H \end{array} \begin{array}{c} O \\ R^{2} \\ H \end{array}$$

A solution of an acid (5 mmol) was refluxed in 5 mL SOCl₂ for 2h and cooled to RT. The excess of SOCl₂ was removed under vacuum to give corresponding acid choloride. The acid choloride was then re-dissolved in 5 mL dry CH₂Cl₂ and added dropwiseto a 20 mL dry CH₂Cl₂ solution containing amine (5 mmol) and Et₃N (10 mmol) at 0 °C. After stirring for 6h at ambient temperature, the resulting mixture was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired product.

General Procedure for the Preparation of Starting Materials (Method B):

$$\begin{array}{c} O \\ R^{1} \\ OH \end{array} \xrightarrow{EDCI, HOBT, DMF} \qquad O \\ R^{2}NH_{2} \\ \end{array} \xrightarrow{O} \\ R^{1} \\ H \\ H \\ \end{array} \xrightarrow{O} \\ R^{2} \\ R^{2} \\ H \\ \end{array}$$

A mixture of amine (5 mmol), 6-bromohexanoic acid (5 mmol), EDCI (5.5 mmol) and HOBT (5.5 mmol) in anhydrous DMF (20 mL) was stirred at room temperature overnight. Water was added and the mixture was extracted with diethyl ether. The combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired product.

4-(dimethylamino)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 1i

The title compound **1i** was prepared according to the general procedure (Method A). ¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (d, *J* = 3.2 Hz, 1H), 8.52 (br, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.72 (td, *J* = 7.6, 1.6 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.20 (ddd, *J* = 7.2, 4.8, 0.8 Hz, 1H), 6.71 – 6.69 (m, 2H), 3.02 (s, 6H), 1.87 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.47, 165.32, 152.40, 147.73, 137.16, 128.50, 123.14, 121.85, 119.67, 111.24, 56.57, 40.30, 27.90. **HRMS** (EI-TOF) calcd for C₁₇H₂₁N₃O (M⁺): 283.1685, found: 283.1687.

N-(2-(pyridin-2-yl)propan-2-yl)furan-2-carboxamide 1q

The title compound **1q** was prepared according to the general procedure (Method B). ¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (br, 1H), 8.59 (d, *J* = 4.4 Hz, 1H), 7.74 (t, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.22 (dd, *J* = 6.4, 5.2 Hz, 1H), 7.08 (d, *J* = 3.2 Hz, 1H), 6.49 - 6.48 (m, 1H), 1.86 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.46, 157.79, 149.31, 147.93, 143.70, 137.25, 122.05, 119.54, 113.53, 112.02, 56.83, 27.80. **HRMS** (EI-TOF) calcd for C₁₃H₁₄N₂O₂ (M⁺): 230.1055, found: 230.1058.

N-(2-(pyridin-2-yl)propan-2-yl)furan-3-carboxamide 1r

The title compound **1q** was prepared according to the general procedure (Method B). **¹H NMR** (400 MHz, CDCl₃) δ 8.54 (d, *J* = 4.0 Hz, 1H), 8.46 (br, 1H), 7.97 (s, 1H), 7.77 – 7.73 (m, 1H), 7.45 (d, *J* = 9.6 Hz, 2H), 7.23 (dd, *J* = 7.2, 5.2 Hz, 1H), 6.73 (s, 1H), 1.85 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.58, 161.88, 147.67, 144.60, 143.61, 137.41, 124.32, 122.11, 119.67, 108.73, 56.65, 27.73. **HRMS** (EI-TOF) calcd for C₁₃H₁₄N₂O₂ (M⁺): 230.1055, found: 230.1051.

Me C) N PIP H + PhS I 2	[Ni] (10 SPh a	0 mol%), L (20 mol% ve (2.0 eqiv), DMSC 140 °C, 12 h		D N H SPh a
entry	[Ni]	ligand	additive (equiv)	solvent	yield
1	Ni(OTf) ₂	PPh ₃	Na ₂ CO ₃ (2.0)	toluene	8%
2	Ni(OTf) ₂	PPh ₃	Na ₂ CO ₃ (2.0)	t-AmylOH	trace
3	Ni(OTf) ₂	PPh ₃	Na ₂ CO ₃ (2.0)	1,4-dioxane	trace
4	Ni(OTf) ₂	PPh ₃	Na ₂ CO ₃ (2.0)	DMF	15%
5	Ni(OTf) ₂	PPh ₃	Na ₂ CO ₃ (2.0)	DMSO	45%
6	NiBr ₂	PPh ₃	Na ₂ CO ₃ (2.0)	DMSO	27%
7	Ni(acac) ₂	PPh ₃	Na ₂ CO ₃ (2.0)	DMSO	46%
8	NiCl ₂	PPh ₃	Na ₂ CO ₃ (2.0)	DMSO	50%
9	NiCl ₂ ·6H ₂ O	PPh ₃	Na ₂ CO ₃ (2.0)	DMSO	59%
10	NiCl ₂ ·6H ₂ O	TMEDA	Na ₂ CO ₃ (2.0)	DMSO	50%
11	NiCl ₂ ·6H ₂ O	dppp	Na ₂ CO ₃ (2.0)	DMSO	46%
12	NiCl ₂ ·6H ₂ O	dppb	Na ₂ CO ₃ (2.0)	DMSO	72%
13	NiCl ₂ ·6H ₂ O	dppe	Na ₂ CO ₃ (2.0)	DMSO	60%
14	NiCl ₂ ·6H ₂ O	PCy ₃	Na ₂ CO ₃ (2.0)	DMSO	49%
15	NiCl ₂ ·6H ₂ O	BINOL	Na ₂ CO ₃ (2.0)	DMSO	78%
16	NiCl ₂ ·6H ₂ O	BINOL	$K_2CO_3(2.0)$	DMSO	76%
17	NiCl ₂ ·6H ₂ O	BINOL	NaHCO ₃ (2.0)	DMSO	66%
18	NiCl ₂ ·6H ₂ O	BINOL	KHCO ₃ (2.0)	DMSO	55%
19	NiCl ₂ ·6H ₂ O	BINOL	K ₃ PO ₄ (2.0)	DMSO	75%

2.2 Optimization of Reaction Conditions^a

20	NiCl ₂ ·6H ₂ O	BINOL	NaTFA (2.0)	DMSO	67%
21	NiCl ₂ ·6H ₂ O	BINOL	KTFA (2.0)	DMSO	88%
22	_	_	KTFA (2.0)	DMSO	trace
23	NiCl ₂ ·6H ₂ O	_	KTFA (2.0)	DMSO	49%
24 ^b	NiCl ₂ ·6H ₂ O	BINOL	KTFA (2.0)	DMSO	88% (84%) ^c
25	Cu(OAc) ₂	BINOL	KTFA (2.0)	DMSO	trace

^{*a*1}H NMR yield using CH₂Br₂ as the internal standard. ^{*b*}8 h. ^{*c*}Isolated yield in parenthesis.

2.3 Screening of Other Directing Groups

2.4 General Procedure for the Thiolation

To a 50 mL Schlenk tube was added substrate (0.15 mmol), ArSSAr (0.3 mmol), NiCl₂·6H₂O (3.6 mg, 0.015 mmol), BINOL (8.6 mg, 0.03 mmol), KTFA (45.6 mg, 0. 3 mmol), and DMSO (1 mL). The vial was evacuated and filled with N₂(1 atm), and stirred at 140 °C for 8 h. The mixture was then cooled to room temperature, diluted with water, extracted with ethyl acetate (3×20 mL). The combined phase was then washed with brine, if necessary it can be washed with NaOH solution to remove the ligand BINOL and dried with anhydrous magnesium sulfate. After concentration, the

resulting residue was purified by preparative TLC using hexane/EtOAc as the eluent to afford the product.

6-Methyl-2-(phenylthio)-N-(2-(Pyridin-2-yl)propan-2-yl)benzamide 3a

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (dd, J = 4.0, 0.8 Hz, 1H), 7.90 (br, 1H), 7.69 (td, J = 8.0, 1.6 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.29 (dd, J = 8.4, 1.2 Hz, 2H), 7.24 – 7.19 (m, 3H), 7.17 - 7.13 (m, 4H), 2.41 (s, 3H), 1.86 (s, 6H);; ¹³**C NMR** (100 MHz, CDCl₃) δ 167.47, 164.35, 147.56, 141.44, 137.11, 136.94, 136.23, 131.75, 131.06, 130.44, 129.83, 129.19, 126.70, 121.88, 119.59, 57.44, 27.46, 19.45; **HRMS** (EI-TOF) calcd for C₂₂H₂₂N₂OS (M⁺): 362.1453, found: 362.1458.

6-Phenyl-2-(phenylthio)-N-(2-(Pyridin-2-yl)propan-2-yl)benzamide 3b

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 4.0 Hz, 1H), 7.63 (br, 1H), 7.57 (td, J = 8.4, 1.6 Hz, 1H), 7.52 (d, J = 6.8 Hz, 2H), 7.44 (d, J = 7.2 Hz, 2H), 7.34 - 7.27 (m, 6H), 7.24 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 7.6 Hz, 2H), 7.08 (dd, J = 6.4, 4.8 Hz, 1H), 1.56 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.74, 164.23, 147.40, 140.63, 140.15, 139.26, 136.94, 135.69, 134.66, 132.16, 130.72, 129.34, 129.22, 129.15, 128.68, 128.17, 127.55, 127.45, 121.67, 119.44, 57.31, 27.07; **HRMS** (EI-TOF) calcd for C₂₇H₂₄N₂OS (M⁺): 424.1609, found: 424.1603.

6-trifluoromethyl-2-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 3c

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (br, 1H), 8.40 (d, J = 4.8 Hz, 1H), 7.72 (td, J = 8.0, 1.6 Hz, 1H), 7.55 -7.53 (m, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.42 (dd, J = 8.1, 1.6 Hz, 2H), 7.34 – 7.28 (m, 5H), 7.17 (dd, J = 7.2, 4.8 Hz, 1H), 1.92 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.46, 164.12, 147.37, 137.66, 137.30, 137.16, 135.06, 134.43, 132.76, 129.58, 129.23, 128.35, 128.11, 124.62 (q, J = 4.9 Hz), 123.71 (q, J = 272.8 Hz), 122.01, 119.62, 57.70, 27.10; **HRMS** (EI-TOF) calcd for C₂₂H₁₉F₃N₂OS (M⁺): 416.1170, found: 416.1174.

4,6-Dimethyl-2-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 3d

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 4.0 Hz, 1H), 7.82 (br, 1H), 7.67 (td, J = 8.0, 1.6 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 7.2 Hz, 2H), 7.21 (t, J = 8.0 Hz, 2H), 7.14 – 7.10 (m, 2H), 6.99 (d, J = 13.6 Hz, 2H), 2.38 (s, 3H), 2.25 (s, 3H), 1.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.67, 164.38, 147.53, 139.17, 139.09, 137.38, 137.04, 136.10, 131.90, 130.96, 130.92, 129.90, 129.11, 126.40, 121.80, 119.56, 57.36, 27.43, 21.15, 19.38; **HRMS** (EI-TOF) calcd for C₂₃H₂₄N₂OS (M⁺): 376.1609, found: 376.1609.

5-Methyl-2-(phenylthio)-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide 3e

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (dd, J = 4.0, 0.8 Hz, 1H), 8.34 (br, 1H), 7.66 (td, J = 8.0, 1.6 Hz, 1H), 7.52 (d, J = 0.8 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.26 – 7.17 (m, 6H), 7.16 – 7.13 (m, 2H), 2.36 (s, 3H), 1.77 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.15, 164.47, 147.75, 139.30, 138.02, 137.03, 136.66, 133.76, 131.34, 130.18, 129.83, 129.29, 129.12, 126.77, 121.80, 119.50, 57.48, 27.52, 21.07; **HRMS** (EI-TOF) calcd for C₂₂H₂₂N₂OS (M⁺): 362.1453, found: 362.1456.

5-trifluoromethyl-2-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 3f

¹H NMR (400 MHz, CDCl₃) δ 8.66 (br, 1H), 8.50 (d, J = 4.0 Hz, 1H), 7.83 (s, 1H), 7.75 (td, J = 8.0, 1.6 Hz, 1H), 7.51 – 7.46 (m, 3H), 7.43 – 7.38 (m, 4H), 7.21 (dd, J = 6.4, 4.8 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 1.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.02, 164.18, 147.69, 142.39, 137.40, 136.60, 134.32, 132.60, 129.91, 129.36, 129.04, 127.78 (q, J = 32.8 Hz), 126.70 (q, J = 3.4 Hz), 125.06 (q, J = 3.7 Hz), 123.95 (q, J = 270.5 Hz), 122.15, 119.60, 57.55, 27.53; **HRMS** (EI-TOF) calcd for C₂₂H₁₉F₃N₂OS (M⁺): 416.1170, found: 416.1174.

5-Methoxy-2-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 3g

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, J = 4.0 Hz, 2H), 7.63 (td, J = 8.0, 1.6 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.33 (t, J = 3.6 Hz, 2H), 7.21 (t, J = 7.6 Hz, 2H), 7.15 – 7.10 (m, 4H), 6.94 (dd, J = 8.8, 3.2 Hz, 1H), 3.85 (s, 3H), 1.72 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.57, 164.45, 160.23, 147.85, 142.17, 138.11, 137.55, 136.98, 129.24, 128.21, 126.09, 121.78, 121.06, 119.46, 117.29, 114.66, 57.66, 55.75, 27.51; **HRMS** (EI-TOF) calcd for C₂₂H₂₂N₂O₂S (M⁺): 378.1402, found: 378.1400.

2-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 3h

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (d, J = 4.0 Hz, 1H), 8.43 (br, 1H), 7.72 -7.65(m, 2H), 7.42 (d, J = 8.0 Hz, 1H), 7.39 – 7.37 (m, 2H), 7.32 - 7.25 (m, 5H), 7.19 – 7.16 (m, 2H), 1.83 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.16, 164.56, 147.75, 138.19, 137.15, 135.37, 134.81, 132.02, 131.85, 130.43, 129.47, 128.75, 127.56, 126.89, 121.92, 119.58, 57.48, 27.59; **HRMS** (EI-TOF) calcd for $C_{21}H_{20}N_2OS$ (M⁺): 348.1296, found: 348.1300.

2,6-bis(diphenylthio)-N-(2-(Pyridin-2-yl)propan-2-yl)benzamide 3h'

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (d, J = 4.4 Hz, 1H), 8.08 (br, 1H), 7.67 (td, J = 7.6, 1.6 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.41 – 7.39 (m, 4H), 7.28 (t, J = 7.2 Hz, 4H), 7.21 (t, J = 7.2 Hz, 2H), 7.15 – 7.06 (m, 4H), 1.87 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.71, 164.20, 147.40, 141.43, 137.08, 135.31, 134.82, 131.90, 130.73, 129.67, 129.36, 127.51, 121.80, 119.61, 57.73, 27.41; **HRMS** (EI-TOF) calcd for C₂₇H₂₄N₂OS₂ (M⁺): 456.1330, found: 456.1332.

4-Dimethylamino-6-(phenylthio)-*N***-(2-(Pyridin-2-yl)propan-2-yl)benzamide 3i** ¹**H** NMR (400 MHz, CDCl₃) δ 8.53 (br, 1H), 8.48 (d, *J* = 4.0 Hz, 1H), 7.78 (d, *J* = 8.8 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 6.8 Hz, 5H), 7.23 – 7.20 (m, 1H), 7.13 (dd, *J* = 6.4, 5.2 Hz, 1H), 6.61 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.54 (d, *J* = 2.4 Hz, 1H), 2.89 (s, 6H), 1.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.57, 165.13, 151.80, 147.84, 136.97, 136.25, 134.46, 131.48, 130.60, 129.37, 127.01, 121.64, 119.61, 116.02, 110.75, 57.38, 40.10, 27.83; **HRMS** (EI-TOF) calcd for C₂₃H₂₅N₃OS (M⁺): 391.1718, found: 391.1720.

4-Dimethylamino-2,6-bis(phenylthio)-*N*-(2-(Pyridin-2-yl)propan-2-yl)benzamide 3i'

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 4.4 Hz, 1H), 7.63 (td, J = 8.4, 1.2 Hz, 1H), 7.59 (br, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 4H), 7.28 – 7.27 (m, 1H), 7.26 – 7.24 (m, 3H),7.17 (t, J = 7.6 Hz, 2H), 7.10 (dd, J = 6.4, 4.8 Hz, 1H), 6.50 (s, 2H), 2.76 (s, 6H), 1.74 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.39, 164.58, 150.82, 147.57, 136.84, 136.66, 134.38, 131.33, 130.77, 129.22, 126.86, 121.58, 119.71, 115.68, 57.73, 40.13, 27.45; **HRMS** (EI-TOF) calcd for C₂₉H₂₉N₃OS₂ (M⁺): 499.1752, found: 499.1754.

4-Methyl-2-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 3j

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (d, J = 4.8 Hz, 1H), 8.43 (br, 1H), 7.67 (td, J = 8.0, 1.6 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.34 - 7.27 (m, 4H), 7.25 - 7.21 (m, 1H), 7.16 (ddd, J = 7.2, 4.8, 0.8 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 7.05 (s, 1H), 2.27 (s, 3H), 1.78 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.06, 164.66, 147.79, 140.80, 137.07, 135.88, 133.64, 133.11, 131.21, 129.41, 129.14, 128.15, 127.23, 121.84, 119.56, 57.47, 27.61, 21.34; **HRMS** (EI-TOF) calcd for $C_{22}H_{22}N_2OS$ (M⁺): 362.1453, found: 362.1457.

4-Methyl-2,6-bis(phenylthio)N-(2-(pyridin-2-yl)propan-2-yl benzamide 3j'

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 4.4 Hz, 1H), 7.93 (br, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 7.6 Hz, 4H), 7.26 (t, J = 8.0 Hz, 4H), 7.21 – 7.17 (m, 2H), 7.11 (dd, J = 6.0, 4.8 Hz, 1H), 6.97 (s, 2H), 2.15 (s, 3H), 1.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.93, 164.34, 147.44, 139.93, 137.01, 135.92, 134.00, 132.34, 131.37, 129.31, 127.22, 121.73, 119.62, 57.73, 27.41, 21.21; **HRMS** (EI-TOF) calcd for C₂₈H₂₆N₂OS₂ (M⁺): 470.1487, found: 470.1491.

7-(phenylthio)-*N*-(2-(Pyridin-2-yl)propan-2-yl)-2,3-dihydrobenzo[*b*][1,4]dioxine -6-carboxamide 3k

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (s, 2H), 7.64 (td, J = 8.0, 1.6 Hz, 1H), 7.35 (s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 6.0 Hz, 4H), 7.18 (dd, J = 6.0, 2.4 Hz, 1H), 7.14 (dd, J = 6.4, 4.8 Hz, 1H), 6.88 (s, 1H), 4.26 (s, 4H), 1.72 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.99, 164.58, 147.79, 145.25, 143.57, 137.03, 136.88, 132.66,

129.64, 129.35, 126.72, 124.20, 123.01, 121.76, 119.52, 119.03, 64.59, 64.47, 57.50, 27.57; **HRMS** (EI-TOF) calcd for C₂₃H₂₂N₂O₃S (M⁺): 406.1351, found: 406.1357.

5,7-bis(phenylthio)-*N*-(2-(Pyridin-2-yl)propan-2-yl)- 2,3-dihydrobenzo[*b*][1,4]dio xine-6-carboxamide 3k'

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (d, J = 4.4 Hz, 1H), 7.69 (br, 1H), 7.61 (t, J = 6.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.25 – 7.12 (m, 7H), 7.10 – 7.03 (m, 2H), 7.00 (s, 1H), 4.21 (d, J = 2.8 Hz, 4H), 1.75 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.52, 164.26, 147.37, 145.10, 144.54, 141.25, 137.28, 137.03, 136.91, 130.22, 129.23, 128.86, 127.68, 126.77, 125.66, 124.52, 124.21, 121.62, 119.57, 118.80, 64.95, 64.14, 57.71, 27.33; **HRMS** (EI-TOF) calcd for C₂₉H₂₆N₂O₃S₂ (M⁺): 514.1385, found: 514.1385.

3-(phenylthio)-N-(2-(pyridine-2-yl)propan-2-yl)2-naphthamide 31

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (br, 1H), 8.47 (d, J = 4.8 Hz, 1H), 8.20 (s, 1H), 7.88 – 7.85 (m, 1H), 7.71 – 7.65 (m, 3H), 7.50 – 7.47 (m, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.36 - 7.34 (m, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.26 – 7.22 (m, 1H), 7.18 – 7.15 (m, 1H), 1.81 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.01, 164.51, 147.77, 137.14, 136.18, 135.82, 134.14, 131.95, 131.92, 131.12, 130.74, 129.48, 129.08, 128.39, 127.70, 127.32, 127.26, 126.88, 121.90, 119.57, 57.56, 27.52; **HRMS** (EI-TOF) calcd for C₂₅H₂₂N₂OS (M⁺): 398.1453, found: 398.1457.

1,3-bis(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)-2-naphthamide 3l'

¹**H NMR** (400 MHz, CDCl₃) δ 8.45-8.42 (m, 1H), 8.24 (d, J = 4.0 Hz, 1H), 7.91 (br, 1H), 7.86 (t, J = 5.2 Hz, 1H), 7.81 (s, 1H), 7.70 - 7.68 (m, 1H), 7.63 (td, J = 8.0, 1.6 Hz, 1H), 7.48 (dd, J = 6.0, 3.2 Hz, 2H), 7.42 (d, J = 7.2 Hz, 3H), 7.29 (t, J = 7.6 Hz, 2H), 7.22 (t, J = 7.6 Hz, 1H), 7.13 – 7.07 (m, 4H), 7.01 – 6.97 (m, 1H), 1.82 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.03, 164.16, 147.32, 145.31, 138.29, 136.98, 135.54, 134.32, 134.22, 133.84, 131.65, 131.58, 129.48, 129.04, 128.16, 128.09, 127.52, 127.26, 127.08, 126.98, 125.41, 121.66, 119.53, 57.82, 27.32; **HRMS** (EI-TOF) calcd for C₃₁H₂₆N₂OS₂ (M⁺): 506.1487, found: 506.1491.

3-(phenylthio)-*N*-(2-(pyridin2-yl)propan-2-yl)benzo[*b*]thiophene-2-carboxamide 3m

¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (br, 1H), 8.38 (d, J = 4.8 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.62 (td, J = 8.0, 1.6 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 6.4 Hz, 2H), 7.13 (t, J = 6.8 Hz, 4H), 1.79 (s, 6H); ¹³C **NMR** (100 MHz, CDCl₃) δ 164.25, 160.61, 147.99, 146.80, 141.32, 139.33, 136.94, 135.60, 129.34, 127.11, 126.77, 126.34, 125.31, 124.59, 122.82, 121.87, 120.78, 119.33, 58.32, 27.76; **HRMS** (EI-TOF) calcd for C₂₃H₂₀N₂OS₂ (M⁺): 404.1017, found: 404.1018.

5-Methyl-3-(phenylthio)-*N*-(2-(pyridin-2-yl)propan-2-yl)thiophene-2-carboxamid e 3n

¹**H NMR** (400 MHz, CDCl₃) δ 9.07 (br, 1H), 8.46 (d, J = 4.8 Hz, 1H), 7.62 (td, J = 8.0, 1.6 Hz, 1H), 7.30 – 7.25 (m, 5H), 7.24 - 7.20 (m, 1H), 7.13 (ddd, J = 7.2, 4.8, 0.8 Hz, 1H), 6.61 (d, J = 0.8 Hz, 1H), 2.42 (s, 3H), 1.75 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.54, 160.61, 147.99, 143.37, 137.88, 136.88, 135.64, 131.71, 129.34,

129.32, 128.63, 127.06, 121.75, 119.35, 57.86, 27.88, 15.73; **HRMS** (EI-TOF) calcd for $C_{20}H_{20}N_2OS_2$ (M⁺): 368.1017, found: 368.1022.

2-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)thiophene-3-carboxamide 3o

¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (br, 1H), 8.42 (d, J = 4.8 Hz, 1H), 7.62 (td, J = 7.6, 1.6 Hz, 1H), 7.57 (d, J = 5.6 Hz, 1H), 7.32 – 7.23 (m, 7H), 7.13 (dd, J = 7.2, 4.8 Hz, 1H), 1.74 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.60, 161.79, 147.94, 139.89, 136.95, 136.31, 130.46, 129.49, 128.97, 127.82, 127.44, 121.80, 119.42, 57.52, 27.78; **HRMS** (EI-TOF) calcd for C₁₉H₁₈N₂OS₂ (M⁺): 354.0861, found: 354.0865.

2,6-bis(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)thiophene-3-carboxamide 3o'

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (br, 1H), 8.42 (d, J = 4.8 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.49 (dd, J = 6.8, 1.2 Hz, 2H), 7.35 (d, J = 6.8 Hz, 3H), 7.28 – 7.17 (m, 6H), 7.13 - 7.10 (m, 2H), 1.64 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.51, 162.03, 147.92, 136.86, 135.85, 134.88, 132.20, 129.64, 129.43, 129.28, 129.17, 128.66, 126.96, 121.67, 119.39, 100.12, 57.81, 27.66; **HRMS** (EI-TOF) calcd for $C_{25}H_{22}N_2OS_3$ (M⁺): 462.0894, found: 462.0896.

2-Methyl-4-(phenylthio)-N-(2-(pyridin-2-yl)propan-2-yl)furan-3-carboxamide 3p

¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (d, J = 4.0 Hz, 1H), 8.29 (br, 1H), 7.54 (s, 1H), 7.50 (td, J = 8.0, 1.6 Hz, 1H), 7.25 -7.22 (m, 2H), 7.17 – 7.06 (m, 5H), 6.99 (d, J = 8.0Hz, 1H), 2.61 (s, 3H), 1.55 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.73, 161.74, 160.61, 148.12, 145.78, 136.50, 136.04, 129.20, 126.39, 126.08, 121.39, 119.03, 116.43, 110.24, 57.37, 27.77, 14.45; **HRMS** (EI-TOF) calcd for $C_{20}H_{20}N_2O_2S$ (M⁺): 352.1245, found: 352.1241.

3-(phenylthio)-N-(2-(Pyridin-2-yl)propan-2-yl)furan-2-carboxamide 3q

¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (br, 1H), 8.55 (dd, J = 4.4, 0.8 Hz, 1H), 7.73 (td, J = 8.0, 1.6 Hz, 1H), 7.56 – 7.53 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.40 – 7.30 (m, 4H), 7.20 (dd, J = 7.6, 4.8 Hz, 1H), 6.03 (d, J = 2.0 Hz, 1H), 1.87 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.54, 158.08, 147.88, 143.04, 142.24, 137.24, 133.31, 133.17, 129.42, 128.43, 125.55, 122.01, 119.55, 113.42, 57.05, 27.96; **HRMS** (EI-TOF) calcd for C₁₉H₁₈N₂O₂S (M⁺): 338.1089, found: 338.1093.

2-(phenylthio)-N-(2-(Pyridin-2-yl)propan-2-yl)furan-3-carboxamide 3r

¹**H NMR** (400 MHz, CDCl₃) δ 8.94 (br, 1H), 8.43 (d, J = 4.8 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.52 (d, J = 1.6 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.32 - 7.29 (m, 3H), 7.27 - 7.22 (m, 2H), 7.16 (dd, J = 6.4, 4.8 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 1.79 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.52, 160.95, 147.76, 145.48, 142.90, 137.21, 133.92, 129.50, 129.08, 127.55, 121.94, 119.54, 113.12, 57.48, 27.84; **HRMS** (EI-TOF) calcd for C₁₉H₁₈N₂O₂S (M⁺): 338.1089, found: 338.1086.

2,4-bis(phenylthio)-N-(2-(Pyridin-2-yl)propan-2-yl)furan-3-carboxamide 3r'

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (br, 1H), 8.45 (d, J = 3.2 Hz, 1H), 7.62 – 7.59 (m, 1H), 7.49 (d, J = 3.6 Hz, 2H), 7.39 (s, 1H), 7.34 (d, J = 4.4 Hz, 3H), 7.24 (d, J = 7.2 Hz, 4H), 7.20 – 7.14 (m, 3H), 1.65 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.51, 162.03, 147.92, 136.86, 135.85, 134.88, 132.20, 129.64, 129.43, 129.28, 129.17, 128.66, 126.96, 121.67, 119.39, 100.12, 57.81, 27.66; **HRMS** (EI-TOF) calcd for C₂₅H₂₂N₂O₂S₂ (M⁺): 446.1123, found: 446.1125.

2-(4-(methoxyphenyl)thio)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide 5a

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (d, J = 4.8 Hz, 1H), 8.05 (br, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.17 (dd, J = 6.4, 4.8 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 8.4 Hz, 2H), 3.78 (s, 3H), 2.39 (s, 3H), 1.93 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.64, 164.41, 159.69, 147.57, 139.12, 137.19, 135.72, 135.00, 134.96, 128.97, 128.37, 127.96, 125.38, 121.95, 119.67, 115.00, 57.48, 55.43, 27.55, 19.36; **HRMS** (EI-TOF) calcd for C₂₃H₂₄N₂O₂S (M⁺): 392.1558, found: 392.1554.

2-Methyl-N-(2-(pyridin-2-yl)propan-2-yl)-6-(p-tolylthio)benzamide 5b

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, *J* = 4.4 Hz, 1H), 7.97 (br, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.15 – 7.05 (m, 6H), 2.40 (s, 3H), 2.28 (s, 3H), 1.89(s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.53, 164.36, 147.51, 140.45, 137.14, 137.11, 135.94, 133.17, 132.44, 131.66, 130.03, 129.72,

129.12, 129.03, 121.84, 119.60, 57.42, 27.47, 21.16, 19.38; **HRMS** (EI-TOF) calcd for $C_{23}H_{24}N_2OS$ (M⁺): 376.1609, found: 376.1608.

2-((3-fluorophenyl)thio)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 5c

¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (d, *J* = 4.4 Hz, 1H), 7.97 (br, 1H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.22 (m, 3H), 7.12 (dd, *J* = 12.4, 6.4 Hz, 2H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.87 (d, *J* = 9.6 Hz, 1H), 6.75 (td, *J* = 8.4, 1.6 Hz, 1H), 2.43 (s, 3H), 1.84 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.24, 164.14, 163.11 (d, *J* = 246.6 Hz,), 147.43, 142.72, 140.43 (d, *J* = 7.8 Hz), 137.14, 136.56, 132.62, 130.93, 130.20 (d, *J* = 8.5 Hz), 129.48, 129.39, 124.48 (d, *J* = 2.9 Hz), 121.89, 119.44, 115.72 (d, *J* = 23.4 Hz), 113.03 (d, *J* = 21.2 Hz), 57.33, 27.35, 19.43; **HRMS** (EI-TOF) calcd for C₂₂H₂₁FN₂OS (M⁺): 380.1359, found: 380.1362.

2-((4-chlorophenyl)thio)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 5d

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 4.8 Hz, 1H), 8.00 (br, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.24 – 7.14 (m, 8H), 2.42 (s, 3H), 1.87 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.30, 164.14, 147.46, 142.03, 137.20, 136.41, 135.97, 132.45, 131.68, 131.13, 130.73, 130.41, 129.30, 129.23, 121.94, 119.50, 57.36, 27.39, 19.42; **HRMS** (EI-TOF) calcd for C₂₂H₂₁ClN₂OS (M⁺): 396.1063, found: 396.1067.

2-((3,5-dichlorophenyl)thio)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide 5e

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (dd, J = 4.8, 0.8 Hz, 1H), 8.03 (br, 1H), 7.69 (td, J = 8.0, 1.6 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.15 (dd, J = 6.4, 4.8 Hz, 1H), 6.99 (s, 3H), 2.44 (s, 3H), 1.85 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.02, 163.98, 147.40, 143.30, 142.27, 137.24, 136.85, 135.28, 133.29, 131.67, 129.59, 127.97, 126.15, 125.95, 121.97, 119.37, 57.29, 27.30, 19.45; **HRMS** (EI-TOF) calcd for C₂₂H₂₀Cl₂N₂OS (M⁺): 430.0673, found: 430.0676.

6-Methyl-2-((3-nitrophenyl)thio)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide 5f

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 4.8 Hz, 1H), 8.05 (br, 1H), 7.96 (s, 1H), 7.87 (dd, J = 8.0, 0.8 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.40 – 7.30 (m, 5H), 7.14 (dd, J = 6.4, 5.2 Hz, 1H), 2.45 (s, 3H), 1.83 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.05, 163.95, 148.63, 147.30, 143.44, 141.46, 137.34, 136.88, 133.97, 133.32, 131.83, 129.71, 129.61, 127.97, 122.62, 122.04, 120.62, 119.48, 57.28, 27.31, 19.46; **HRMS** (EI-TOF) calcd for C₂₂H₂₁N₃O₃S (M⁺): 407.1304, found: 407.1300.

2.5 Gram-Scale Experiment

2.6 Mechanistic Investigation

^aIsolated yield. ^{b1}H NMR yield using CH_2Br_2 as the internal standard.

To a 50 mL Schlenk tube was added substrate **1a** (0.15 mmol), PhSSPh (0.3 mmol), additive (0.15 mmol), NiCl₂·6H₂O (3.6 mg, 0.015 mmol), BINOL (8.6 mg, 0.03 mmol), KTFA (45.6 mg, 0.3 mmol), and DMSO (1 mL). The vial was evacuated and filled with N₂ (1 atm), and stirred at 140 °C for 8 h. The mixture was then cooled to room temperature, diluted with water, extracted with ethyl acetate (3×20 mL). The combined phase was then washed with brine and dried with anhydrous magnesium sulfate. After concentration, the resulting residue was analyzed with NMR using CH₂Br₂ as the internal standard.

Deuterium Labeling Experiment

Figure S1. ¹H NMR spectrum of product for the deuterium labeling experiment.

Thiolation with 4-methylbenzenethiol 6

To a 50 mL Schlenk tube was added substrate **1a** (0.15 mmol), 4-methylbenzenethiol (0.3 mmol), NiCl₂· $6H_2O$ (3.6 mg, 0.015 mmol), BINOL (8.6 mg, 0.03 mmol), KTFA (45.6 mg, 0.3 mmol), and DMSO (1 mL). The vial was evacuated and filled with N₂

(1 atm), and stirred at 140 °C for 8 h. The mixture was then cooled to room temperature, diluted with water, extracted with ethyl acetate (3×20 mL). The combined phase was then washed with NaOH solution to remove the ligand BINOL and dried with anhydrous magnesium sulfate. After concentration, the resulting residue was purified by preparative TLC using hexane/EtOAc as the eluent to afford the product.

Oxidation of 4-methylbenzenethiol 6 to disulfide 4b

To a 50 mL Schlenk tube was added substrate 4-methylbenzenethiol (0.15 mmol), $NiCl_2 \cdot 6H_2O$ (3.6 mg, 0.015 mmol), BINOL (8.6 mg, 0.03 mmol), KTFA (45.6 mg, 0. 3 mmol), and DMSO (1 mL). The vial was evacuated and filled with N_2 (1 atm), and stirred at 140 °C for 8 h. The mixture was then cooled to room temperature, diluted with 10 mL CH_2Cl_2 and filtered through a pad of Celite. The filtrate was then analyzed with GC-MS.

Figure S2. GC-MS for the oxidation of 4-methylbenzenethiol.

3. References:

- 1. Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Org. Lett. 2014, 16, 5644-5647.
- Li, X.; Liu, Y.-H.; Gu, W.-J.; Li, B.; Chen, F.-J.; Shi, B.-F. Org. Lett. 2014, 16, 3904-3907.
- 3. Liu, Y.-J.; Liu, Y.-H.; Yin, X.-S.; Gu, W.-J.; Shi, B.-F. Chem. Eur. J. 2014, 20, 1.
- 4. Yager, K. M.; Plaza, E. A.; Kumar, D. V.; Kim, I. C. US Pat., 20080207573 A1.

4. NMR Spectra

1i

1q

1r

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3k

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3n

30'

3p

3q

S48

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3r'

5a

5b

