Supplementary Information

Concomitant dimorphism and helical self-assembly in a C_{2h}-symmetric 'locked' cyclitol

Goverdhan Mehta,* Saikat Sen , Kailasam Venkatesan

Depatment of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.

CONTENTS

	Page
Crystal data for the α - and β - forms of tetrol 1, and tetrol 2	3
ORTEP diagrams and the atom numbering schemes	4
Relevant torsion angles	6
List of the intra- and intermolecular interactions	9
DSC characteristics	10
Packing diagrams of the α -form	12
Packing diagrams of the β-form	14
Comparison of the cooperative hydrogen bonding networks in the dimorphs	16

Tabla 1 C	'rystal data	for the a	and R forms	of totrol 1	and tatral ?
Table I. C	<u>i ystai uata</u>	ior the a-	· and p- torms		, and tetror 2

	α- form	β- form	2
Molecular formula	$C_{14}H_{20}O_4$	$C_{14}H_{20}O_4$	$C_{14}H_{24}O_4$
Molecular weight	252.3	252.3	256.4
Crystal system	Tetragonal	Triclinic	Triclinic
Cell dimensions			
a (Å)	6.780 (1)	9.821 (2)	5.958(5)
b (Å)	6.780 (1)	9.926 (2)	5.994(5)
c (Å)	27.425 (7)	13.927 (3)	9.867(8)
α(⁰)	90.00	92.912 (3)	86.17(1)
β(°)	90.00	101.065 (3)	82.55(1)
γ (°)	90.00	91.848 (4)	73.20(1)
V (Å ³)	1260.74 (4)	1256.40 (9)	334.3(1)
Z	4	4	1
Space group	P41	P-1	P-1
Calc. Density (g cm ⁻³)	1.33	1.33	1.27
F ₀₀₀	543.9	543.9	140.0
μ (mm ⁻¹)	0.10	0.10	0.09
2θ range	3.0 - 27.3	1.5 - 25.4	2.1 - 25.4
h. •k. •l.	-8, 8; -8, 8; -33,	-11, 11; -11, 11;	-7, 7; -6, 7; -11,
in min,max, in min,max, i min,max	34	-16, 16	11
Total no. of reflections	12972	12479	2431
Unique reflections	1450	4580	1213
No. of parameters	243	485	84
R, R _w	0.0422, 0.0986	0.0519, 0.1458	0.0504, 0.1471
GooF	1.224	1.021	1.058
$\Delta \rho_{\min}, \rho_{\max} (e \text{\AA}^{-3})$	-0.16, 0.25	-0.22, 0.47	-0.20, 0.32

ORTEP DIAGRAMS AND ATOM NUMBERING SCHEMES

ORTEP diagrams of the α -form (*left*) and the β -form (*right*) at 100 K with 50% ellipsoid probability

Atom numbering of the asymmetric unit in the α -form (the hydrogen atoms have been excluded for clarity)

Atom numbering of the asymmetric unit in the β -form (the hydrogen atoms have been excluded for clarity)

ORTEP diagrams of tetrol 2 at 292 K with 50% ellipsoid probability

Atom numbering of the asymmetric unit in tetrol **2** (the hydrogen atoms have been excluded for clarity)

	Angle (°)	s. u.		Angle (°)	s. u.
O1 -C1 -C6 -O2	-179.67	0.14	C14 -C1 -C2 -C3	164.60	0.16
O1 -C1 -C6 -C7	-65.48	0.19	O2 -C6 -C7 -C8	61.68	0.20
01 -C1 -C6 -C5	58.50	0.19	C1 -C6 -C7 -C8	-55.52	0.21
C14 -C1 -C6 -O2	-61.64	0.20	C5 -C6 -C7 -C8	-178.93	0.16
C14 -C1 -C6 -C7	52.56	0.21	O2 -C6 -C5 -C4	-73.49	0.21
C14 -C1 -C6 -C5	176.53	0.16	C1 -C6 -C5 -C4	47.62	0.22
C2 -C1 -C6 -O2	62.22	0.20	C7 -C6 -C5 -C4	170.74	0.16
C2 -C1 -C6 -C7	176.41	0.16	C1 -C14 -C13 -O4	-63.85	0.20
C2 -C1 -C6 -C5	-59.62	0.21	C1 -C14 -C13 -C12	178.19	0.16
01 -C1 -C14 -C13	59.99	0.20	C1 -C14 -C13 -C8	55.30	0.21
C2 -C1 -C14 -C13	-177.47	0.16	C6 -C7 -C8 -C13	56.29	0.21
01 -C1 -C2 -C3	-73.07	0.20	C6 -C7 -C8 -C9	179.02	0.16
C6 -C1 -C2 -C3	41.42	0.22	O4 -C13 -C12 -C11	72.60	0.21
C5 -C4 -C3 -C2	0.95	0.32	C14 -C13 -C12 -C11	-167.66	0.17
C4 -C3 -C2 -C1	-13.09	0.29	C8 -C13 -C12 -C11	-44.76	0.23
C12 -C11 -C10 -C9	-1.97	0.34	04 -C13 -C8 -O3	-173.32	0.14
C12 -C13 -C8 -C9	58.87	0.20	O4 -C13 -C8 -C7	65.83	0.19
С10 -С9 -С8 -О3	72.84	0.20	O4 -C13 -C8 -C9	-57.25	0.19
C10 -C9 -C8 -C7	-166.33	0.17	C14 -C13 -C8 -O3	66.90	0.19
C10 -C9 -C8 -C13	-43.96	0.22	C14 -C13 -C8 -C7	-53.95	0.20
C8 -C9 -C10 -C11	16.12	0.29	C14 -C13 -C8 -C9	-177.03	0.16
C6 -C5 -C4 -C3	-18.87	0.28	C12 -C13 -C8 -O3	-57.19	0.20
C13 -C12 -C11 -C10	17.13	0.30	C12 -C13 -C8 -C7	-178.05	0.16

Table 2. Relevant torsion angles in the α - form

	Angle (°)	s. u.		Angle (°)	s. u.
C3 -C4 -C5 -O2	-62.72	0.19	C11 -C12 -C13 -O4	-60.26	0.19
C3 -C4 -C5 -C6	177.86	0.16	C11 -C12 -C13 -C14	177.80	0.15
C5 -C4 -C3 -O1	64.17	0.20	C13 -C12 -C11 -O3	63.82	0.19
C5 -C4 -C3 -C2	-177.60	0.16	C13 -C12 -C11 -C10	-177.99	0.15
C19 -C18 -C17 -O5	61.10	0.21	C9 -C10 -C11 -O3	-69.55	0.19
C19 -C18 -C17 -C16	-178.74	0.17	C9 -C10 -C11 -C12	170.48	0.16
C17 -C18 -C19 -O6	-58.15	0.21	С11 -С10 -С9 -С8	-19.27	0.28
C17 -C18 -C19 -C20	178.17	0.17	C26 -C25 -C24 -O7	63.62	0.21
O5 -C17 -C16 -C15	-69.23	0.22	C26 -C25 -C24 -C23	-178.24	0.17
C18 -C17 -C16 -C15	168.95	0.18	C24 -C25 -C26 -O8	-58.81	0.21
C7 -C6 -C5 -O2	72.77	0.22	C24 -C25 -C26 -C27	179.55	0.16
C7 -C6 -C5 -C4	-171.20	0.18	C28 -C27 -C26 -O8	71.51	0.23
C1 -C2 -C3 -O1	-75.02	0.20	C28 -C27 -C26 -C25	-169.81	0.18
C1 -C2 -C3 -C4	164.40	0.17	C25 -C24 -C23 -C22	164.32	0.19
O6 -C19 -C20 -C21	71.80	0.23	C18 -C19 -C20 -C21	-165.29	0.18

Table 3. Relevant torsion angles in the β - form

				Angle (°)	s. u.
C5	-C4	-C3	-01	61.45	0.17
C5	-C4	-C3	-C2	-179.14	0.14
C3	-C4	-C5	-02	-61.72	0.17
C3	-C4	-C5	-C6	179.04	0.14
01	-C3	-C2	-C1	-59.94	0.19
C4	-C3	-C2	-C1	179.57	0.15
02	-C5	-C6	-07	58.84	0.19
C4	-C5	-C6	-C7	179.39	0.15

Table 4. Relevant torsion angles in the tetrol 2

D-HA	D-H (Å)	DA (Å)	HA (Å)	∠D-HA (°)	Symmetry
О3-Н3ОО2	0.80 (3)	2.602 (2)	1.88 (3)	149 (3)	x, y, z
O4-H4O01	0.81 (3)	2.690 (2)	1.95 (3)	152 (2)	x, y, z
O2-H2OO4	0.87 (3)	2.702 (2)	1.84 (3)	167 (2)	x + 1, y, z
01-H1003	0.92 (3)	2.722 (2)	1.82 (3)	167 (3)	-y, x, z + ¼
С10-Н10О1	0.94 (3)	3.551 (2)	2.71 (3)	149 (2)	y - 1,-x, z - ¼
С9-Н9АО2	0.94 (2)	3.382 (3)	2.79 (2)	123 (2)	x - 1, y, z
С2-Н2ВО4	0.91 (2)	3.320 (2)	2.78 (2)	119 (2)	x + 1, y, z

Table 5. Intra- and Intermolecular interactions in the α- form

<u>Table 6. Intra- and Intermolecular interactions in the β - form</u>

D-HA	D-H (Å)	DA (Å)	HA (Å)	∠D-HA (°)	Symmetry
O1-H1OO2	0.85 (2)	2.630 (2)	1.85 (2)	152 (2)	x, y, z
O5-H5OO6	0.84 (3)	2.641 (2)	1.87 (3)	152 (3)	x, y, z
O3-H3OO4	0.82 (2)	2.682 (2)	1.94 (2)	150 (2)	x, y, z
O7-H7OO8	0.87 (3)	2.595 (2)	1.80 (3)	150 (3)	x, y, z
O4-H4OO7	0.89 (3)	2.747 (2)	1.87 (3)	169 (2)	x, y, z
O2-H2OO3	0.73 (2)	2.801(2)	2.09 (2)	167 (2)	x, y+1, z
O8-H8OO5	0.82 (3)	2.576 (3)	1.77 (3)	169 (3)	x + 1, y, z + 1
O6-H6OO1	0.85 (3)	2.734 (2)	1.90 (3)	168 (3)	x, y - 1, z
C14-H14AO2	0.94 (2)	3.248 (3)	2.57 (2)	129 (2)	-x + 2, -y + 2, -z + 1
C2-H2BO3	0.98 (2)	3.172 (3)	2.49 (2)	126 (2)	-x + 1, -y + 1, -z + 1
C14-H14BO7	1.00 (2)	3.465 (3)	2.70(2)	133 (1)	x, y, z
C2-H2AO6	1.00 (2)	3.398 (3)	2.65 (2)	131 (2)	x, y + 1, z

Table 7. Intra- and Intermolecular interactions in tetrol 2

D-HA	D-H (Å)	DA (Å)	HA (Å)	∠D-HA (°)	Symmetry
O2-H2O1	0.82	2.670 (3)	1.94	148	x, y, z
O1-H1O2	0.82	2.814 (3)	2.01	167	-x, -y, -z + 1

DSC characteristics

DSC plots for the α - form, showing the heating and cooling curves (*top*). A magnified view of the unique melting endotherm has also been shown (*bottom*); the enthalpy change for the transition = - 51.52 kJmol⁻¹.

DSC plots for the b-form, showing the heating and cooling curves (*top*). The compound decomposes on melting (*inset, bottom*), so that to determine the enthalpy of transition, a single heating run (*bottom*) was performed. The enthalpy change corresponds to -40.08 kJmol⁻¹.

Packing diagrams of the α-form

The O-H...O hydrogen bonded helical assembly. The non-interacting hydrogen atoms have been removed for clarity.

The helical assembly mediated by C-H...O intermolecular interactions. The non-interacting hydrogen atoms have been removed for clarity.

Packing diagrams of the β-form

Molecular packing diagram of the β - form, showing the arrangement of the A- (*top*) and B-type molecules (*bottom*) in the unit cell. Note that the centroids of the A-type molecules lie at (0.5, 0, 0) and (0, 0.5, 0), while those of the B-type lie at (0, 0.5, 0.5) and (0.5, 0, 0.5), so that the two sets of molecules are organized in two layers parallel to the *ab* plane. The hydrogen atoms have been removed for clarity.

Molecular packing diagram of the β - form, showing the organization of the A-type molecules as seen down the *c*-direction. The hydrogen atoms have been removed for clarity.

Molecular packing diagram of the β - form, showing the organization of the B-type molecules as seen down the *c*direction. The hydrogen atoms have been removed for clarity.

Comparison of the cooperative hydrogen bonding networks in the

<u>dimorphs of 1</u>

The cooperative hydrogen bonding network in the α -form of 1

The cooperative hydrogen bonding network in the β -form of 1