Supporting Information

Dimorphs of 4'-Amino-4-Hydroxy-2'-Methylbiphenyl: Assessment of Likelihood of Polymorphism in Flexible Molecules

Archan Dey and Gautam R. Desiraju*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.

E-mail: gautam_desiraju@yahoo.com

Contents

- I) Powder X–Ray Diffraction pattern for compound **3**.
- II) Thermal analysis, (a) DSC and (b) HTM for compounds 2 and 3.
- III) Figure S1: NMR spectrum of compound, 3.
- IV) Table S1: Intermolecular interactions for dimorphs of 2.
- V) **Table S2:** Evaluation of force fields.
- VI) **Table S3:** Crystal and gas phase torsion angles for selected biphenyls.
- VII) Table S4: Lattice energies of 10 lowest structures for compounds 1-4.

Powder X Ray

PXRD data of compound **3** were collected on an INEL XRG3000 instrument ($\lambda =$

1.788965 A, Co-K α 1). The base line in not satisfactory. But the powder pattern gives a

hint that the compound has limited crystallinity and we did not get a single crystal for

further work.

The powder pattern of compound, 3

Thermal analysis

We started these experiment with the hope that we would get some characteristic polymorphic behaviour of the compound **2** and as well as compound **3**. But there were no such observations.

DSC, A Mettler Toledo Differential Scanning Calorimeter was used. N₂ was used as the inert gas to flush through the DSC furnace (purge rate 150ml/min) and this prevents condensation. Samples were analyzed using closed aluminum pans at a heating rate of 5° C min⁻¹. Crude **2** was heated from 30°C to 200°C (1st step) then cooled to 30°C (2nd step) and the melt was further heated to 200°C (3rd step). Compound **3** was heated from

 30° C to 180° C (1st step) then cooled to 30° C (2nd step) and the melt was further heated to 180° C (3rd step). Compound **3** does not crystallise during cooling (see HSM picture) and even for the compound **2**, the crystallisation is not sharp. Partial decomposition occours in both cases.

Hot stage microscopy (HSM), A Kofler hot stage microscope was used. The temperature and heating rate were monitored with a digital thermometer. Pictures were taken with a

digital camera attached to the microscope and processed with the Motic software.

Samples were loaded in a glass plate, placed on the hot bench and heated at a rate of

 $\sim 10^{\circ}$ C min⁻¹. Heating–cooling–heating cycles were performed for each case.

3 ~50 °C

~155°C

~90°C

HSM pictures: crude sample, melting and crystallization.

Figure S1 NMR spectrum of compound, 3.

Form	Interations	d (A°)	D (A°)	θ (deg)
	N-HO	2.223	3.254 (2)	158.3
Ι	N-HO	2.072	3.154 (2)	177.5
	O-HN	1.778	2.751 (2)	169.9
	O-HN	1.806	2.776 (2)	168.7
	С-НО	2.476	3.470 (2)	152.0
	N-HO	2.164	3.167 (2)	172.6
Π	0-н0	1.709	2.688 (2)	173.3
	O-HN	1.783	2.783 (2)	174.8
	N-HO	2.167	3.156 (2)	166.2
	N-HN	2.073	3.061 (2)	165.8

Table S1 Intermolecular interactions for dimorphs of 2

All C-H, O-H and N-H distances are neutron normalised to 1.083, 0.983 and 1.009 A°.

Experimental					Predicted			
	F F	Reduced Cell Parameters (Å, °)	V (Å ³)	Energy kcal mol ⁻¹	Reduced Cell Parameters (Å, °)		V (Å ³)	Energy kcal mol ⁻¹
					1^{st} P2 ₁	5.518, 7.821, 21.255, 90	452.77	-117.632
(1)	DRE	4.968, 8.700, 21.472	927.98	-108.016	2^{nd} $P2_1$	5.363, 8.053, 10.510, 95.02	452.19	-117.608
					7^{th} Pna2 ₁	5.518, 7.821, 21.255	917.22	-116.729
		5.352, 7.850, 20.808	874.26	-108.587	1 st Pna2 ₁	5.307, 7.773, 21.249	876.54	-110.010
(Pna	COM				2^{nd} $P2_12_12_1$	5.397, 7.563, 21.302,	869.43	-109.989
1	-				3^{rd} Pna2 ₁	5.318, 7.743, 21.246	874.90	-109.950
					1 st P–1	4.155, 6.571, 18.987, 93.47, 90.94, 90.81	517.25	-158.710
	cff	5.279, 8.785, 20.371	944.67	-115.600	2^{nd} P-1	3.760, 12.717, 13.308, 107.44, 90.26, 98.50	599.66	-158.678
					83^{th} Pna2 ₁	3.845, 13.013, 23.023	1151.93	-161.081

Table S2 Evaluation of force fields.

CSD	Structures	Torsio	n Angle
REFCODEs		Solid state	ab initio
BIPHEN		0.11	38.48
DECFDP01	$F_5 \longrightarrow F_5$	58.87	54.14
QIMYUG	to the start	47.56	50.25
BUWCAX	H_2N H_2N NH_2	68.56	63.64
ZZZMBS01		89.36	89.97
DOHDPH02	HO	0.30	40.47
KEFLEM01		1.58	33.16
NEHFAH		26.32	35.60
DNTDPH		25.93	38.32

Table S3 Crystal and gas phase torsion angles for selected binhenvls

	Compound 1										
Torsion angle	Rank	Space group	Lattice energy kcal mol ⁻¹	Average	Re–minimized lattice energy kcal mol ^{–1}	Average					
	1	$P2_{1}2_{1}2_{1}$	-129.301		-82.439						
	2	$P2_{1}2_{1}2_{1}$	-129.197		-82.314						
	3	$P2_1$	-128.722		-82.275						
	4	$P2_1$	-128.703		-82.494						
0	5	$P2_{1}/c$	-128.212	-128.346	-80.597	-81.585					
U	6	Pbca	-128.173		-79.185						
	7	$P2_1$	-128.164		-81.870						
	8	$P2_1$	-127.797		-85.056						
	9	$P2_{1}/c$	-127.647		-79.508						
	10	Pbca	-127.544		-80.106						
	1	$Pna2_1$	-112.279		-81.358						
15	2	$P2_{1}2_{1}2_{1}$	-112.243	-111.517	-80.717						
	3	$Pna2_1$	-112.175		-81.199						
	4	$P2_{1}2_{1}2_{1}$	-111.763		-80.726						
	5	$P2_{1}$	-111.722		-80.337	-79.128					
	6	$P2_{1}2_{1}2_{1}$	-111.299		-79.666						
	7	$P2_1$	-111.193		-80.502						
	8	Pbca	-111.163		-78.718						
	9	$P2_1$	-110.878		-80.441						
	10	$P2_{1}/c$	-110.452		-67.613						
	1	Pbca	-121.008		-77.632						
	2	Pbca	-120.844		-72.770						
	3	$P2_{1}2_{1}2_{1}$	-119.999		-71.149						
	4	Pbca	-119.876	110.001	-78.357	- 4 00 1					
30	5	$Pna2_1$	-119.731	-119.924	-76.754	-/4.091					
	6	Pbca	-119.669		-71.644						
	7	<i>P</i> –1	-119.605		-70.915						
	8	Pbca	-119.545		-75.000						
	9	$P2_{1}/c$	-119.517		-72.594						
	10	$P2_{1}2_{1}2_{1}$	-119.446		-//.032						
45	1	Pbca	-130.693	-129.836	-74.542	-73.677					
	2	$P2_{1}/c$	-130.631		-71.674						

 Table S4 Ten lowest lattice energy crystal structures for compounds 1-4.

3	$P2_{1}/c$	-130.106		-72.842	
4	$P2_{1}/c$	-130.073		-72.388	
5	$P2_{1}/c$	-129.867		-76.338	
6	$P2_{1}2_{1}2_{1}$	-129.797		-72.103	
7	<i>P</i> -1	-129.763		-73.479	
8	$Pna2_1$	-129.490		-79.723	
9	$P2_1$	-129.006		-70.880	
10	Pbca	-128.932		-72.803	
1	C2/c	-125.465		-74.079	
2	$P2_{1}/c$	-125.387		-72.315	
3	C2/c	-125.327		-74.951	
4	Pbca	-125.325		-75.161	
5	$P2_{1}/c$	-124.801	-124.866	-73.488	-74.976
6	$P2_{1}/c$	-124.763		-76.545	
7	$Pna2_1$	-124.735		-80.504	
8	$P2_{1}/c$	-124.688		-76.404	
9	$P2_{1}2_{1}2_{1}$	-124.191		-71.489	
10	Pbca	-123.974		-/4.825	
1	<i>P</i> –1	-112.163		-72.601	
2	Pbca	-112.125		-72.149	
3	C2/c	-112.112		-71.371	
4	$P2_{1}/c$	-112.107		-72.861	
5	C2/c	-112.071	-111.843	-71.908	-71.381
6	$P2_{1}/c$	-111.925		-70.381	
7	$P2_{1}/c$	-111.694		-72.241	
8	$P2_{1}/c$	-111.553		-72.537	
9 10	Pbca	-111.482		-65.013	
10	Γ-1	-111.194		-72.748	
1	Pbca	-106.082		-65.609	
2	Pbca	-105.814		-66.260	
3	<i>P</i> –1	-105.744		-69.056	
4	<i>P</i> -1	-105.544	105 227	-68.927	(7.11)
5	$P2_{1}/c$	-105.395	-105.327	-68.994	-0/.116
6	$P2_{1}2_{1}2_{1}$	-105.294		-65.413	
7	$P2_{1}2_{1}2_{1}$	-105.263		-65.095	
8	Pbca	-104.733		-67.674	
9 10	P–1 Phca	-104.731 -104.669		-69.130 -64 997	
		101.007		· · · / / /	

	Compound 2									
Torsion angle	Rank	Space group	Lattice energy kcal mol ⁻¹	Average	Re–minimized lattice energy kcal mol ^{–1}	Average				
	1	$Pna2_1$	-148.937		-57.479					
	2	Pbca	-148.259		-56.035					
	3	Pbca	-148.001		-55.303					
	4	$P2_{1}/c$	-147.725		-60.129					
0	5	$P2_1$	-147.624	-147.762	-65.386	-59.271				
	6	$P2_1$	-147.527		-62.174					
	7	$P2_1$	-147.463		-61.210					
	8	$P2_{1}/c$	-147.437		-57.833					
	9	$P2_1$	-147.334		-57.433					
	10	$P2_{1}2_{1}2_{1}$	-147.315		-59.730					
	1 2 3 4	Pbca Pbca P2 ₁ P2 ₁ /c	-148.922 -148.477 -148.143 -148.130		-59.626 -67.396 -63.573 -63.796					
	5	$P2_{1/c}$	147 476		61.061					
15	6	P 21/c	-147.425	-147.75	-62 160	-60.471				
	7	$P_{2_1}^{2_1}^{2_1}^{2_1}$	-147 400		-59.064					
	8	Pbca	-147 252		-56 263					
	9	$P2_{1}2_{1}2_{1}$	-147.153		-56.092					
	10	$P2_{1}/c$	-147.125		-55.680					
	$\frac{1}{2}$	Pbca P2 ₁ /c	-151.887 -151.880		-70.103 -61.554					
	3	Pbca	-151.851		-68.048					
	4	$P2_{1}/c$	-151.333		-64.326					
30	5	$P2_{1}/c$	-151.133	-151.246	-60.061	-63.512				
50	6	<i>P</i> –1	-151.051		-64.554					
	7	C2/c	-150.919		-64.880					
	8	$Pna2_1$	-150.858		-61.050					
	9	$P2_{1}/c$	-150.843		-58.188					
	10	Pbca	-150.708		-62.350					
45	1	Pbca	-153.711	-151.947	-69.477	-64.455				
	2	$P2_{1}/c$	-152.344		-62.183					
	3	$P2_{1}/c$	-152.197		-63.852					
	4	C2/c	-152.008		-60.832					
	5	Pbca	-151.941		-64.471					

6	<i>P</i> –1	-151.568		-69.223	
7	<i>P</i> –1	-151.483		-62.306	
8	Pbca	-151.444		-58.880	
9	Pbca	-151.405		-66.414	
10	$P2_{1}/c$	-151.372		-66.914	
1	<i>P</i> –1	-147.748		-61.737	
2	Pbca	-147.637		-65.411	
3	$P2_{1}2_{1}2_{1}$	-147.529		-67.822	
4	Pbca	-147.201		-57.949	
5	$P2_{1}2_{1}2_{1}$	-147.169	-147.140	-66.448	-64.260
6	C2/c	-146.928		-60.941	
7	$Pna2_1$	-146.842		-65.755	
8	Pbca	-146.829		-62.796	
9	$P2_1$	-146.763		-66.607	
10	$P2_{1}2_{1}2_{1}$	-146.756		-67.136	
1	<i>P</i> –1	-144.348		-67.874	
2	<i>P</i> –1	-144.215		-62.546	
3	$P2_{1}/c$	-144.162		-66.392	
4	C2/c	-143.786		-61.557	
5	C2/c	-143.325	-143.315	-63.047	-63.389
6	Pbca	-142.999		-64.177	
7	$P2_{1}/c$	-142.776		-63.344	
8	C2/c	-142.686		-61.956	
9	<i>P</i> –1	-142.503		-62.629	
10	C2/c	-142.346		-60.364	
1	<i>P</i> –1	-142.574		-60.479	
2	C2/c	-141.300		-59.304	
3	$P2_{1}/c$	-141.144		-58.959	
4	C2/c	-141.126		-61.806	
5	$P2_{1}/c$	-141.113	-141.170	-61.310	-60.484
6	<i>P</i> –1	-141.069		-59.565	
7	C2/c	-140.901		-59.615	
8	$P2_{1}2_{1}2_{1}$	-140.889		-60.293	
9	Pbca	-140.864		-64.321	
10	Pbca	-140.715		-59.184	

	Compound 3									
Torsion angle	Rank	Space group	Lattice energy kcal mol ⁻¹	Average	Re–minimized lattice energy kcal mol ^{–1}	Average				
	1	<i>P</i> 2 ₁	-139.489		-64.866					
	2	$Pna2_1$	-138.618		-63.118					
	3	Pbca	-138.199		-52.954					
	4	$P2_{1}/c$	-138.109		-62.076					
0	5	$P2_{1}/c$	-137.789	-138.010	-63.047	-61.314				
	6 7 8 9 10	$\begin{array}{c} C2/c\\ C2/c\\ P2_{1}2_{1}2_{1}\\ P2_{1}/c\\ P2_{1}2_{1}2_{1}\end{array}$	-137.709 -137.677 -137.617 -137.451 -137.440		-62.012 -61.130 -57.357 -61.061 -65.517					
	1	$P2_1$	-138.279		-64.702					
	2	$P2_{1}/c$	-137.800		-55.710					
15	3	$P2_{1}/c$	-137.758		-57.904					
	4	$P2_{1}/c$	-137.658	-137.530	-65.251					
	5	$P2_{1}/c$	-137.550		-60.855	-61.829				
	6	$P2_{1}/c$	-137.413		-64.151					
	7	$P2_{1}2_{1}2_{1}$	-137.387		-62.498					
	8	$P2_{1}/c$	-137.346		-64.135					
	9 10	P2 ₁ /c P-1	-137.174 -136.934		-60.932 -62.148					
	1	$P2_{1}/c$	-144.535		-69.243					
	2	<i>P</i> –1	-144.485		-67.843					
	3	$Pna2_1$	-143.666		-64.861					
	4	$P2_1$	-143.617		-65.610					
30	5	$P2_{1}2_{1}2_{1}$	-143.511	-143.574	-64.693	-65.049				
	6	$P2_{1}/c$	-143.414		-57.154					
	7	$Pna2_1$	-143.194		-65.000					
	8	$P2_{1}/c$	-143.153		-66.240					
	9 10	$Pna2_1$ $P2_1/c$	-143.111 -143.055		-65.879 -63.969					
45	1	$P2_{1}/c$	-148.192	-146.880	-71.052	-67.213				
	2 3	P-1	-148.001		-69.067					
	2	r-1	-14/.23/		-0/./94					

4	$P2_{1}/c$	-147.119		-66.4308	
5	$Pna2_1$	-147.002		-64.727	
6	$Pna2_1$	-146.878		-66.428	
7	$Pna2_1$	-146.353		-66.522	
8	$P2_1$	-146.151		-65.128	
9	Pbca	-145.987		-68.452	
10	$P2_{1}/c$	-145.884		-66.526	
1	$P2_1$	-141.063		-66.333	
2	$P2_{1}/c$	-140.910		-68.542	
3	$Pna2_1$	-140.412		-64.134	
4	<i>P</i> -1	-140.255		-63.929	
5	$P2_{1}2_{1}2_{1}$	-140.220	-140.233	-64.411	-65.653
6	<i>P</i> –1	-140.198		-66.409	
7	<i>P</i> –1	-140.086		-66.315	
8	<i>P</i> –1	-140.048		-63.335	
9	$P2_{1}/c$	-139.589		-64.86	
10	Pbca	-139.545		-68.266	
1	<i>P</i> –1	-136.242		-65.886	
2	<i>P</i> –1	-136.241		-67.327	
3	$P2_1$	-136.067		-64.965	
4	$P2_{1}2_{1}2_{1}$	-136.052		-62.903	
5	<i>P</i> -1	-135.682	-135.629	-67.974	-65.444
6	$P2_{1}/c$	-135.411		-64.732	
7	$P2_{1}2_{1}2_{1}$	-135.290		-68.823	
8	<i>P</i> -1	-135.225		-66.195	
9	<i>P</i> –1	-135.200		-60.033	
10	$P2_{1}/c$	-134.880		-65.601	
1	<i>P</i> –1	-135.517		-66.843	
2	<i>P</i> –1	-135.208		-66.850	
3	$P2_{1}2_{1}2_{1}$	-134.760		-63.294	
4	$P2_{1}2_{1}2_{1}$	-134.714		-67.885	
5	$P2_{1}2_{1}2_{1}$	-134.266	-134.017	-67.463	-63.912
6	<i>P</i> –1	-133.374		-62.714	
7	$P2_1$	-133.127		-62.095	
8	$P2_{1}/c$	-133.102		-57.011	
9	$P2_1$	-133.069		-60.901	
10	$P2_1$	-133.029		-64.067	

	Compound 4										
Torsion angle	Rank	Space group	Lattice energy kcal mol ⁻¹	Average	Re–minimized lattice energy kcal mol ^{–1}	Average					
	1	$P2_1$	-180.905		-52.970						
	2	$P2_1/C$	-180.89/		-52.409						
	3	Pbca	-180.784		-52.517						
	4	$F Z_1 Z_1 Z_1$	-180.001	100 455	-40.222	50.024					
0	5	$\Gamma Z_1 Z_1 Z_1$	-180.032	-180.455	-30.181	-50.934					
	07	$\Gamma Z_1/C$	-180.237		-51.472						
	8	Pbca	-180.131 -180.136		-30.770						
	9	P2.2.2.	-180.084		-50.981						
	10	$P2_{1}/c$	-180.015		-49.901						
	1	$P2_1$	-180.345		-58.426						
	2	$P2_{1}/c$	-180.222		-55.122						
	3	$P2_{1}/c$	-179.879		-57.708						
	4	$P2_{1}/c$	-179.859		-59.127						
15	5	Pbca	-179.745	-179.738	-57.551	-56.105					
10	6	$P2_1$	-179.712		-57.487						
	7	$P2_{1}/c$	-179.560		-55.510						
	8	$P2_{1}/c$	-179.497		-56.119						
	9	$P2_{1}2_{1}2_{1}$	-179.310		-54.726						
	10	Pbca	-179.246		-49.273						
	1	Pbca	-173.675		-61.754						
	2	Pbca	-172.819		-58.503						
	3	$P2_{1}$	-172.634		-62.521						
	4	$P2_{1}/c$	-172.606		-58.265						
30	5	Pbca	-172.427	-172.508	-62.632	-61.202					
	6	Pbca	-172.421		-65.564						
	7	Pbca	-172.413		-67.366						
	8	C2/c	-172.048		-57.835						
	9	$P2_1$	-172.030		-59.962						
	10	$P2_{1}2_{1}2_{1}$	-172.011		-57.614						
45	1	Pbca	-169.471	-168.615	-70.015	-63.153					
	2	$P2_{1}/c$	-169.340		-67.295						
	3	Pbca	-168.606		-67.926						
	4	P 21/c	-168.564		-58.211						
	5	$P2_{1}2_{1}2_{1}$	-168.555		-59.170						
	6	Pbca	-168.477		-61.819						

Electronic Supplementary Material for CrystEngComm
This journal is © The Royal Society of Chemistry 2006

	7	$P2_{1}/c$	-168.462		-61.339	
	8	$P2_{1}/c$	-168.401		-64.186	
	9	C2/c	-168.162		-59.644	
	10	$P2_1$	-168.115		-61.921	
	1	Pbca	-168.048		-71.817	
	2	$P2_{1}/c$	-167.729		-68.685	
	3	$Pna2_1$	-167.655		-66.067	
	4	$P2_{1}2_{1}2_{1}$	-167.425		-59.020	
(0)	5	$P2_1$	-167.371	-167.196	-65.025	-65.326
60	6	$P2_{1}/c$	-167.059		-60.048	
	7	$P2_{1}/c$	-166.853		-64.847	
	8	$P2_{1}/c$	-166.641		-67.662	
	9	Pbca	-166.619		-64.617	
	10	$P2_{1}2_{1}2_{1}$	-166.558		-65.470	
	1	P7,7,7,	-171 376		-66 277	
	2	n 2 2 2	171.376		66.645	
	2	$P2_{1}2_{1}2_{1}$	-1/1.36		-66.645	
	3	$P2_1$	-171.352		-68.240	
	4	C2/c	-171.294	151 000	-66.327	
75	5	$P2_{1}2_{1}2_{1}$	-171.266	-171.092	-65.738	-66.608
	6	Pbca	-171.033		-66.754	
	7	$P2_1$	-170.882		-64.981	
	8	$P2_{1}/c$	-170.855		-69.027	
	9	$P2_{1}/c$	-170.793		-64.128	
	10	Pbca	-170.711		-67.961	
	1	$P2_1$	-172.839		-67.703	
	2	$P2_{1}2_{1}2_{1}$	-172.106		-64.697	
	3	$P2_{1}/c$	-171.483		-66.483	
	4	$P2_{1}2_{1}2_{1}$	-171.371		-66.912	
90	5	$P2_1$	-171.323	-171.468	-66.613	-65.439
	6	C2/c	-171.293		-65.593	
	7	$P2_{1}/c$	-171.263		-59.967	
	8	Pbca	-171.085		-63.626	
	9	$P2_{1}2_{1}2_{1}$	-170.967		-66.328	
	10	P 21/c	-170.947		-66.463	