Formation of a discrete helical assembly and packing pattern through charged hydrogen bonds and van der Waals interactions

Ho-Yong Lee, Hae-Jo Kim, Kyoung Jae Lee, Myoung Soo Lah, and Jong-In Hong*

Supplementary Information

¹H NMR and ¹³C NMR of 1_2 · 2_3

¹H NMR (300 MHz in D₂O): 8.60 (s, 6H, H_a of 1), 4.23 (s, 24H, H_b of 1), 2.37 (broad m, 6H, H_c of 2), 1.99 (broad m, 6H, H_d of 2), 1.97 (broad m, 6H, H_e of 2), 1.34 (broad m, 12H, H_f of 2).

¹³C NMR (60 MHz in D₂O): 185.6 (carbonyl), 164.6 ((NH)₂*C*-Ar of **1**), 132.2 (aromatic), 126.3 (aromatic), 104.9 (aliphatic), 49.8 (aliphatic), 45.9 (aliphatic), 30.0 (aliphatic), 25.8 (aliphatic).

Figure S1. ¹³C NMR of $\mathbf{1}_2 \cdot \mathbf{2}_3$ in D₂O at 298 K.

Figure S2. CD spectra in H₂O at 298 K (1mm cell): (a) 1 [0.5 mM] + 2^{RR} [4 mM], (b)

2^{*RR*} [4 mM] + **KOH** [1.5 mM].

Figure S3. MALDI-TOF mass spectra of 1₂·2₃.

Crystal data

Crystal size

Index ranges

Reflections collected

Independent reflections

Theta range for data collection

Completeness to theta = 28.30°

Structure solution and refinement of the structure were carried out using the SHELXTL-PLUS (5.03) software package (Sheldrick, G. M., Brukers Analytical X-Ray Division, Madison, WI, 1997). The structure was solved by direct method and refined successfully in the space group R-3c. Full matrix least-squares refinement was carried out by minimizing $(Fo^2-Fc^2)^2$. All non-hydrogen atoms were refined anisotropically. The two hydrogen atoms of the imidazolinium group involved in hydrogen bonding were located and refined isotropically, and the remaining hydrogen atoms were also located but assigned with isotropic displacement coefficients U(H) = 1.2U(C) or 1.5U(Cmethyl). A disordered solvent methanol site was treated with statistical disorder model and the hydrogen atoms were treated using appropriate riding model. The final refinement converged with R1 = 0.0729, wR2 = 0.2045 (I>2s(I)); R1 = 0.1472, wR2 =0.2573 (all data).

Table S1. Crystal data and structure refinement for	1 ₂ • 2 ₃ .	
Identification code	o3_128tg	
Empirical formula	C60 H96 N12 O18	
Formula weight	1273.49	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
Space group	R-3 <i>c</i>	
Unit cell dimensions	a = 27.5164(19) Å	α= 90°.
	b = 27.5164(19) Å	β= 90°.
	c = 14.685(2) Å	$\gamma = 120^{\circ}$.
Volume	9629.2(17) Å ³	
Ζ	6	
Density (calculated)	1.318 Mg/m ³	
Absorption coefficient	0.098 mm ⁻¹	
F(000)	4104	

-

0.40 x 0.25 x 0.20 mm³

2641 [R(int) = 0.0546]

-35<=h<=28, -36<=k<=36, -19<=l<=19

1.48 to 28.30°.

18655

98.8 %

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole Semi-empirical from equivalents 0.9807 and 0.9619 Full-matrix least-squares on F^2 2641 / 2 / 188 1.016 R1 = 0.0729, wR2 = 0.2045 R1 = 0.1472, wR2 = 0.2573 0.347 and -0.297 e.Å⁻³

	x	V	Z	U(ea)
		, 		
O(1)	3181(1)	4923(1)	10525(2)	70(1)
O(2)	2423(1)	4639(1)	9688(2)	89(1)
C(6)	3029(2)	4286(1)	9300(3)	65(1)
C(7)	2872(2)	3746(2)	9827(3)	83(1)
C(8)	3029(3)	3371(2)	9296(4)	108(2)
C(9)	2868(2)	4648(1)	9876(2)	61(1)
N(1)	3214(1)	7973(1)	448(2)	65(1)
N(2)	4085(1)	8229(1)	758(2)	64(1)
C(1)	2901(1)	6790(1)	453(2)	54(1)
C(2)	3461(1)	7225(1)	451(2)	53(1)
C(3)	3590(1)	7814(1)	536(2)	56(1)
C(4)	3474(2)	8580(2)	607(3)	70(1)
C(5)	4083(2)	8759(2)	815(3)	70(1)
O(1S)	1504(4)	3556(4)	9077(6)	132(4)
C(1S)	1154(4)	3289(3)	9653(6)	158(3)
O(2S)	1314(4)	3831(4)	9638(8)	138(4)
C(2S)	1154(4)	3289(3)	9653(6)	158(3)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $1_2 \cdot 2_3$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(9)	1.253(4)
O(2)-C(9)	1.243(4)
C(6)-C(6)#1	1.504(7)
C(6)-C(9)	1.530(5)
C(6)-C(7)	1.535(5)
C(7)-C(8)	1.518(7)
C(8)-C(8)#1	1.501(12)
N(1)-C(3)	1.314(4)
N(1)-C(4)	1.470(5)
N(2)-C(3)	1.307(4)
N(2)-C(5)	1.462(4)
C(1)-C(2)#2	1.385(4)
C(1)-C(2)	1.400(4)
C(2)-C(1)#3	1.385(4)
C(2)-C(3)	1.483(4)
C(4)-C(5)	1.523(6)
O(1S)-C(1S)	1.215(9)
C(6) = 1 - C(6) - C(9)	112 7(3)
C(6)#1-C(6)-C(7)	111 5(3)
C(9)-C(6)-C(7)	108 7(3)
C(8)-C(7)-C(6)	111 2(4)
C(8)#1-C(8)-C(7)	111.2(1)
O(2)-C(9)-O(1)	123.6(3)
O(2)-C(9)-C(6)	117.8(3)
O(1)-C(9)-C(6)	118.6(3)
C(3)-N(1)-C(4)	110.2(3)
C(3)-N(2)-C(5)	111.3(3)
C(2)#2-C(1)-C(2)	120.2(3)
C(1)#3-C(2)-C(1)	119.8(3)
C(1)#3-C(2)-C(3)	120.4(3)
C(1)-C(2)-C(3)	119.6(3)
N(2)-C(3)-N(1)	112.6(3)
N(2)-C(3)-C(2)	123.4(3)

Table S3. Bond lengths [Å] and angles [°] for $1_2 \cdot 2_3$.

N(1)-C(3)-C(2)	123.9(3)
N(1)-C(4)-C(5)	103.4(3)
N(2)-C(5)-C(4)	102.5(3)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	60(2)	53(1)	92(2)	1(1)	6(1)	25(1)
O(2)	74(2)	99(2)	105(2)	-21(2)	-7(2)	53(2)
C(6)	75(2)	44(2)	78(2)	2(2)	0(2)	32(2)
C(7)	97(3)	48(2)	105(3)	15(2)	7(3)	37(2)
C(8)	161(5)	52(2)	120(4)	4(3)	-11(4)	58(3)
C(9)	54(2)	45(2)	73(2)	4(2)	8(2)	17(2)
N(1)	56(2)	52(2)	88(2)	-1(2)	2(2)	28(2)
N(2)	53(2)	50(2)	87(2)	-4(1)	5(2)	24(2)
C(1)	51(2)	55(2)	58(2)	3(1)	1(1)	28(2)
C(2)	54(2)	50(2)	53(2)	-1(1)	-1(1)	25(2)
C(3)	55(2)	53(2)	61(2)	2(1)	6(1)	28(2)
C(4)	72(2)	50(2)	89(3)	0(2)	6(2)	31(2)
C(5)	63(2)	48(2)	96(3)	-2(2)	13(2)	25(2)
O(1S)	107(6)	125(8)	125(7)	-19(6)	12(5)	29(6)
C(1S)	161(7)	120(6)	187(8)	-19(5)	4(6)	66(5)
O(2S)	133(7)	99(6)	183(9)	-14(6)	-7(7)	60(5)
C(2S)	161(7)	120(6)	187(8)	-19(5)	4(6)	66(5)

Table S4. Anisotropic displacement parameters (Å²x 10³)for $1_2 \cdot 2_3$. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$].

	х	у	Z	U(eq)
H(6)	2843(15)	4214(15)	8630(30)	78
H(7A)	3127(19)	3895(19)	10360(30)	99
H(7B)	2480(20)	3552(18)	10120(30)	99
H(8A)	2918(15)	3006(16)	9690(30)	73
H(8B)	2840(16)	3274(16)	8680(30)	73
H(1N)	2859(17)	7761(17)	230(30)	73(11)
H(2N)	4377(18)	8207(16)	750(30)	72(12)
H(1)	2601(14)	6850(14)	460(20)	65
H(4A)	3267(16)	8647(15)	1120(30)	84
H(4B)	3411(17)	8750(17)	170(30)	84
H(5A)	4379(17)	9041(17)	360(30)	84
H(5B)	4200(17)	8921(17)	1460(30)	84
H(1S)	1822	3729	9321	198
H(1S1)	864	3397	9651	237
H(1S2)	1333	3366	10253	237
H(1S3)	982	2887	9519	237
H(2S)	1667	4022	9649	206
H(2S1)	852	3096	10099	237
H(2S2)	1473	3243	9822	237
H(2S3)	1018	3127	9048	237

Table S5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for 1_2 · 2_3 .

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1N)O(2)#4	0.91(4)	1.77(4)	2.642(4)	161(4)
N(2)-H(2N)O(1)#5	0.84(4)	1.89(4)	2.714(4)	169(4)
O(1S)-H(1S)O(2)	0.84	2.27	2.923(10)	134.8
O(2S)-H(2S)O(2)	0.84	1.92	2.733(10)	162.8

Table S6. Hydrogen bonds for $1_2 \cdot 2_3$ [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2/3,-x+y+1/3,-z+11/6 #2 -y+1,x-y+1,z #3 -x+y,-x+1,z

#4 -x+y,-x+1,z-1 #5 -y+1,x-y+1,z-1