## Supporting Information

## Design, Synthesis and Crystal structure of a multiple Donor-Acceptor Halogen Bonded Stilbazole: Assembly of Unimolecular Interconnected Helices

André C. B. Lucassen,<sup>§</sup> Tatiana Zubkov,<sup>§</sup> Linda J. W. Shimon,<sup>†</sup>

Milko E. van der Boom<sup>§,\*</sup>

Departments of <sup>§</sup>Organic Chemistry and <sup>†</sup>Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel. Email: milko.vanderboom@weizmann.ac.il

## **Experimental section**

THF was distilled from sodium benzophenone ketyl under N<sub>2</sub>. Reaction flasks were washed with deionized water followed by acetone, and then oven-dried for at least 24 h at 130°C prior to use. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H}-NMR spectra were recorded at 500.1 and 125 MHz, respectively, on a Bruker Avance 500 NMR spectrometer. <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, <sup>19</sup>F{<sup>1</sup>H}and  ${}^{31}P{}^{1}H$  spectra were recorded at 400.19, 100.6, 376.5 and 161.9 MHz, respectively, on a Bruker AMX 400 NMR spectrometer and at 250.17, 62.9, 235.0 and 101.3 MHz, respectively, on a Bruker DPX 250 NMR spectrometer. All chemical shifts ( $\delta$ ) are reported in ppm and coupling constants (J) are in Hz. The  ${}^{1}$ H and  ${}^{13}$ C NMR chemical shifts are relative to tetramethylsilane; the resonance of the residual protons of chloroform were used as an internal standard for <sup>1</sup>H ( $\delta$ 7.25 ppm) and all-d solvent peaks for <sup>13</sup>C ( $\delta$ 77.0 ppm). <sup>19</sup>F NMR chemical shifts are relative to hexafluorobenzene in CDCl<sub>3</sub> at  $\delta$  = -163.0 ppm (external reference). All room temperature measurements were carried out at 298 K. Mass spectrometry was carried out using a Micromass Platform LCZ 4000 mass spectrometer. Elemental Analyses were performed by H. Kolbe, Mikroanalytisches laboratorium, Mülheim an der Ruhr, Germany. 2,4,6-Trifluorobenzoic acid (4) was prepared from 1,3,5trifluorobenzene (3) by lithiation with "BuLi at -78°C followed by reaction with gaseous carbon dioxide according to a published procedure.<sup>1</sup>

**Preparation of 3,5-Diiodo-2,4,6-trifluorobenzoic acid (5)**. Periodic acid (6.80 g, 30 mmol) was added in portionwise sulfuric acid (60 mL). The mixture was cooled on an ice bath and freshly powdered KI (14.8 g, 90 mmol) was added over 15 min. Subsequently, 2,4,6-trifluorobenzoic acid (3.45 g, 20 mmol) was added over a period of 10 min. After the addition was completed, the ice bath was removed and the mixture was stirred at room temperature for 1 h. The mixture was poured on ice and was extracted with diethyl ether (4  $\times$  75 mL). The combined layers were washed with 5% aqueous hydrochloric acid, followed

by washing with 5%  $Na_2S_2O_3$  until all iodine was removed. After drying ( $Na_2SO_4$ ) and evaporation of the solvent, the product **5** was obtained as a white solid (8.56 g, 90 %). Analyses correspond with literature values.<sup>2</sup>

of 3,5-Diiodo-2,4,6-trifluorobenzylalcohol (6).<sup>3</sup> Preparation 3.5-Diiodo-2.4.6trifluorobenzoic acid (4.85 g, 11.4 mmol) was dissolved in dry THF (25 mL) under Ar. The mixture was cooled in an ice bath and BH<sub>3</sub>THF (22 mL, 1 M in THF) was added by syringe. After addition, the mixture was allowed to attain room temperature and was then heated to a gentle reflux for 16 h. It was then cooled in an ice bath and excess borane was destroyed by careful addition of ice water (10 mL). The THF was removed on a rotaevaporator, 50 mL water was added and the mixture was extracted with  $CH_2Cl_2$  (3 × 75 mL). The combined layers were washed once with water and dried (Na<sub>2</sub>SO<sub>4</sub>). Filtration and evaporation of the solvent gave 3.54 g crude product. Purification by column chromatography over silica gel (hexane:ethyl acetate = 6:1 to 4:1) yielded 2.90 g product (62 %). <sup>1</sup>H NMR (CDCl<sub>3</sub>): 2.04 (br t, 1H, J = 6.0 Hz), 4.78 (d, 2H, J = 6.0 Hz). <sup>19</sup>F{<sup>1</sup>H} NMR: -69.6 (t, 1F, J = 3.8 Hz), -94.39 (d, 2F, J = 3.8 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR: 53.5 (t,  $J_{CF} = 3$ Hz, CH<sub>2</sub>), 65.0 (t of d,  $J_{FC} = 34$  Hz,  ${}^{3}J_{CF} = 2.8$  Hz), 113.2 (t of d,  $J_{CF} = 23$  Hz,  ${}^{3}J_{CF} = 4.4$ Hz), 160.2 (t, J = 8.7 Hz), 160.6 (dd, J = 10.4 Hz, 7.55 Hz), 162.1 (t, J = 8.7 Hz), 162.6 (dd, J = 10.4 Hz, 7.55 Hz). Mass: 413. Elem.Anal.: Calculated for C<sub>7</sub>H<sub>3</sub>OF<sub>3</sub>I<sub>2</sub> %C 20.31, %H 0.73. Found %C 20.48, % H 0.72.

**Preparation of 3,5-diiodo-2,4,6-trifluorobenzaldehyde (7).**<sup>4</sup> A solution of 3,5-diiodo-2,4,6-trifluorobenzyl alcohol (1.03 g, 2.5 mmol) in  $CH_2Cl_2$  (10 mL) was cooled in an ice bath. Trichloroisocyanuric acid (0.609 g, 2.62 mmol, 1.05 eq.) was added followed by TEMPO (4 mg, 0.025 mmol, 1 mol%). The mixture was stirred at 0°C and the reaction was monitored by TLC (hexane:ethyl acetate = 4:1). The reaction was complete within 15 min.

Subsequently, more CH<sub>2</sub>Cl<sub>2</sub> was added and the mixture was filtered through celite (washed with CH<sub>2</sub>Cl<sub>2</sub>). The CH<sub>2</sub>Cl<sub>2</sub> solution was washed with 5% Na<sub>2</sub>CO<sub>3</sub> solution, water (3 × 50 mL) and brine. After drying (Na<sub>2</sub>SO<sub>4</sub>) and evaporation of CH<sub>2</sub>Cl<sub>2</sub>, 970 mg (quantitative yield) of compound 7 was obtained. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 10.16 (s, 1H). <sup>19</sup>F{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): -58.1 (t, 1F, J = 8.0 Hz), -92.56 (d, 2F, 8.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): 66.7 (AB of doublets, C–I,  $J_{AB}$ = 32 Hz, J= 3.8 Hz), 111.3 (AB of doublets, C-CH=O,  $J_{AB}$ = 13.8 , J = 3.8 Hz), 162.6 + 164.6 (doublet of triplets, *ortho*-F–C, J = 251 Hz , J= 8.0 Hz), 163.9 + 165.9 (doublet of triplets, <sub>para</sub>-F–C, J = 251 Hz, J= 8.0 Hz), 182.0 (d, J = 2.5 Hz, C=O). Mass: 410 (M-H), 285 (M-I). Elem.Anal.: Calculated for C<sub>7</sub>HOF<sub>3</sub>I<sub>2</sub> %C 20.41, %H 0.24. Found %C 20.49, %H 0.22.

**Preparation of 3,5-Diiodo-2,4,6-trifluorostilbazole (2).**<sup>5</sup> A solution of 3,5-diiodo-2,4,6-trifluorobenzaldehyde (0.86 g, 2.1 mmol) and  $\gamma$ -picoline (0.21 mL, 2.2 mmol) in acetic anhydride (5 mL) was stirred at room temperature for 18 h under Ar. The reaction mixture was filtered on a sintered glass filter and the solid was washed thoroughly with water. It was subsequently dissolved in CH<sub>2</sub>Cl<sub>2</sub> and the solution was washed with an aqueous solution of 5 % Na<sub>2</sub>CO<sub>3</sub>. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and the solvent was evaporated. The obtained product was triturated with warm ethyl acetate (5 mL) yielding and off-white solid (410 mg, 40%). An analytical pure sample could be obtained by recrystallization from ethyl acetate/diisopropyl ether as colorless needles. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.23 (AB, 2H,  $J_{AB}$  = 4.5 Hz), 7.35 (m, 2H), 8.61 (m, 2H). <sup>19</sup>F{<sup>1</sup>H} NMR: -89.6 (d, 2F, *J* = 4.0 Hz), -69.5 (t, 1F, *J* = 4.0 Hz) <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): 65.7 (t of d,  $J_{CF}$  = 33.6 Hz, <sup>3</sup> $J_{CF}$  = 3.0 Hz, C–I), 111.0 (t of d, FC–C–CH=C, *J* = 18.3 Hz, <sup>3</sup> $J_{CF}$  = 4.8 Hz), 118.1 (d, *J* = 2.1 Hz, FC–C–CH=CH–), 121.0 (s, CH–CH–N), 133.6 (t of d, *J* = 8.6 Hz, <sup>3</sup>J = 2.4 Hz, FC–C–CH=C), 144.0 (s, C–CH–CH–N), 150.3 (s, CH–N), 159.6 + 161.5 (d of triplets, *J* = 248 Hz, <sup>3</sup>J = 8.7 Hz), 159.8 + 161.8 (d of dd, *J* = 248 Hz, *J* = 9.4 Hz, *J* = 7.6 Hz) Mass:

488.3 (M+1); 510.34 (M+Na). El.Anal.: Calculated for C<sub>13</sub>H<sub>6</sub>F<sub>3</sub>I<sub>2</sub>N: %C 32.06; %H 1.24; Found %C 32.26; %H 1.28.

**X-ray Crystal Structure Analysis of Compound 2.** Crystal data:  $C_{13}H_6NF_3I_2$ , colorless, needles,  $0.5 \times 0.05 \times 0.05 \text{ mm}^3$ , Orthorhombic, P2(1)2(1)2(1) (no. 19) a = 4.229(1) Å, b = 14.112(3) Å, c = 23.312(5) Å, from 20 degrees of data, T = 120(2) K, V = 1391.3(5) Å<sup>3</sup>, Z = 4, Fw = 486.99, Dc = 2.325 Mg.m<sup>-3</sup>,  $\mu = 4.539 \text{ mm}^1$ . Data collection and processing: Nonius KappaCCD diffractometer, MoK $\alpha$   $\lambda = 0.71073$ Å), graphite monochromator,  $0 \le h \le 5$ ,  $0 \le k \le 18$ ,  $0 \le l \le 30$ , frame scan width =  $1.0^\circ$ , scan speed  $1.0^\circ$  per 60 sec, typical peak mosaicity  $0.31^\circ$ , 6936 reflections collected, 3769 independent reflections (R-int = 0.034). The data were processed with Denzo-Scalepack. Solution and refinement: Structure solved by Patterson method with SHELXS-97. Full matrix least-squares refinement based on F<sup>2</sup> with SHELXL-97 173 parameters with 0 restraints, final  $R_1$ = 0.0294 (based on F<sup>2</sup>) for data with I>2 $\sigma$ (I) and,  $R_1$ = 0.0382 on 1897 reflections, goodness-of-fit on F<sup>2</sup> = 1.077, largest electron density peak =  $0.877 \text{ e.} Å^{-3}$ . Structural data for compound **2** has been deposited in the Cambridge Crystallographic Data Centre under CCDC 637114, and can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html.

| Formula                           | $C_{13}H_6NF_3I_2$            |
|-----------------------------------|-------------------------------|
| Molecular Mass                    | 486.99                        |
| Crystal color                     | white                         |
| Crystal dimensions                | $0.50\times0.05\times0.05~mm$ |
| Crystal system                    | Orthorhombic                  |
| Space group                       | P2(1)2(1)2(1)                 |
| a [Å]                             | 4.2290(8)                     |
| b [Å]                             | 14.112(3)                     |
| c [Å]                             | 23.312(5)                     |
| $\alpha$ [°]                      | 90                            |
| β [°]                             | 90                            |
| γ [°]                             | 90                            |
| Ζ                                 | 4                             |
| V [Å <sup>3</sup> ]               | 1391.3(5)                     |
| $\rho_{calc} [Mg m^{-3}]$         | 2.325                         |
| No. unique data                   | 1897                          |
| R <sub>1</sub>                    | 0.0294                        |
| $wR_2$                            | 0.0588                        |
| Goodness of fit (F <sup>2</sup> ) | 1.077                         |
|                                   |                               |

 Table S1. X-ray diffraction data for compound 2

- (1) F. Mongin, E. Marzi, M. Schlosser, Eur. J. Org. Chem. 2001, 14, 2771.
- (2) Wenk, H. H.; Sander, W. Eur. J. Org. Chem., 2002, 3927.
- (3) H. C. Brown, S. Krishnamurthy, T. P. Stocky, J. Org. Chem., 1973, 38, 2786.
- (4) L. De Luca, G. Giacomelli, A. Porcheddu, Org. Lett., 2001, 3, 3041.
- (5) A. C. B. Lucassen, M. Vartanian, G. Leitus, M. E. van der Boom, *Cryst. Growth Des.*, 2005, 5, 1671.