Electronic Supplementary Material for CrystEngComm This Journal is (c) The Royal Society of Chemistry 2007 data_global #==================================================================== _journal_coden_Cambridge 1350 # 1. SUBMISSION DETAILS _publ_contact_author 'Dr. Malcolm A. Halcrow' _publ_contact_author_address ; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK ; _publ_contact_author_phone '+44 (0)113 3436506' _publ_contact_author_fax '+44 (0)113 3436565' _publ_contact_author_email m.a.halcrow@leeds.ac.uk _publ_requested_journal CrystEngComm _publ_contact_letter ; The following set of data is for one structure included in a manuscript we have submitted to the CrystEngComm office. ; #======================================================================= # 2. TITLE AND AUTHOR LIST _publ_section_title ; Zwitterionic 2-(4-Pyridyl)malondialdehyde Sesquihydrate Forms a Helical, Three-Dimensional Hydrogen-Bonded Lattice ; loop_ _publ_author_name _publ_author_address 'Clare A. Tovee' ; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK ; 'Colin A. Kilner' ; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK ; 'Jim A. Thomas' ; Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK ; 'Malcolm A. Halcrow' ; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK ; #================================================================= data_c:\datasets\leeds\cat26\cat26 _database_code_depnum_ccdc_archive 'CCDC 642043' _audit_creation_method SHELXL-97 _chemical_name_systematic ; 2-(4-Pyridyl)malondialdehyde Sesquihydrate ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C8 H7 N O2, 1.5[H2 O]' _chemical_formula_sum 'C8 H10 N O3.50' _chemical_formula_weight 176.17 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'C 2/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 24.2053(5) _cell_length_b 3.7445(1) _cell_length_c 20.9542(7) _cell_angle_alpha 90.00 _cell_angle_beta 121.3149(11) _cell_angle_gamma 90.00 _cell_volume 1622.55(8) _cell_formula_units_Z 8 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 11446 _cell_measurement_theta_min 2.10 _cell_measurement_theta_max 27.42 _exptl_crystal_description Plate _exptl_crystal_colour 'Pale brown' _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.34 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.442 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 744 _exptl_absorpt_coefficient_mu 0.114 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.629 _exptl_absorpt_correction_T_max 0.997 _exptl_absorpt_process_details ; Using multiple and symmetry-related data measurements via the program SORTAV See R.H. Blessing, Acta Cryst (1995), A51, 33-38 ; _exptl_special_details ; Detector set at 30mm from sample with different 2theta offsets 1 degree phi exposures for chi=0 degree settings 1 degree omega exposures for chi=90 degree settings ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Nonius KappaCCD area detector diffractometer' _diffrn_measurement_method '\w and \f scans' _diffrn_detector_area_resol_mean 9.091 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 11446 _diffrn_reflns_av_R_equivalents 0.1001 _diffrn_reflns_av_sigmaI/netI 0.0587 _diffrn_reflns_limit_h_min -30 _diffrn_reflns_limit_h_max 30 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -26 _diffrn_reflns_limit_l_max 26 _diffrn_reflns_theta_min 2.10 _diffrn_reflns_theta_max 27.42 _reflns_number_total 1846 _reflns_number_gt 1338 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'COLLECT (Nonius, 1999)' _computing_cell_refinement 'DENZO-SMN (Otwinowski & Minor, 1997)' _computing_data_reduction 'DENZO-SMN (Otwinowski & Minor, 1997)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'XSEED (Barbour, 2003)' _computing_publication_material 'local program' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The asymmetric unit contains one molecule of the zwitterionic organic molecule (N1--O11); half a molecule of water (O12) lying on the C~2~ axis (0, y, 1/4); and a whole molecule of water lying on a general position (O13). No disorder is present in the model, and all non-H atoms were refined anisotropically. All H atoms were located in the difference map, and were refined freely with a common U~iso~ thermal parameter of 0.0407(18)\%A^2^. The refined distances involving these H atoms ranged from C---H = 0.94(2)--1.06(2)\%A, N---H = 0.92(2)\%A and O---H = 0.92(2)--0.98(2)\%A. The zwitterionic nature of the compound is confirmed by the location of H1 on the pyridyl N atom; by the position of O(12) within hydrogen bonding distance of N(1); and, by the approximate C~2~-symmetry of the 3-hydroxypropenalate moiety. If this were protonated, then the C=O and C---O bond lengths should be clearly distinguishable (compare e.g. Acta Chem. Scand. 1977, B31, 114 and Inorg. Chem. 2000, 39, 3902). ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1027P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.008(2) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 1846 _refine_ls_number_parameters 146 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0753 _refine_ls_R_factor_gt 0.0534 _refine_ls_wR_factor_ref 0.1556 _refine_ls_wR_factor_gt 0.1360 _refine_ls_goodness_of_fit_ref 1.043 _refine_ls_restrained_S_all 1.043 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N1 N 0.06726(7) 0.1206(4) 0.38686(8) 0.0285(4) Uani 1 1 d . . . H1 H 0.0426(11) 0.224(6) 0.3408(13) 0.0407(18) Uiso 1 1 d . . . C2 C 0.03704(9) 0.0003(5) 0.42141(9) 0.0292(4) Uani 1 1 d . . . H2 H -0.0090(11) 0.029(6) 0.3962(14) 0.0407(18) Uiso 1 1 d . . . C3 C 0.07202(8) -0.1390(5) 0.49233(9) 0.0276(4) Uani 1 1 d . . . H3 H 0.0491(10) -0.225(6) 0.5140(13) 0.0407(18) Uiso 1 1 d . . . C4 C 0.13995(8) -0.1526(4) 0.53076(8) 0.0237(4) Uani 1 1 d . . . C5 C 0.16931(9) -0.0182(4) 0.49225(9) 0.0274(4) Uani 1 1 d . . . H5 H 0.2159(11) -0.012(6) 0.5150(13) 0.0407(18) Uiso 1 1 d . . . C6 C 0.13186(9) 0.1153(5) 0.42092(9) 0.0295(4) Uani 1 1 d . . . H6 H 0.1532(10) 0.209(6) 0.3953(12) 0.0407(18) Uiso 1 1 d . . . C7 C 0.17802(8) -0.3000(4) 0.60540(9) 0.0249(4) Uani 1 1 d . . . C8 C 0.15014(9) -0.4620(4) 0.64414(9) 0.0282(4) Uani 1 1 d . . . H8 H 0.1863(10) -0.559(6) 0.6963(13) 0.0407(18) Uiso 1 1 d . . . O9 O 0.09277(6) -0.5035(3) 0.62429(7) 0.0338(4) Uani 1 1 d . . . C10 C 0.24683(8) -0.3048(5) 0.64732(9) 0.0284(4) Uani 1 1 d . . . H10 H 0.2645(10) -0.440(6) 0.6986(13) 0.0407(18) Uiso 1 1 d . . . O11 O 0.28571(6) -0.1753(3) 0.63191(7) 0.0353(4) Uani 1 1 d . . . O12 O 0.0000 0.4476(5) 0.2500 0.0292(4) Uani 1 2 d S . . H12 H 0.0313(10) 0.593(6) 0.2509(12) 0.0407(18) Uiso 1 1 d . . . O13 O 0.09284(6) 0.8031(4) 0.24564(7) 0.0324(4) Uani 1 1 d . . . H13A H 0.1351(11) 0.759(6) 0.2855(13) 0.0407(18) Uiso 1 1 d . . . H13B H 0.0959(10) 0.680(6) 0.2062(13) 0.0407(18) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N1 0.0351(9) 0.0275(8) 0.0189(7) 0.0013(5) 0.0111(7) 0.0029(6) C2 0.0297(10) 0.0315(10) 0.0216(9) -0.0020(6) 0.0100(8) 0.0009(7) C3 0.0304(10) 0.0297(9) 0.0220(8) -0.0003(6) 0.0132(8) -0.0013(7) C4 0.0281(9) 0.0217(8) 0.0186(8) -0.0030(6) 0.0102(7) 0.0008(6) C5 0.0293(9) 0.0286(9) 0.0225(9) -0.0001(6) 0.0123(7) 0.0003(7) C6 0.0363(10) 0.0293(9) 0.0239(9) -0.0005(6) 0.0164(8) -0.0006(7) C7 0.0282(9) 0.0252(8) 0.0195(8) -0.0012(6) 0.0111(7) -0.0008(6) C8 0.0344(10) 0.0277(9) 0.0211(8) -0.0006(6) 0.0134(8) 0.0011(7) O9 0.0349(7) 0.0411(8) 0.0258(7) 0.0041(5) 0.0161(6) -0.0003(5) C10 0.0316(10) 0.0298(9) 0.0204(8) -0.0014(6) 0.0112(7) -0.0002(7) O11 0.0290(7) 0.0463(8) 0.0267(7) 0.0024(5) 0.0118(6) -0.0021(5) O12 0.0287(9) 0.0364(10) 0.0203(8) 0.000 0.0112(7) 0.000 O13 0.0282(7) 0.0426(8) 0.0238(6) -0.0004(5) 0.0117(6) 0.0032(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N1 C6 1.340(2) . ? N1 C2 1.346(2) . ? N1 H1 0.92(2) . ? C2 C3 1.374(2) . ? C2 H2 0.96(2) . ? C3 C4 1.407(2) . ? C3 H3 0.94(2) . ? C4 C5 1.416(2) . ? C4 C7 1.450(2) . ? C5 C6 1.377(2) . ? C5 H5 0.97(2) . ? C6 H6 0.98(2) . ? C7 C10 1.423(2) . ? C7 C8 1.432(2) . ? C8 O9 1.235(2) . ? C8 H8 1.05(2) . ? C10 O11 1.242(2) . ? C10 H10 1.06(2) . ? O12 H12 0.92(2) . ? O13 H13A 0.94(2) . ? O13 H13B 0.98(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 N1 C2 121.23(15) . . ? C6 N1 H1 120.5(13) . . ? C2 N1 H1 118.1(13) . . ? N1 C2 C3 120.45(17) . . ? N1 C2 H2 117.8(14) . . ? C3 C2 H2 121.7(14) . . ? C2 C3 C4 120.84(16) . . ? C2 C3 H3 117.8(14) . . ? C4 C3 H3 121.4(14) . . ? C3 C4 C5 116.38(15) . . ? C3 C4 C7 122.00(15) . . ? C5 C4 C7 121.62(15) . . ? C6 C5 C4 120.35(16) . . ? C6 C5 H5 117.8(14) . . ? C4 C5 H5 121.9(13) . . ? N1 C6 C5 120.74(16) . . ? N1 C6 H6 120.2(13) . . ? C5 C6 H6 119.1(13) . . ? C10 C7 C8 112.95(14) . . ? C10 C7 C4 123.67(15) . . ? C8 C7 C4 123.37(15) . . ? O9 C8 C7 129.86(16) . . ? O9 C8 H8 119.4(11) . . ? C7 C8 H8 110.7(11) . . ? O11 C10 C7 129.56(16) . . ? O11 C10 H10 119.3(11) . . ? C7 C10 H10 111.1(11) . . ? H13A O13 H13B 98.1(17) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A N1 H1 O12 0.92(2) 1.83(2) 2.7425(17) 175(2) . O12 H12 O13 0.92(2) 1.74(2) 2.6541(16) 170(2) . O13 H13A O11 0.94(2) 1.82(2) 2.7592(18) 175.1(19) 7_556 O13 H13B O9 0.98(2) 1.80(2) 2.7786(18) 171(2) 6 _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 27.42 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.325 _refine_diff_density_min -0.370 _refine_diff_density_rms 0.089