#### Supporting Information

## **Conformation Dependent Network Structures in the Cooridnation Polymers Derived from Pyridylisonicotinamides, Carboxylates and Co(II): Entrapment of (H<sub>2</sub>O)**<sub>14</sub> Water **Cluster of an Unprecedented Topology**

D. Krishna Kumar, Amitava Das\* and Parthasarathi Dastidar\*.<sup>a</sup>

<sup>a</sup> Present address: Department of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), Jadavpur, 2A&2B Raja S C Mullick Road, Kolkata – 700032, West Bengal, India

Analytical Science Discipline, Central Salt & Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar – 364 002, Gujarat (India) Fax: +91-278-2567562 E-mail: parthod123@rediffmail.com; ocpd@iacs.res.in (PD); amitava@csmcri.org (AD)

### **FT-IR for 1-4**

#### $[{(H_2O)_4Co(\mu-L1)_2}.fumarate.2H_2O]_n 1:$

FT-IR (cm<sup>-1</sup>): 3275b, 1654vs, 1609vs, 1555b, 1490vs, 1432vs, 1418s, 1369s, 1337s, 1312s, 1241m, 1199s, 1132w, 1057m, 1035s, 995vs, 931s, 901s, 803s, 703vs, 672vs, 646s, 600w, 420s

#### [{ $(H_2O)_3(\mu$ -fumarate)Co( $\mu$ -L1)<sub>2</sub>}.fumarate.2H<sub>2</sub>O]<sub>n</sub> 2:

FT-IR (cm<sup>-1</sup>): 3275b, 1653vs, 1608vs, 1553s, 1489vs, 1382s, 1312vs, 1200vs, 1132b, 1034s, 996s, 899s, 835s, 804vs, 703vs, 672vs, 598w, 420s

#### $[{(H_2O)_4Co(\mu-L2)_2}]$ .terepthalate.3H<sub>2</sub>O]<sub>n</sub> 3:

FT-IR (cm<sup>-1</sup>): 3378b, 1697s, 1599s, 1550m, 1517s, 1424w, 1383vs, 1332m, 1295s, 1207s, 1115b, 1063m, 1018s, 894m, 831b, 755vs, 694m, 591w, 544s

#### [{ $(H_2O)_4Co(\mu-L2)_2$ }. terepthalate.10H<sub>2</sub>O]<sub>n</sub> 4:

FT-IR (cm<sup>-1</sup>): 3233vb, 1699vs, 1598vs, 1515s, 1382vs, 1331m, 1295s, 1117w, 1065m, 1018s, 832b, 754s, 692s, 592m, 545vs, 506s

#### Hydrogen Bonding Parameters for 1-4

| 1                                                                                                    |         |         |          |         |                       |  |  |
|------------------------------------------------------------------------------------------------------|---------|---------|----------|---------|-----------------------|--|--|
| D-H···A                                                                                              | D-H     | H···A   | D…A      | D-H···A | Symmetry              |  |  |
|                                                                                                      | (Å)     | (Å)     | (Å)      | (°)     | operation for A       |  |  |
|                                                                                                      |         |         |          |         |                       |  |  |
| O(16)-H(16A)···O(26)                                                                                 | 0.84    | 2.08    | 2.915(4) | 169     | x, y, z               |  |  |
| O(16)-H(16B)···O(29)                                                                                 | 0.81(6) | 1.92(6) | 2.716(5) | 166(6)  | x, -1+y, z            |  |  |
| O(17)-H(17A)···O(27)                                                                                 | 0.84    | 1.88    | 2.709(4) | 168     | 1-x, -y, 1-z          |  |  |
| O(17)-H(17B)···O(22)                                                                                 | 0.81(5) | 1.77(4) | 2.571(5) | 170(4)  | x, 1/2-y, -1/2+z      |  |  |
| O(18)-H(18A)···O(20)                                                                                 | 0.84    | 1.89    | 2.715(4) | 165     | -1+x, 1/2-y, 1/2+z    |  |  |
| O(18)-H(18B)···O(28)                                                                                 | 0.79(4) | 2.11(4) | 2.889(4) | 173(5)  | -x, -1/2+y, 3/2-z     |  |  |
| O(19)–H(19A)···O(27)                                                                                 | 0.84    | 1.83    | 2.652(4) | 164     | 1-x, -y, 2-z          |  |  |
| O(19)-H(19B)···O(9)                                                                                  | 0.73(5) | 1.91(5) | 2.640(4) | 173(6)  | x, 1/2-y, 1/2+z       |  |  |
| O(28)–H(28A)···O(20)                                                                                 | 0.78(5) | 1.97(5) | 2.742(4) | 170(4)  | x, y, z               |  |  |
| O(28)–H(28B)···O(27)                                                                                 | 0.97(5) | 1.87(5) | 2.753(4) | 150(4)  | 1-x, 1/2+y, 3/2-z     |  |  |
| O(29)–H(29A)···O(26)                                                                                 | 0.88    | 1.90    | 2.769(5) | 170     | 2-x, 1-y, 1-z         |  |  |
| O(29)–H(29B)···O(20)                                                                                 | 0.96    | 2.19    | 3.024(5) | 145     | x, 3/2-y, -1/2+z      |  |  |
| 2                                                                                                    |         |         |          |         |                       |  |  |
| N(7) –H(7)···O(23)                                                                                   | 0.88    | 2.04    | 2.874(9) | 158     | x, y, 1+z             |  |  |
| O(20)-H(20A)···O(27)                                                                                 | 0.94    | 1.81    | 2.753(6) | 178     | x, 1+y, z             |  |  |
| O(20)-H(20B)···O(27)                                                                                 | 1.00    | 1.78    | 2.700(6) | 151     | 2x, 1y, 2z            |  |  |
| O(21)–H(21A)···O(25)                                                                                 | 0.95    | 1.74    | 2.689(6) | 171     | x, y, z               |  |  |
| O(21)–H(21B)····O(25)                                                                                | 0.91    | 1.87    | 2.759(6) | 166     | 2-x, 2-y, 1-z         |  |  |
| O(27)–H(27A)···O(23)                                                                                 | 0.89    | 1.75    | 2.631(7) | 170     | 2-x, 1-y, 1-z         |  |  |
| O(27)–H(27A)···O(25)                                                                                 | 0.89    | 2.54    | 3.177(6) | 130     | 2-x, 1-y, 1-z         |  |  |
| O(27)–H(27B)····O(9)                                                                                 | 0.89    | 1.97    | 2.824(8) | 161     | 1-x, 1-y, 2-z         |  |  |
| O(28)–H(28A)···O(28)                                                                                 | 0.87    | 1.87    | 2.741(9) | 174     | 1-x, 1-y, -z          |  |  |
| O(28)–H(28B)···O(9)                                                                                  | 0.93    | 2.09    | 3.006(7) | 168     | x, y, -1+z            |  |  |
| 3                                                                                                    |         |         |          |         |                       |  |  |
| O(16)-H(10)···O(32)                                                                                  | 0.84    | 1.96    | 2.782(3) | 167     | x, y, z               |  |  |
| O(16)-H(16A)···O(34)                                                                                 | 0.76(4) | 1.96(4) | 2.712(3) | 170(4)  | 1-x, 2-y, 1-z         |  |  |
| O(17)–H(17A)···O(31)                                                                                 | 0.84    | 2.03    | 2.823(3) | 156     | 1+x, 3/2-y, 1/2+z     |  |  |
| O(17)-H(17B)····O(33)                                                                                | 0.78(5) | 1.87(5) | 2.633(3) | 168(4)  | x, $3/2-y$ , $-1/2+z$ |  |  |
| O(18)-H(18A)···O(30)                                                                                 | 0.84    | 1.80    | 2.633(3) | 171     | 1+x, y, z             |  |  |
| O(18)-H(18B)····O(32)                                                                                | 0.87(4) | 1.97(4) | 2.838(3) | 172(6)  | 1-x, -1/2+y, 1/2-z    |  |  |
| O(19)–H(19A)···O(31)                                                                                 | 0.84    | 1.90    | 2.738(3) | 177     | 1+x, y, z             |  |  |
| O(19)-H(19B)···O(20)                                                                                 | 0.77(4) | 1.96(4) | 2.733(3) | 175(3)  | 1-x, 1/2+y, 1/2-z     |  |  |
| O(32)–H(32A)···O(22)                                                                                 | 0.86(2) | 1.90(2) | 2.742(3) | 165(2)  | x, y, z               |  |  |
| O(32)–H(32B)···O(32)                                                                                 | 0.83    | 1.99    | 2.818(3) | 174     | 1-x, 2-y, 1-z         |  |  |
| O(33)–H(33A)···O(20)                                                                                 | 0.88(3) | 1.80(3) | 2.673(3) | 174(3)  | x, 3/2–y, 1/2+z       |  |  |
| O(33)–H(33B)···O(19)                                                                                 | 0.83(5) | 2.28(5) | 3.008(3) | 148(6)  | x, y, 1+z             |  |  |
| O(34)–H(34A)···O(22)                                                                                 | 0.89(4) | 1.83(4) | 2.718(3) | 177(4)  | х, у, z               |  |  |
| O(34)–H(34B)···O(30)                                                                                 | 0.78(2) | 1.93(2) | 2.669(3) | 158(3)  | -x, 1/2+y, 1/2-z      |  |  |
|                                                                                                      |         |         |          |         |                       |  |  |
|                                                                                                      |         |         |          |         |                       |  |  |
|                                                                                                      |         |         |          |         |                       |  |  |
| Angular parameters are not available for the atoms for which the hydrogen atoms could not be located |         |         |          |         |                       |  |  |
| 4                                                                                                    |         |         |          |         |                       |  |  |
| N(22)–H(22)···O(72)                                                                                  | 0.86    | 2.20    | 3.041(9) | 166     | X, V, Z               |  |  |

| O(31)-H(31)···O(71)  | 0.82     | 2.15     | 2.801(9)  | 136     | x, -1+y, z     |
|----------------------|----------|----------|-----------|---------|----------------|
| O(31)···O(41)        |          |          | 2.963(10) |         | x, y, z        |
| O(32)–H(32)···O(49)  | 0.82     | 1.88     | 2.659(8)  | 158     | 2-x, -y, 1-z   |
| O(32)···O(65)        |          |          | 2.727(8)  |         | 1+x, -1+y, z   |
| O(33)-H(33)···O(68)  | 0.82     | 1.94     | 2.732(8)  | 161     | 1+x, -1+y, z   |
| O(33)···O(53)        |          |          | 2.632(13) |         | 1+x, -1+y, z   |
| O(34)–H(34)···O(66)  | 0.82     | 1.84     | 2.648(12) | 168     | 1+x, -1+y, z   |
| O(34)···O(63)        |          |          | 2.719(9)  |         | 1+x, -1+y, 1+z |
| O(35)–H(35A)···O(70) | 0.82     | 1.97     | 2.681(11) | 145     | x, y, z        |
| O(35)-H(35B)···O(41) | 0.93(10) | 1.83(10) | 2.734(10) | 164(9)  | x, 1+y, z      |
| O(36)–H(36A)···O(66) | 0.82     | 2.31     | 3.105(10) | 164     | 1-x, 1-y, 2-z  |
| O(36)–H(36B)···O(39) | 1.01(7)  | 1.74(7)  | 2.747(9)  | 172(6)  | x, 1+y, z      |
| O(36)···O(71)        |          |          | 2.753(10) |         | x, y, z        |
| O(37)–H(37A)···O(51) | 0.79(10) | 2.35(10) | 2.973(14) | 136(8)  | x, y, z        |
| O(37)–H(37A)···O(53) | 0.79(10) | 2.51(10) | 3.294(13) | 168(10) | x, y, z        |
| O(37)–H(37B)···O(67) | 0.97(13) | 1.79(13) | 2.724(11) | 160(11) | x, y, z        |
| O(38)–H(38)···O(68)  | 0.82     | 1.95     | 2.729(10) | 158     | x, y, z        |
| O(38)–H(38A)···O(24) | 0.72(9)  | 2.15(9)  | 2.797(9)  | 150(10) | 2-x, -y, 1-z   |
| O(63)···O(39)        |          |          | 2.733(8)  |         | 1-x, -y, 1-z   |
| O(63)···O(64)        |          |          | 2.752(10) |         | x, y, −1+z     |
| O(63)···O(71)        |          |          | 2.846(10) |         | -1+x, y, -1+z  |
| O(64)…O(61)          |          |          | 2.662(9)  |         | x, -1+y, z     |
| O(64)···O(72)        |          |          | 2.819(10) |         | x, -1+y, z     |
| O(64)···O(9)         |          |          | 2.954(10) |         | 1-x, -y, 2-z   |
| O(65)···O(41)        |          |          | 2.785(9)  |         | -1+x, 1+y, z   |
| O(65)···O(62)        |          |          | 2.727(9)  |         | -x, 2-y, 1-z   |
| O(65)…N(7A)          |          |          | 3.033(10) |         | 1-x, 1-y, 1-z  |
| O(65)…N(7B)          |          |          | 2.977(18) |         | 1-x, 1-y, 1-z  |
| O(66)···O(51)        |          |          | 2.690(15) |         | x, y, z        |
| O(66)···O(37)        |          |          | 2.960(10) |         | 1-x, 1-y, 2-z  |
| O(66)···O(67)        |          |          | 2.785(13) |         | x, y, z        |
| O(67)···O(51)        |          |          | 2.629(14) |         | 1-x, 1-y, 2-z  |
| O(67)···O(69)        |          |          | 2.698(11) |         | 1-x, 1-y, 1-z  |
| O(68)···O(50)        |          |          | 2.727(8)  |         | x, y, z        |
| O(68)…O(49)          |          |          | 2.724(8)  |         | 1-x, 1-y, 1-z  |
| O(69)…O(72)          |          |          | 2.753(10) |         | x, y, -1+z     |
| O(69)···O(50)        |          |          | 2.762(8)  |         | 1-x, 1-y, 1-z  |
| O(70)···O(62)        |          |          | 2.632(12) |         | 1+x, -1+y, z   |
| O(70)···O(70)        |          |          | 2.854(13) |         | 2-x,1-y,1-z    |
| O(71)···O(61)        |          |          | 2.689(11) |         | 1+x, -1+y, z   |
| O(72)···O(72)        |          |          | 2.837(11) |         | 1-x, 2-y, 2-z  |

# Powder X-ray diffraction comparison plots (simulated and bulk solids) for 1 and 2.

## **Comparison Plot for 1**



## **Comparison Plot for 2**







TGA plot for 2



Since the coordination polymers 3 and 4 were obtained in the same pot in an agglomerated form, physical separation of these two forms was impossible and therefore, no TGA data could be obtained.