Table S1. Hydrogen Bonds (Angstrom, Deg)

D-H…A	D-H	Н…А	D····A	D-H…A	Symmetry				
					Transformation				
Compound 1									
O3H3AO4	0.72(5)	2.18(5)	2.898(9)	170(5)	1-x,1-y,1-z				
O3H3BO2	0.79(5)	1.98(5)	2.756(4)	167(4)	-1+x,y,z				
Compound 2									
O3H3AO2	0.78(7)	2.00(6)	2.775(6)	172(6)	1/2+x,1/2-y,1/2+z				
Compound 3	· · · ·	· · · ·	•						
O3H3AO2	0.83(3)	1.94(3)	2.770(3)	177(7)	-1+x,y,z				
O3H3BO6	0.85(3)	1.97(3)	2.811(4)	171(5)	•				
O6H6AO5	0.85(4)	2.23(5)	2.988(5)	149(4)	-1+x,y,z				
O6H6BO4	0.85(4)	2.15(4)	2.990(5)	170(5)					
O7H7AO4	0.85(5)	1.90(5)	2.727(5)	167(6)					
O7H7BO8	0.85(4)	1.99(3)	2.783(6)	156(6)	2-x,-y,2-z				
O8H8AO5	0.85(5)	2.02(5)	2.826(5)	157(6)					
O8H8BO7	0.84(6)	2.18(5)	2.815(6)	132(5)	1+x,y,z				
Compound 4	· · · ·	· · · ·	•						
O3H3AO10	0.74(5)	1.83(5)	2.560(6)	171(7)	1+x,y,z				
O5H5AO2	1.10(4)	1.51(4)	2.602(5)	172(3)	-1+x,y,z				
O5H5BO7	0.79(5)	1.92(5)	2.697(5)	167(5)	x,y,-1+z				
O6H6O8	0.86(5)	1.53(5)	2.392(6)	173(5)					
O10H10AO2	0.77(5)	1.99(5)	2.753(7)	171(5)	4_455				
O10H10BO6	0.69(6)	2.16(6)	2.830(6)	166(7)	4_554				
Compound 5		· · · ·	•						
O5Ĥ5AO2	0.83(5)	2.08(5)	2.858(5)	156(5)	-1+x,y,z				
O5H5BO4	0.80(5)	1.97(5)	2.726(5)	157(6)	-1+x,y,z				
O9H9O16	0.80(6)	1.73(7)	2.521(6)	174(9)					
O10H10AO7	0.86(5)	1.97(5)	2.827(4)	171(5)	-1+x,y,z				
O10H10BO14	0.74(5)	2.27(5)	3.007(5)	178(10)	x,y,1+z				
O15H15AO3	0.99(6)	1.89(6)	2.872(6)	169(6)	1-x,1/2+y,1-z				
O15H15BO11	1.00(6)	2.00(6)	2.975(8)	165(6)					
O16H16AO3	0.99(6)	1.79(7)	2.761(6)	164(9)					
O17H17AO4	0.78(9)	2.04(9)	2.806(6)	172(11)	-1+x,y,z				
O17H17BO16	1.02(8)	2.23(8)	2.636(8)	102(5)					
Compound 6									
O3H3AO2	0.8400	2.0600	2.791(4)	146.00	1+x,y,z				
O3H3BO6	0.8400	1.8600	2.697(5)	174.00	1+x,y,z				
O6H6AO7	0.8600	2.3500	2.875(6)	120.00	-1+x,y,z				
O6H6BO5	0.8600	1.8800	2.734(6)	173.00	•				
07H7A04	0.8500	1.8600	2.701(6)	170.00					
O7H7BO9	0.8400	2.2100	2.786(12)	126.00					
O9H9AO5	0.8500	2.0000	2.855(10)	180.00					

Table S2. Analysis of Short Ring-Interactions

- Cg(I) = Plane number I

- Alpha = Dihedral Angle between Planes I and J (Deg)

- Beta = Angle Cg(I)-Cg(J) or Cg(I)-Me vector and normal to plane I (Deg)

- Gamma = Angle Cg(I)-Cg(J) vector and normal to plane J (Deg)

- Cg-Cg = Distance between ring Centroids (Ang.)

- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)
- $CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)$

Cg(I)	Cg(J)	Symmetry code	Cg-Cg	Alpha	Gamma	Gamma	CgI_Perp	CgJ_Perp		
Compound 1										
N2-C7-C8- C9-C10-C11	N3-C12-C13- C14-C15-C16	1-x, -y, 1-z	3.833(2)	0.53	21.63	22.05	3.552	3.563		
Compound 2										
N1-C9-C10- C11-C12-C13	N3-C19-C20- C21-C22-C23	1+x, y, z	3.630(4)	2.71	18.97	18.51	3.442	3.433		
C17-C18-C19- C20-C21-C22	C17-C18-C19- C20-C21-C22	-x, 1-y, -z	3.804(4)	0.00	23.65	23.65	3.484	3.485		
Compound 3		-								
N2-C8-C9- C10-C11-C12	N3-C14-C15- C16-C17-C18-	1-x, 1-y, 2-z	3.695(2)	2.02	23.89	24.75	3.355	3.378		
N1-C2-C3- C4-C5-C6	C19-C20-C21- C22-C23-C24	1-x,1-y,1-z	3.869(2)	3.22	25.36	28.16	3.411	3.496		
Compound 4	• •									
N1-C1-C2- C3-C4-C5	C16-C17-C18- C19-C20-C21	x, y, z	3.703(3)	2.24	22.93	22.95	3.410	3.410		
C24-C25-C26- C27-C28-C29	C24-C25-C26- C27-C28-C29	-x, -y, 2-z	3.675(3)	0.03	16.88	16.88	3.517	3.517		
Compound 5										
N4-C32-C33- C34-C35-C36	N2-C14-C15- C16-C17-C18	1-x, 1/2+y, 1-z	3.670(3)	0.91	18.58	18.36	3.483	3.479		
N3-C19-C20- C21-C22-C23	N5-C37-C38- C39-C40-C41	1-x,1/2+y,1-z	3.714(3)	3.04	19.85	20.40	3.481	3.493		
Compound 6										
N1-C2-C3- C4-C5-C6	N1-C2-C3- C4-C5-C6	-x, 1-y, 2-z	3.670(3)	0.00	19.68	19.68	3.455	3.455		
N3-C14-C15- C16-C17-C18	C19-C20-C21- C22-C28-C27	1-x,1-y,1-z	3.673(2)	15.44	27.37	11.93	3.594	3.262		

Structure	τ	φ _x	O-Cu-O'	φ ' _x	Structure	τ	φ _x	O-Cu-O'	φ ' _x
Compound 1	0.16(1)	98.6	86.91	11.69	IFODOW [10]	0.026(12)	103	96.6	6.4
Compound 2	0.23(2)	86.3	88.54	-2.24	IFODUC [10]	0.063(9)	100.7	97.1	3.6
Compound 3	0.17(1)	96.4	82.15	14.25	IWINEH [11]	0.040(7)	95.2	92.3	2.9
Compound 4	0.08(2)	102.3	89.94	12.36		0.142(6)	106.0	90.0	16.0
Common d 5	0.22(2)	93.8	89.46	4.34	IWINOR [12]	0.072(10)	110.4	94.0	16.4
Compound 3	0.24(2)	92.5	86.69	5.81		0.026(9)	101.4	84.9	16.5
Compound 6	0.26(2)	91.5	89.52	1.98	JEDOIQ [13]	0.232(15)	92.5	88.4	4.1
	0.091(3)	118.3	93.4	24.9	JEZJAZ [14]	0.167(12)	93.1	91.5	1.6
ACOVEA [1]	0.160(3)	116.7	91.9	24.8	IEZIAZ01 [15]	0.160(2)	92.9	90.5	2.4
AGUIEA[I]	0.126(3)	125.4	93.5	31.9	JEZJAZUI [13]	0.172(2)	92.8	91.8	1.0
	0.238(3)	100.5	92.0	8.5	JOQKAB [16]	0.013(4)	105.1	90.0	15.1
DEXPIG [2]	0.149(10)	98.1	94.5	3.6	VEDVIII [17]	0.043(3)	104.1	100.1	4.0
EJAFAW [3]	0.183(10)	89.9	99.3	-9.4	KEDIUL[1/]	0.084(3)	102.4	99.2	3.2
EPOOLIX [4]	0.003(10)	109.2	97.0	12.2	I UD7EN [19]	0.065(2)	102.9	95.4	7.5
EKOQUA [4]	0.018(10)	102.5	94.7	7.8	LUBZEN [10]	0.013(2)	106.4	95.0	11.4
ETAWAX [5]	0.163(11)	92.9	92.7	0.2	NATHAR [19]	0.090(11)	101.8	90.2	11.6
	0.117(12)	92.6	86.3	6.3	NESDOE [20]	0.290(5)	104.1	85.7	18.4
FEGTAN [6]	0.093(11)	95.4	90.6	4.8	NEWDEZ [21]	0.045(7)	101.8	88.9	12.9
FEGIAN [0]	0.232(13)	93.1	86.3	6.8	PAPNAW [22]	0.285(19)	94.8	90.6	4.2
	0.239(12)	93.8	83.0	10.8	RELTUY [23]	0.236(15)	97.1	85.2	11.9
FETGUH [7]	0.0182(7)	105.5	97.2	8.3	SISCUS [24]	0.278(2)	115.9	96.3	19.6
GITLOK [8]	0.5330(3)	105.1	193.9	11.2	UCUMOU [25]	0.241(18)	91.4	92.9	-1.5
GITLUQ [8]	0.235(9)	90.9	91.3	-0.4	WIPPUG [26]	0.024(16)	109.1	90.5	18.6
	0.163(2)	91.9	92.1	-0.2	XAFKUL [27]	0.134(8)	96.4	93.1	3.3
HUJSOU [9]	0.214(18)	104.8	93.6	11.2	YOBLIK [28]	0.188(5)	100.9	88.8	12.1
	0.036(18)	108.5	103.9	4.6					

Table S3: Distortion Parameter τ and Angular Coordinates for Structures Reported on CSD

Table S4: Intermolecular Interactions. Hydrogen Bonds Geometries (Å, °) for Structures Reported on CSD

Structure	D-H A	D-H	H A	D A	D-H A	Symmetry Transform.
EJAFAW	O5-H1 O2	0.8400	1.9300	2.7572	166.00	$\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$
ETAWAX	O5-H35 O2	0.8700	2.0400	2.8592	159.00	-1 + x, y, z
IFODUC	O2-H2 O5	0.8900	1.8800	2.7648	171.00	$x, \frac{1}{2} - y, \frac{1}{2} + z$
IWINEH	O5-H23 O4	0.8400	2.0400	2.8484	162.00	1 - x, 1 - y, -z
JEDOIQ	O1-H1 O3	1.1800	1.5300	2.6990	172.00	1 + x, y, z
NATHAR	O3-H1 O1	0.9500	1.8000	2.7454	177.00	1 + x, y, z
NESDOE	O6-H2 O5	0.6800	2.3700	2.7889	122.00	$\frac{1}{2} + x, \frac{1}{2} + y, z$
PAPNAW	O4-H1 O3	0.8500	2.4500	2.8165	107.00	x, -1 + y, z
WIPPUG	O1-H9 O3	0.6500	2.1900	2.8283	171.00	$3/2 - x_{,-} \frac{1}{2} + y_{,-} \frac{1}{2} - z_{,-}$
XAFKUL	01-H1 O5	0.8200	2.0200	2.7970	159.00	$\frac{1}{2} - x_{,-} \frac{1}{2} + y_{,-} \frac{1}{2} - z_{,-}$

Bibliography

[1] Zhiqiang Xu, L. K. Thompson and D.O.Miller, Polyhedron, 2002, 21, 1715.

[2] Wen-Juan Shi, Lei Hou, D.Li, Ye-Gao Yin, Inorg. Chim. Acta, 2007, 360, 588

[3] P. Gomez-Saiz, J. Garcia-Tojal, M. Maestro, J. Mahia, L. Lezama and T. Rojo, *Eur. J. Inorg. Chem.*, **2003**, 2123.

[4] S. P. Foxon, G. R. Torres, O. Walter, J. Z. Pedersen, H. Toftlund, M. Huber, K. Falk, W. Haase, J.

Cano, F. Lloret, M. Julve and S. Schindler, Eur. J. Inorg. Chem., 2004, 335.

[5] Hai-Liang Zhu, Si-Chang Shao, Ji-Long Ma, Xiao-Yang Qiu, Song Yang and Lin Sun, Z. Kristallogr. –New Cryst. Struct., **2003**, 218, 503.

[6] J. Ackermann, F. Meyer and H. Pritzkow, Z. Anorg. Allg. Chem., 2004, 630, 2627.

[7] L. Gasque, J. Olguin and S. Bernes, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2005, 61, m274.

[8] A. Escuer, F. A. Mautner, E. Penalba and R. Vicente, Inorg. Chem., 1998, 37, 4190.

[9] Jian Gao, J. H. Reibenspies and A. E. Martell, Inorg. Chim. Acta, 2002, 338, 157.

[10] Hua-Xin Zhang, Bei-Sheng Kang, Zhong-Yuan Zhou, A. S. C. Chan, Kai-Bei Yu, Zhong-Ning Chen and Chen Ren, *Inorg. Chem. Commun.*, **2001**, *4*, 695.

[11] Hua-Xin Zhang, Bei-Sheng Kang, Zhong-Ning Chen, Cheng-Yong Su and Kai-Bei Yu, *Bull. Chem. Soc. Jpn.*, **2003**, *76*, 2307.

[12] Hua-Xin Zhang, Bei-Sheng Kang, Zhong-Ning Chen, Cheng-Yong Su and Kai-Bei Yu, *Bull. Chem. Soc. Jpn.*, **2003**, *76*, 2307.

[13] J. V. Folgado, E. Escriva, A. Beltran-Porter, D. Beltran-Porter, A. Fuertes and C. Miravitlles, *Polyhedron*, **1987**, *6*, 1533.

[14] J. V. Folgado, E. Martinez-Tamayo, A. Beltran-Porter, D. Beltran-Porter, A. Fuertes and C. Miravitilles, *Polyhedron*, **1989**, *8*, 1077.

[15] S. K. Padhi and V. Manivannan, Inorg. Chem., 2006, 45, 7994.

[16] M. Lockwood, T. J. Blubaugh, A. M. Collier, S. Lovell and J. M. Mayer, *Angew. Chem., Int. Ed.*, **1999**, *38*, 225.

[17] Hai-Liang Zhu, Li-Min Zheng, Chun-Ying Duan, Xiao-Ying Huang, Wei-Ming Bu, Mei-Fang Wu and Wen- Xia Tang, *Polyhedron*, **1998**, *17*, 3909.

[18] Jian Gao, J. H. Reibenspies and A. E. Martell, Inorg. Chim. Acta, 2002, 335, 125.

[19] J. Cano, G. De Munno, J. L. Sanz, R. Ruiz, J. Faus, F. Lloret, M. Julve and A. Caneschi, *J. Chem. Soc., Dalton Trans.*, **1997**, 1915.

[20] E. B. Gonzalez, E. Farkas, A. A. Soudi, T. Tan, A. I. Yanovsky and K. B. Nolan, J. Chem. Soc., Dalton Trans., 1997, 2377.

[21] M. Napitupulu, G. A. Lawrance, G. J. Clarkson and P. Moore, Aust. J. Chem., 2006, 59, 796.

[22] Ying Shao, Junyong Zhang, Chao Tu, Chunhui Dai, Qiang Xu and Zijian Guo, *J. Inorg. Biochem.*, **2005**, *99*, 1490.

[23] Pingshan Wang, C. N. Moore_eld, M. Panzner and G. R. Newkome, *Cryst. Growth Des.*, **2006**, *6*, 1563.

[24] N. -H. Dung, B. Viossat, A. Busnot, E. A. Garcia, J. N. Gutierrez and M. F. Gardette, *Inorg. Chim. Acta*, **1990**, *175*, 155.

[25] R. Costa, C. Lopez, E. Molins, E. Espinosa and J. Perez, J. Chem. Soc., Dalton Trans., 2001, 2833.

[26] M. A. Ali, N. E. H. Ibrahim, R. J. Butcher, J. P. Jasinski, J. M. Jasinski and J. C. Bryan, *Polyhedron*, **1998**, *17*, 1803.

[27] Junyong Zhang, Xiaokang Ke, Chao Tu, Jun Lin, Jian Ding, Liping Lin, Hoong-Kun Fun, Xiaozeng You and Zijian Guo, *BioMetals*, **2003**, *16*, 485.

[28] S. Warzeska and R. Kramer, Chem. Ber., 1995, 128, 115.