Supplementary Information

"Flattened trigonal bipyramidal coordination assembly with *trans* geometry"

Aleema Westcott, Julie Fisher, Lindsay P. Harding and Michaele J. Hardie

General Experimental

Ligand N,N',N''-tris(6-methyl-2-pyridyl)benzene-1,3,5-tricarboxamide was synthesised by literature methods.¹ Other chemicals were obtained from commercial sources and used without further purification. Infra-red spectra were recorded as solid phase samples on a Perkin-Elmer Spectrometer. Microanalyses were performed by the University of Leeds microanalytical service.

NMR studies

DOSY NMR measurements were made on a Varian Inova 500 MHz spectrometer operating under regulated temperature conditions (20°C), with a 5 mm probe. The pulse sequence employed was a bipolar pulse pair simulated echo (BPPSTE) operating in the ONESHOT experiment. Additional parameters: number of different gradient levels, 15; gradient stabilisation delay, 0.002 s; gradient length, 0.002 s; diffusion delay, 0.03 s; relaxation delay, 5 s; Kappa (unbalancing factor), 0.2. An exponential function with 1 Hz line broadening was applied prior to Fourier transformation. The resulting array was phased and baseline corrected using a macro provided by Prof. Gareth Morris (Department of Chemistry, University of Manchester, UK). Standard ¹H NMR spectra recorded on the same instrument were generally acquired with spectral width of 8500 Hz, in 16,384 complex data points and a relaxtion delay of 3 s. Nuclear Overhauser spectra were recorded on a Bruker DRX 500 using the noemul sequence. Sample temperature was maintained at -20 ⁰C throughout; this was to slow down the conversion from asymmetric to symmetric entity (this was before it was discovered that conversion occurred over a period of days at room temperature). Typically a spectral width of 7500 Hz was used in 8192 data points. The total nOe build-up time of 6 s was employed.

Sections of the standard NMR spectra of the ligand L1 and a $CDCl_3$ solution of L1 and $Pd(O_2CCH_3)_2$ are shown in Figure S1.

*Figure S1:Section of the CDCl*₃ ¹*H NMR spectra of a 2:3 mixture of ligand L1 and Pd*(O₂CCH₃)₂ 2.5*hrs after mixing (top), and ligand L1 (bottom).*

DOSY calibration

Spectra were acquired in a similar manner to that described above, with diffusion delay and gradient length optimised for each sample. Solution concentrations were all 5 mM.

Name	Molecular weight	Diffusion coefficient (x 10^{10})m ² s ⁻¹
Hexakis(2-	913.11	8.703
pyridylmethyl)cyclotriveratrylene		
Tris(4-[2-pyridyl]benzyloxy)	910.14	9.037
cyclotriguaiacylene		
Tris(4-[2,2',6',2"-	323.4	10.197
terpyridyl]benzyl)cyclotriguaiacylene		
Benzene-1, 3, 5-tricarboxylic acid	480.0	11.503
tris(6-methyl-2-pyridinyl) amide		
Dipyridyl	184.24	13.573
4-aminopyrimidine	95.11	17.821

Diffusion coefficients (x 10¹⁰)m²s⁻¹ of;

Ligand L1 – 11.5

Asymmetric species – 7.0

Symmetric species – 7.5

Mass spectrometry studies

Electrospray (ES) mass spectra were measured on a Bruker MicroTOF-Q instrument in positive ion mode. The spectra obtained for CHCl₃ solutions of ligand L1 and $Pd(O_2CCH_3)_2$ in 2:3 and 1:5 proportions are shown in Figures S2 and S3 respectively.

Figure S2: Mass spectrum of a CHCl₃ solution of ligand L1 and $Pd(O_2CCH_3)_2$ in 2:3 proportions.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2008

Figure S3: Mass spectrum of a CHCl₃ solution of ligand L1 and $Pd(O_2CCH_3)_2$ in 1:5 proportions.

Synthesis of single crystals of $[Pd_3(N,N',N''-tris(6-methyl-2-pyridyl)benzene-1,3,5-tricarboxamide)_2(O_2CCH_3)_6]$ 1 A solution of benzene-1,3,5-tricarboxylic acid tris-[(6-methyl-pyridin-2-yl)-amide] (10 mg, 21 µmol) in trifluoroethanol (6 mL) was added to a solution of Pd(OAc)_2 (4.7 mg, 21µmol) in methanol (1 mL) in a glass vial giving a pale yellow suspension. The solution was allowed to evaporate slowly through pin holes in the cap of the vial, and gave crystals suitable for X-ray structure determination after eight months. Yield: 8.26 mg, 24 %; CHN Anal. With sample dried under vacuum prior to analysis: (Found: C, 46.75; H, 3.80; N, 10.05. Calc. for Pd_3C_54H_{48}O_6N_{12}.2.5H_2O(O_2CCH_3)_6: C, 47.19; H, 4.27; N, 10.01 %); IR (solid state): $v_{max} = 622$, 695, 792, 949, 1049, 1109, 1152, 1175, 1238, 1258, 1305, 1393, 1471, 1526, 1592, 1694, 1899, 2001, 2022, 2136, 2148, 2331, 2353, 3324 cm⁻¹.

Crystallographic procedures:

Crystals were mounted under oil or grease onto a glass fibre and X-ray data collected at low temperature on a Bruker X8 Apex II diffractometer with Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å). A crystal of **1** was mounted directly from the mother liquor, whereas **1a** were dried under vacuum at 100 °C for 24 hours before being cooled and exposed to the atmosphere prior to mounting. Data were corrected for Lorentz and polarisation effects, and absorption corrections applied using a multi-scan method (SADABS). Structures were solved by direct methods using SHELXS-97² and refined by full-matrix least squares on F^2 by SHELXL-97³ via the X-Seed GUI.⁴ All non-hydrogen atoms were refined anisotropically and hydrogen atoms were included as invariants at geometrically estimated positions. The asymmetric unit for both structure determinations and molecular species for **1a** are shown in Figure S4.

Crystal data for complex 1a: C₆₆H₆₆N₁₂O₁₈Pd₃, Mr = 1634.51, trigonal, a = 22.6400(11), c = 19.219(3) Å, V = 8531.2(15) Å³, space group *P*-31c, Z = 4, $\rho_{calc} = 1.273$ g.cm⁻³, $\mu = 0.689$ mm⁻¹, $\theta_{max} = 23.25$ °, 62587 data collected, 4080 unique, $R_{int} = 0.1100$, 302 parameters, $R_1 = 0.1046$ (for 2224 data $I > 2\sigma(I)$), $wR_2 = 0.3427$ (all data), S = 1.142, max. residual e-density = 1.192 e Å³.

Figure S4. Asymmetric units of the crystal structures of (a) complex 1; (b) complex 1a. Ellipsoids are shown at 50% probability levels. (c) $[Pd_3(L1)_2(OAc)_6]$ complex 1a.

- [1] B. Koenig, O. Moeller, P. Bubenitschek and P. G. Jones, J. Org. Chem., 1995, 60, 4291
- [2] G. M. Sheldrick, SHELXS-97, University of Göttingen, Germany, 1990.
- [3] G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.
- [4] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
- [5] A. Spek, P. can der Sluis, Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 194.