Supplementary Information

(CrystEngComm, Dec. 2007)

Supramolecular frameworks assembled via intermolecular lone pairaromatic interaction between carbonyl and pyridyl groups

Chong-Qing Wan,^a Xu-Dong Chen,^{a,b} and Thomas C. W. Mak^{a,*}

^a Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China.
 Fax: +852-2603 5057. E-mail: tcwmak@cuhk.edu.hk

^b College of Chemistry and Life Science, Tianjin Normal University, Tianjin, P. R. China.

Experimental

General materials and Instruments

Diethyl ether was purchased from LAB-SCAN and further refluxed over sodium and benzophenone. All other chemicals were obtained commercially from Aldrich and

used without further purification. Synthesis of L ligand was performed under a nitrogen atmosphere using standard Schlenk techniques. Elemental analyses of C, H and N were performed by the MEDAC LTD Brunel Science Centre, United Kingdom. IR spectra were recorded with a Nicolet Impact 420 FT-IR spectrometer using KBr pellets. ¹H NMR spectra were taken at 300 Hz with a Bruker-300 spectrometer using CDCl₃ as solvent.

Synthesis

2,6-Pyridinediylbis(3-pyridinyl)methanone (L). The preparation of ligand L followed the procedure previously developed for 2,6-pyridinediylbis(2pyridinyl)methanone.¹ Under the protection of N_2 , 3-bromopyridine (7.9 g, 50mmol) in 25ml anhydrous diethyl ether was added slowly into 31.5 ml n-butyllithium (15% in hexane, 50mml) in 75 ml anhydrous diethyl ether at -50 °C. After addition was complete, the mixture was stirred at -50 °C for 30 minutes. Then, after cooling to -90 °C, dimethyl 2,6-pyridinedicarboxylate (4.875 g, 25mmol) in 50 ml anhydrous dichloromethane was added with vigorous stirring within 50 minutes. After stirring at -90 °C for another 30 minutes, the solution was allowed to slowly warm to room temperature over 5 hours and stand overnight, after which it was further quenched with 50 ml HCl solution in water and methanol (water/methanol/conc. HCl = 5:5:1) at -40 °C. The crude product was extracted with chloroform, and the combined organic extract was dried over anhydrous sodium sulfate and finally concentrated in vacuo to give a brown oil. Further purification by chromatography on silica gel using ether acetate/dichloromethane (1:6) as the eluent gave 2.96 g of light yellow powder of 2,6-pyridinediylbis(2-pyridinyl)methanone in 41% yield; m.p. 111-113 °C; ¹H NMR (300 M Hz, CDCl₃): δ 9.27(s, 2H), 8.77 (d, J = 4.5 Hz

2H), 8.43 (d, J = 7.8 Hz, 2H), 8.40 (td, $J_1 = 1.8$ Hz, $J_2 = 7.8$ Hz, 2H), 8.22 (t, $J_2 = 7.8$ Hz, 1H), 7.36 (dd, $J_1 = 4.8$ Hz, $J_2 = 7.8$ Hz, 2H); IR (KBr): 1666 cm⁻¹ (C=O); Anal. Calcd (Found) for $C_{17}H_{11}N_3O_2$: C, 70.58 (70.37); H, 3.83 (3.65); N, 14.52 (14.66)%.

Synthesis of Cu(L)₂(BF₄)₂ (1). 2,6-Pyridinediylbis(2-pyridinyl)methanone (L) (14.5 mg, 0.05 mmol) and Cu(BF₄)₂·6H₂O (35 mg, 0.1 mmol) were added to 5 ml of acetonitrile and stirred at room temperature for 5 hours. After filtration, slow evaporation of the filtrate yielded block-like blue crystals of **1** suitable for X-ray diffraction. Changing the ligand to metal salt molar ratio to 1:1 yielded the same result. Yield: 14.5 mg (71.1%). Anal. Calcd. (Found) for C₃₄H₂₂N₆O₄B₂F₈Cu: C, 50.06 (49.55); H, 2.72 (2.75); N, 10.30 (10.90) %. IR (KBr) $\bar{\nu}$ /cm⁻¹: 3073(w), 1689(vs), 1595(w), 1427(m), 1326(s), 1259(w), 1199(w), 1085(vs), 970(m), 843(w), 755(w), 702(m), 641(w).

Synthesis of Cu(L)₂(NO₃)₂·CH₃CN·H₂O (2). L Ligand (58 mg, 0.2 mmol) and Cu(NO₃)₂·3H₂O (48 mg, 0.2mmol) were mixed in 10 ml methanol solvent and stirred for 1 hour. A light blue precipitate was deposited, and then 5 ml acetonitrile was added. The solution subsequently turned clear. After filtration, slow evaporation of the filtrate yielded blue crystals of **2** suitable for X-ray diffraction. Yield: 51.9 mg (63.1%). Anal. Calcd. (Found) for C₃₆H₂₇CuN₉O₁₁: C, 50.42 (50.82); H, 3.30 (3.11); N, 15.29 (15.58) %. IR (KBr) $\bar{\nu}$ /cm⁻¹: 3078(w), 2356(m), 1681(vs), 1681(w), 1604(w), 1410(vs), 1332(s), 1195(w), 987(w), 930(m), 835(w), 752(w), 701(m), 646(w).

X-Ray Crystallographic Studies

Single-crystal X-ray diffraction measurements were carried out on a Bruker SMART 1000 CCD diffractometer operating at 50KV and 30mA using Mo- $K\alpha$ radiation

 $(\lambda = 0.71073 \text{ Å})$. Each selected crystal was mounted inside a Lindemann glass capillary, and intensity collection at 293 K and data reduction were performed using the SMART and SAINT software.² An empirical absorption correction was applied using the SADABS program.³ Both crystal structures were solved by direct methods and refined by full-matrix least squares on F^2 using the SHELXTL program package.⁴ All non-hydrogen atoms were subjected to anisotropic refinement. Hydrogen atoms of the lattice water molecules in complex 2 could not be located, and were not included in the refinement.

	-		
Energinical formula	1 С И NODEC.	2 C U NO C	
Empirical formula	$C_{34}H_{22}N_6O_4B_2F_8Cu$	$C_{36}H_{27}N_9O_{11}Cu$	
Formula weight	815.74	825.19	
T/K	293(2)	293(2)	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_{1}/c$	$P2_1/n$	
Crystal size/mm ³	0.48×0.29×0.21	0.46×0.36×0.21	
a/Å	10.284(1)	9.154(5)	
b/Å	17.787(2)	21.374(1)	
c/Å	9.391(1)	18.717(1)	
α/°	90	90	
β/°	94.380(2)	90.286(1)	
γ/°	90	90	
$V/Å^3$	1712.7(3)	3662(3)	
Ζ	2	4	
$D_c/\mathrm{g}\mathrm{cm}^{-3}$	1.583	1.493	
$\theta/^{o}$	1.99-28.30	1.45-28.43	
<i>F</i> (000)	822	1684	
μ (Mo-Ka)/mm ⁻¹	0.731	0.671	
Reflections collected	11867	25386	
Independed reflections(R_{int})	4263(0.0695)	9108(0.0373)	
Observed reflections $[I > 2\sigma(I)]$	2469	5394	
Parameters	251	530	
Goodness-of-fit (F^2)	1.001	1.034	
$R_{I}[I > 2\sigma(I)]^{a}$	0.0560	0.0565	
wR_2 (all data) ^b	0.1498	0.2226	

Table 1. Crystallographic data and refinement parameters for complex 1 and 2.

 ${}^{a}R_{1} = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. {}^{b}wR_{2} = \{\Sigma [w(Fo^{2} - Fc^{2})^{2}] / \Sigma [w(Fo^{2})^{2}] \}^{1/2}.$

	1		2	
Bond length (Å)	Cu1-N1	2.040(3)	Cu1-N2	2.030(3)
	Cu1-N3	2.027(3)	Cu1-N1	2.073(3)
	C1-N1	1.350(4)	Cu2-N4	2.040(3)
	C5-N1	1.341(4)	Cu2-N5	2.063(3)
	C6-O1	1.215(4)	O1-C6	1.216(4)
Bond angle (°)	N3-Cu1-N3a	180.0	N2-Cu1-N1	90.99(1)
	N3-Cu1-N1	91.41(1)	N2-Cu1-N1a	89.01(1)
	N3a-Cu1-N1	88.59(1)	N4-Cu2-N5	88.27(1)
			N4-Cu2-N5b	91.73(1)

 Table 2. Selected bond lengths and angles of complex 1 and 2.

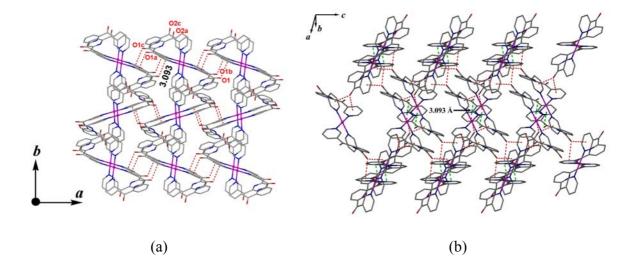
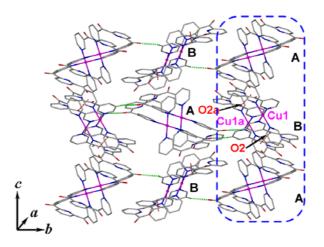



Figure S1 Crystal structure of Cu(L)₂(BF₄)₂ 1. (a) The type I C=O···π interactions in the *ab* plane are represented by red dashed lines. Symmetry code: a -*x* + 1, -*y*, -*z* + 1; b *x*, *y*, *z* - 1; c -*x* + 1, -*y*, -*z*. The type II C=O···π interactions in the *bc* plane are omitted for clarity. (b) 3D cationic framework formed by the type I, II and III C=O···π interactions in different directions. The type I C=O···π interaction are shown in green for clarity, which shared one pyridyl ring with the type II (red

dashed lines) to compose the type **III**. All hydrogen atoms are omitted for clarity. Color code: dark blue N, gray C, red O, purple Cu.

Figure S2. Three-dimensional molecular framework of **2** constructed by C-H…O(carbonyl) interactions (green dashed lines) along the *b* axis and C=O… π interactions (type I, red dashed lines) along the *a* axis. All hydrogen atoms except those involved in hydrogen bonding, solvent molecules, nitrate ions, and the type IV C=O… π interactions along the *c* axis are omitted for clarity.

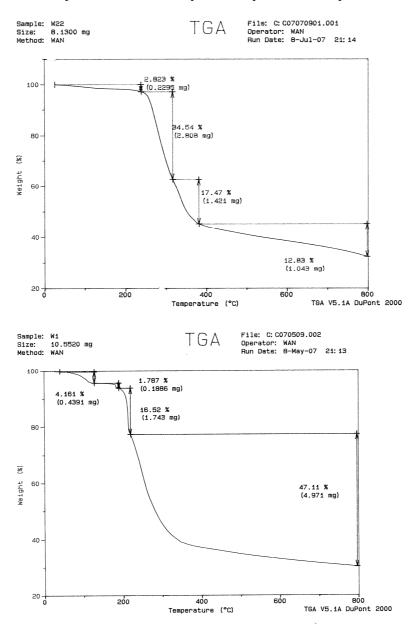


Figure S3 TGA analysis of complex 1 (top) and 2 (bottom). 2 shows a gradual weight loss of 4.161% in the 30~100 °C corresponding to the lattice actenitrile molecule liberation (calcd. 4.96%). The weight loss of 1.787% in the range 100~170°C is attributed to the removal of lattice water molecules (calcd. 2.18%).

References

- 1 B. Abarca, R. Ballesteros and M. Elmasnaouy, *Tetrahedron* 1998, 54, 15287.
- 2 Bruker, SMART 5.0 and SAINT 4.0 for Windows NT, Area Detector Control and Integration Software, Burker Analytical X-Ray Systems Inc., Madison, WI, 1998.
- 3 G. M. Sheldrick, *SADABS: Program for Empirical Absorption Correction of Area Detector Data*, University of Göttingen: Göttingen, Germany, 1996.
- 4 G. M. Sheldrick, *SHELXTL 5.1 for Windows NT: Structure Determination Software Programs*, Bruker Analytical X-ray Systems, Inc., Madison, WI, 1997.