π -Stacking induced complexes with Z-shape motifs featuring complementary approach between electron-rich arene diamines and electron-deficient aromatic N-heterocycles

Xiu-Jian Wang*, Liu-Cheng Gui, Qing-Ling Ni, Yan-Fang Liao, Xuan-Feng Jiang, Ling-Hua Tang

SUPPORTING INFORMATION

*Corresponding author's e-mail: wang1_xj@yahoo.com.cn

Crystal structure determination:

Reflection intensity data for complexes 1, 2, 4 and 6 were collected at 173K on a Bruker APEX diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) using the ω technique, and those of complexes 2 and 5 were collected at 293K on a Gemini S Ultra diffractometer. All the structures were solved by direct methods and refined by full-matrix least-squares against *F2* of all data using the SHELXTL program package. Anisotropical thermal factors were assigned to non-hydrogen atoms. The positions of the hydrogen atoms were generated geometrically, assigned isotropic thermal parameters, and allowed to ride on their respective parent atoms before the final cycle of least-squares refinement. The crystal of 5 was of poor quality and had very weak high angle data. Thus, Ratio Observed/Unique Reflections was low (60%). Despite the ratio of data completeness is 0.952, the cation geometries were well defined and only the anions of BF₄⁻ were disorder.

Fig. S1 View of C-H··· π interaction between cations along the *bc* plane in complex 1 and complex 2, H··· $\pi_{centroid} = 2.84$ and 3.014 Å in 1 and 2.997 and 2.863 Å in 2.

Fig. S2 View of 1-D π chain along the *a* axis, formed by π - π interaction between cations in complex 2.

Fig. S3 Showing C-H...π weak interactions between phenyl rings attached on phosphorus atoms and uninvolved-in-π-stacking pyridyl rings in the Z-shape subunit, Ring-centroids distance: 4.454Å, dihedral angle: 25.7°, and H…π_{centroid}: 3.057Å.

Fig. S4 C-H··· π interactions between pyridyl ring and naphthalene rings in complex **5**. H20A··· $\pi_{pyridyl}$ =3.237Å, H43A··· π_{phenyl} = 3.372Å.

Fig. S5 Showing weak interactions between CF₃SO₃⁻ anions and DMF solvents, (a) a quadrilateral unit linked by hydrogen bond interactions and (b) a one-dimensional chain of quadrilateral linked by F…F (2.73Å) weak interactions. Hydrogen bonds: C30-H30A…F3(H30A…F3=2.551Å, C30…F3=3.60Å, ∠(CHF)=129.27°), C29-H29C…O4#1 (H29C…O4=2.499Å, C29…O4=3.351Å, ∠(CHO)=145.2°, #1= -x-1, -y, -z+1)

Fig. S6 The 1-D cation polymer of complex $\{[Cu(L2)(phen)](ClO_4) \cdot (DMF\}_n$. For clarity, hydrogen atoms are deleted.

D-H…O	H…O (Å)	D…O (Å)	∠(DHO) (°)
C26-H26A…O1 ^a (3544	2.486	3.423	168.9
C16-H16A…O2 ^b (4565	2.851	3.339	113
C27-H27A···O3 ^c (2555	2.607	3.393	140.4
C30H30A···O3 ^d (4465	2.827	3.329	112.6
C13-H13A…O4 ^d (4465	2.527	3.255	133.6
C28-H28A····O4 ^c (2555	2.910	3.393	112.8
C30-H30A…O5 ^e (1455	2.696	3.385	127.7

Table S1 Geometric parameters of hydrogen bonds in complex 2

Symmetry Codes: (a) -x, y-0.5, -z-0.5; (b) x, -y+0.5, z-0.5; (c) -x, -y, -z; (d) x-1, -y+0.5, z-0.5; (e) x-1, y, z.

Table S2 Geometric parameters of hydrogen bonds in complex 3

D-H…O	H…O (Å)	D…O (Å)	∠(DHO) (°)
N1-H1B···O5 ^a	2.222	2.986	147.8
C24-H20A…O1 ^b	2.482	3.182	132.1
C4-H4A···O2 ^c	2.609	3.552	164.0
C23-H23A…O2 ^b	2.681	3.552	156.3
C18-H18A…O3 ^d	2.709	3.393	131.1
C28-H28B…O4 ^c	2.576	3.388	142.4

Symmetry Codes: (a): x, y, z-1; (b): -x-0.5, y-0.5, -z-0.5; (c): x-0.5, -y+0.5, z-0.5; (d): -x-1, -y, -z.

Table S3 Geometric parameters of hydrogen bonds in complex 4

D-Н…О	H…O (Å)	D…O (Å)	∠(DHO) (°)
C26-H26A…O1	2.401	3.336	167.8
C13-H13A…O1 ^a	2.388	3.283	156.8
C18-H18A…O2	2.617	3.228	122.5
C17-H17A…O2 ^b	2.684	3.607	164.2
С6-Н6А…О3 ^с	2.462	3.206	131.5
C9-H9A…O3 ^d	2.546	3.158	122.3
N3-H3A···O3 ^c	2.583	3.131	121.2

Symmetry Codes: (a) x+1.5, -y-1.5, z+0.5; (b) -x+2, -y+1, -z+1; (c) x-0.5, -y+1.5, z+0.5; (d) x+0.5, -y+1.5, x+0.5

Table S4 Geometric parameters of hydrogen bonds in complex 6

D-H…O	H…O (Å)	D…O (Å)	∠(DHO) (°)
N1-H1A…O1 ^a	2.058	2.878	154.6
С29-Н29А…О1	2.383	2.792	104.3
C19-H19A…O2 ^b	2.667	3.384	132.6
C4-H4A…O3 ^c	2.709	3.376	127.8
C15H15A…O3 ^d	2.701	3.295	121.2
C16-H16A…O3 ^d	2.699	3.297	121.5
C28-H28A…O3 ^c	2.427	3.306	153.8
C20-H20A…O4 ^b	2.529	3.396	151.8
C29-H29C…O4 ^e	2.499	3.351	145.2

Symmetry Codes: (a) x-1, -y, -z+1; (b) x,, y+1, z; (c) x+1, y+1, z; (d) -x-1, -y, -z+2; (e) -x-1, -y, -z+1.

Crystallographic Data for complexes 1, 2, 3, 4, 5 and 6

Fable S5

 $C_{26.50}H_{23}N_4O_2Cl_3CdCu$ 14.4643(13) Monoclinic 7.2112(6) 27.620(2) 2845.9(4) 98.941(2) 711.78 0.0487 16589 0.1283 C2/c 1.807 1.661 3463 171 90 90 $C_{26}H_{22}N_4O_2I_2CuHg$ Monoclinic 6.6031(12) 8.5574(16) 25.306(5) 91.415(3) 1429.5(5) 940.41 $P2_1/m$ 0.0542 0.1455 2.185 8.296 3210 8279 169 60 90 $C_{27}H_{26}N_4O_3C_{12}CuZn$ 2639.1(10) A^3 1.647 Mg/m^3 Orthorhombic = 8.6211(19)13.677(3) 22.383(5) 654.33 Pnma 0.0906 16999 1.955 0.0391 2828 184 6 6 6 C₅₆H₆₀ N₁₀O₁₈CdCu₂ (8.4188(11) 18.4188(11) **Fetragonal** 17.537(2) 5949.6(9) 1400.62 $P-42_1c$ 0.1852 26316 0.0687 1.564 I.143 5242 339 6 6 90 C₅₂H₄₄ N₈O₁₂Cl₂Cu₃ (8.3858(10) 18.3858(10) 15.1821(17) **Fetragonal** 5132.1(7) 1234.47 P 4/ncc 0.0914 0.2450 1.598 36759 1.408 3180 169 90 90 6 C₂₆H₂₂ N₄O₂Cu 12.3071(19) 0.1147(15) Monoclinic 9.0238(14) 107.377(3) 1072.0(3) 486.02 $P2_1/n$ 0.0356 0.0913 l.506 l.051 5329 2105 151 90 90 No. of unique data No. of parameters Total no. of data $wR_2 \left[I > 2\sigma(I) \right]$ $R_{1}\left[l{>}2\sigma(l)\right]$ space group $ho_{
m calcd},
m gm^{-3}$ Cryst syst complex formula μ,mm⁻¹ V,Å³ Fw a,Å b,Å β,° c,Å α .° ς,

~

	L	Table S6 Selected Bond	led Distances (Å) and Ang	les (°)			
		1				4	
Ag(1)-N(1)	2.329(8)	N(2)-Ag(1)-N(1)	73.8(3)	Ag(1)-N(1)	2.279(2)	N(1)-Ag(1)-N(2)	71.91(8)
Ag(1)-N(2)	2.238(8)	N(2)-Ag(1)-P(1)	157.0(2)	Ag(1)-P(1)	2.3529(7)	P(1)-Ag(1)-N(2)	112.49(6)
Ag(1)-P(1)	2.337(2)	N(1)-Ag(1)-P(1)	127.4(2)	Ag(1)-N(2)	2.398(2)	N(1)-Ag(1)-O(1)	97.23(9)
P(1)-C(11)	1.826(10)	C(11)-P(1)-C(5)	105.7(4)	Ag(1)-O(1)	2.486(2)	P(1)-Ag(1)-O(1)	104.14(8)
P(1)-C(5)	1.835(10)	C(11)-P(1)-C(4)	104.7(5)	P(1)-C(19)	1.823(3)	N(2)-Ag(1)-O(1)	101.47(10)
P(1)-C(4)	1.878(9)	C(5)-P(1)-C(4)	103.7(4)	P(1)-C(25)	1.834(3)	C(19)-P(1)-C(25)	106.87(11)
				P(1)-C(6)	1.859(3)	C(19)-P(1)-C(6)	101.05(12)
				N(1)-Ag(1)-P(1)	156.49(6)	C(25)-P(1)-C(6)	104.49(12)
		2				10	
Cu(1)-N(4)	2.052(3)	N(4)-Cu(1)-N(2)	110.76(13)	Cu(1)-N(4)	2.054(5)	P(2)-C(31)	1.836(6)
Cu(1)-N(3)	2.054(3)	N(3)-Cu(1)-N(2)	80.79(12)	Cu(1)-N(3)	2.088(5)	P(2)-C(24)	1.864(6)
Cu(1)-N(2)	2.092(3)	N(4)-Cu(1)-P(1)	112.69(9)	Cu(1)-P(2)	2.2365(18)	N(3)-Cu(1)-P(2)	128.33(17)
Cu(1)-P(1)	2.1897(10)	N(3)-Cu(1)-P(1)	133.71(8)	Cu(1)-P(1)	2.2767(19)	N(4)-Cu(1)-P(1)	113.27(15)
P(1)-C(5)	1.825(3)	N(2)-Cu(1)-P(1)	116.66(9)	P(1)-C(13)	1.816(6)	N(3)-Cu(1)-P(1)	99.98(16)
P(1)-C(11)	1.841(4)	C(5)-P(1)-C(11)	104.80(15)	P(1)-C(7)	1.821(6)	P(2)-Cu(1)-P(1)	116.38(6)
P(1)-C(4)	1.866(4)	C(11)-P(1)-C(4)	102.44(17)	P(1)-C(6)	1.864(6)	N(4)-Cu(1)-N(3)	79.56(19)
N(4)-Cu(1)-N(3)	97.64(12)	C(5)-P(1)-C(4)	101.07(17)	P(2)-C(25)	1.820(6)	N(4)-Cu(1)-P(2)	113.94(16)
		3				9	
Cu(1)-N(2)	2.017(3)	N(2)-Cu(1)-N(4)	100.54(14)	Ag(1)-N(3)	2.251(3)	N(3)-Ag(1)-N(2)	100.69(10)
Cu(1)-N(3)#1	2.058(3)	N(3)#1-Cu(1)-N(4)	100.08(14)	Ag(1)-N(2)	2.325(3)	N(3)-Ag(1)-P(1)	134.70(8)
Cu(1)-N(4)	2.110(4)	N(2)-Cu(1)-P(1)	133.76(11)	Ag(1)-P(1)	2.3684(9)	N(2)-Ag(1)-P(1)	123.14(8)
Cu(1)-P(1)	2.1759(11)	N(3)#1-Cu(1)-P(1)	112.58(9)	P(1)-C(13)	1.822(3)	C(13)-P(1)-C(7)	103.37(15)
P(1)-C(5)	1.812(4)	N(4)-Cu(1)-P(1)	103.59(11)	P(1)-C(7)	1.824(3)	C(13)-P(1)-C(6)	102.84(15)
P(1)-C(11)	1.820(4)	C(5)-P(1)-C(11)	103.98(19)	P(1)-C(6)	1.856(3)		
P(1)-C(4)	1.858(4)	C(5)-P(1)-C(4)	102.0(2)				
N(2)-Cu(1)-N(3)#1	101.08(13)	C(11)-P(1)-C(4)	103.17(19)				
#1 x+1/2, -y-1/2, z+	1/2						

6